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Abstract

We conducted two large scale studies of the genetics of gene expression in individuals of

African ancestry within a cohort of consented 23andMe research participants and in LCL

samples from the 1000 Genomes Project African superpopulation. We discovered nearly four

times as many eQTLs, compared to tissue-matched eQTL studies in European cohorts.

Additionally, we found that the majority of eQTLs were not detectable across populations;

those that were, however, were found to be highly concordant. Performing eQTL studies in

African ancestry cohorts resulted in more signals per gene and smaller credible sets of causal

variants. We showed that comparisons of heritability of gene expression could be confounded

by population substructure, but that variation in local genetic ancestry did not majorly impact

eQTL discovery. Finally, we showed improvements in variant-to-gene mapping of

African-American GWAS signals when using African compared to European ancestry eQTL

studies.
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Introduction

Underrepresentation of individuals of African ancestry in biomedical research is a serious

ethical issue leading to healthcare disparities worldwide, and a major missed scientific

opportunity to understand the genetic basis of disease1. Initiatives like H3Africa2, Southern

African Human Genome Programme3 and MalariaGen4 have conducted genomic studies with

research participants from African countries, while the All of US5 and Million Veteran Program

(MVP)6 have performed large GWAS in African-American cohorts in the United States. While

associations can be identified more easily in African compared to non-African populations as a

result of increased genetic diversity7, interpreting GWAS results and mapping disease risk genes

requires a functional link between genetics and an intermediate molecular phenotype, such as

expression quantitative trait loci (eQTL). Although eQTL consortia such as GTEx8 included

African-American samples and performed follow-ups that focused on analysis of these

samples9, eQTL studies specifically conducted in African10,11 or African-American cohorts12,13,

as well as QTL studies broadly14, are fewer. Comparative studies of regulatory variation in

diverse human populations in the HapMap3 cohort demonstrated significant sharing of

cis-regulatory variation across populations, and for shared eQTLs, near-perfect concordance of

directionalities and effect sizes15. However, differences in allele frequencies across populations

cause differential eQTL discovery power15 and limit transferability of gene expression prediction

models16. Genetic European Variation in Disease (GEUVADIS)10, the first large RNA-seq based

cross-population study of regulatory variation, highlighted differences in transcript usage and

differences in overall gene expression, but concluded that these two were largely mediated by

separate genetic variants. eQTL analyses in the Human Genome Diversity Panel17 cohort

reported that 25% of variation in expression was attributable to ancestry, and that 76% of this

variation is due to expression rather than splicing. A recent study of eQTLs in African-American

and Latino populations linked heritability of gene expression and population heterozygosity,

and showed prevalence of population specific eQTLs to be 30% and 8% within ancestral

African and indigenous American genomic segments respectively13. African Functional

Genomics Resource (AFGR) compiled gene expression measured in 1000 Genomes Project

African samples and additional Maasai individuals, as well as open chromatin in a subset of

100 individuals, and assembled a comprehensive dataset of expression, splicing and chromatin

accessibility QTLs18.

To address underrepresentation of individuals of African ancestry (AFR) in research, we

conducted eQTL studies in two different cohorts. We recruited a cohort of consented 23andMe

research participants, which we refer to as the Black Representation in Genomic Research

(BRGR) study. We collected saliva and venous blood samples for whole-genome sequencing

(WGS) and RNA-seq, respectively, from 737 individuals. Additionally, we sequenced RNA

extracted from 659 lymphoblastoid cell lines (LCLs) belonging to the African ancestry
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superpopulation in the 1000 Genomes Project19, comprised of individuals from continental

Africa (including GEUVADIS Yoruba individuals10 and most AFGR samples18) and admixed

individuals from the African diaspora. Using publicly available WGS of these individuals20, we

analyzed the genetics of gene expression in LCLs (Fig. 1a). As comparisons, we analyzed

eQTLs in venous blood and LCLs from two large European cohorts10,21,22 (Table 1) and

subsequently investigated sharing of eQTLs. We used AFR and EUR eQTLs to annotate

African-American GWAS signals in 6 studies from MVP23–25, 11 studies from the Blood Cell

Consortium (BCX)14 and in the 23andMe GWAS of height in African-Americans.

Results

eQTL cohorts capture African and European ancestral backgrounds

We applied 23andMe’s Ancestry Composition (AC)26 algorithm to genetic variants called from

WGS data in the four cohorts and confirmed African and European ancestry components (Fig.

1b). Plurality of BRGR participants are from the South Census Region (Suppl. Fig. 1, Suppl.

Table 1). Genome-wide AC proportions of BRGR participants are similar to previously published

ancestry of individuals of African descent in the U.S.27, with high representation of Sub-Saharan

African ancestry (μAfrican=0.80±0.11, mean±sd) and moderate representation of European

ancestry (μEuropean=0.17±0.10, Suppl. Table 2). Plurality of local African ancestry is Nigerian

(μNigerian=0.29±0.09), with the majority of individuals grouping closely to the Igbo reference group

according to a graph method based on shared identical-by-descent (IBD) segments28 (Suppl.

Fig. 2a). Additionally, the distribution of ancestry found in the BRGR cohort is representative of

all genotyped African-American customers in the 23andMe database (based on a

randomization test, Suppl. Table 2). The Parkinson Progression Marker Initiative (PPMI)22,29

dataset was predominantly European (μEuropean=0.97±0.09), with the plurality of local European

ancestry being British and Irish (μBritish-Irish=0.35±0.37), followed by Iberian (μIberian=0.13±0.31). For

the 1000 Genomes Project eQTL cohorts, our genome-wide AC proportions recapitulate

established population genetics results19 (Fig. 1b, Suppl. Table 2,3).

Increased genetic diversity improves eQTL discovery power

RNA-seq from each of the four datasets underwent the same QC and gene expression

quantification procedures, and yielded comparable numbers of protein-coding genes for eQTL

testing (slightly more in PPMI, see Table 1). Approximately 15.6M variants pass QC filters in

each African cohort compared to 8.6M variants in European cohorts, in accordance with the

known larger number of variants per genome in individuals of African ancestry19. Comparing
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MAF spectra across ancestry groups reveals enrichment of rare variants in African versus

tissue-matched European cohorts (Fig. 2a, “all variants”).

To discover eQTLs, we applied SuSiE30,31 to individual level data from each study, using

default parameters. For each discovered eGene SuSiE returns independent eQTL signals as a

collection of credible sets (CSs). Within each CS, we reported the variant with the largest

posterior inclusion probability (PIP) as the index eVariant. In BRGR (sample size n=737) we

detected 21,130 eQTLs regulating 10,044 eGenes via 20,295 eVariants, compared to 5,661

eQTLs (4,277 eGenes; 5,380 eVariants) in PPMI (n=752; Table 1; Fig. 2b). In LCL_AFR (n=659)

we found 16,265 eQTLs (13,584 eGenes; 15,832 eVariants) compared to 2,904 eQTLs (2,527

eGenes; 2,843 eVariants) in GEUVADIS (n=358), however we here note the differential sample

size in LCLs. MAF spectra (Fig. 2a, “all eQTLs”) showed that eQTLs called in African cohorts

are enriched for rare variants, compared to a lack in European eQTLs. MAF relative increase in

AFR compared to EUR is bimodal in both cell types, with a majority of eQTLs (11,662 in BRGR

and 10,032 in LCL_AFR) with at least 3.16x (log10 ratio = 0.5) greater MAF (Fig. 2f, “all eQTLs”).

We discovered fewer eVariants per eGene in Europeans, with 77% of PPMI and 88% of

GEUVADIS eGenes having only one eVariant. Both African cohorts have comparable trends in

numbers of eVariants per eGene (Fig. 2c) and CS sizes are two times smaller in African

compared to European cohorts (Fig. 2d).

Majority of eQTLs are population- and tissue-specific, but the effects of

shared eQTLs are concordant

We first assessed sharing of eQTLs conservatively defined as exactly matching eGene and

eVariant. We found 872 eQTLs shared between BRGR and PPMI, and 341 between LCL_AFR

and GEUVADIS. As fraction of constituent datasets, eQTL sharing was infrequent (15.4% of

PPMI, 4.1% of BRGR eQTLs; 2.1% of LCL_AFR, 11.7% of GEUVADIS eQTLs; Fig. 2e).

However, shared eQTLs exhibited consistent effect sizes (Fig. 2g), with Pearson correlation r2 =

0.89 (p-value<2.2×10-16) and 0.91 (p-value<2.2×10-16) for venous blood and LCL datasets,

respectively. Shared eQTLs had smaller CSs (Suppl. Fig. 3), and 75% of CSs in African cohorts

contained 1 or 2 variants, while in PPMI 75% of CSs had up to 7 variants, and over 10 in

GEUVADIS. Shared eQTLs had similar MAF spectra, except for rare alleles, which were

underrepresented in Europeans (Fig. 2f). Shared venous blood eQTLs either had comparable or

greater MAF in AFR, while LCL eQTL MAFs were comparable. Within-population cross-tissue

sharing was rare: 1,987 eQTLs were shared within African datasets (9% BRGR; 12%

LCL_AFR), while 176 eQTLs were shared within European datasets (3% PPMI; 6% GEUVADIS).
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Next, we considered eQTLs shared if eGenes matched and pairs of signals colocalized32

with posterior probability H4 ≥ 0.5. We found that 55.5% of eQTLs identified in PPMI were

shared with BRGR, and 14.9% conversely (Table 2). 54% of eQTLs identified in GEUVADIS

were shared with LCL_AFR and 9.6% conversely. eQTL effect sizes were consistent, with

r2=0.83  (p-value<2.2×10-16) and 0.79 (p-value<2.2×10-16) for venous blood and LCLs,

respectively. Across tissues, African cohorts shared 4,545 eQTLs  (22% of BRGR and 27% of

LCL_AFR eQTLs, respectively) while European cohorts shared 769 eQTLs (14% of PPMI and

26% of GEUVADIS eQTLs, respectively). CSs of colocalized eQTLs were smaller in African than

in European cohorts (Suppl. Fig. 3) and shared eQTLs have comparable MAF. Venous blood

specifically shows a striking enrichment in BRGR eQTLs of eVariants more common in BRGR

versus PPMI (Fig. 2f, x-axis=+0.5), and also that variants more common in PPMI (compared to

BRGR) are detected in BRGR (Fig. 2f, x-axis=-0.5). The converse is not true: variants more

prevalent in BRGR are not detected in PPMI, although PPMI is also enriched for variants more

common in PPMI.

When comparing MAF spectra of shared (either exact match or coloc) and unshared

eQTLs for a given tissue, all shared eQTLs have either comparable or larger MAF in EUR versus

AFR (Fig. 2f). eQTLs with meaningfully larger allele frequencies in individuals of African ancestry

tend to be unshared, highlighting the value of conducting eQTL studies in diverse cohorts.

We next measured replication, which within the SuSiE framework we defined as

matching eGenes and the variant with the largest PIP in one CS (aka eVariant) observed in the

other CS (Table 2). 23% of eQTLs found in PPMI replicated in BRGR and 21% vice versa, while

for LCL cohorts, 18% of GEUVADIS eQTLs replicated in LCL_AFR and 16% vice versa.

Comparing tissues, 16% of BRGR eQTLs were found in LCL_AFR and 21% vice versa, and

15% of PPMI eQTLs were found in GEUVADIS and 18% vice versa.

Finally, we compared detected eGenes, irrespective of eVariants or signal colocalization.

3,822 eGenes were shared between BRGR and PPMI (respectively, 27% and 22% of genes).

2,153 eGenes were shared between  LCL_AFR and GEUVADIS (5.8% and 14.7% of genes).

6,843 of eGenes were shared between BRGR and LCL_AFR (48% and 50% of eGenes,

respectively) while 1,331 eGenes were shared PPMI and GEUVADIS (7% and 9% of eGenes,

respectively). In summary, our results indicated that only a small fraction of discovered eQTLs

were shared across populations.

Heritability analyses of gene expression are confounded in cross-ancestry

comparisons
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We measured h2 of gene expression in BRGR and PPMI using GCTA-GREML33 and identified

9,777 eGenes that showed significant heritability in both cohorts. Average heritability in BRGR

is significantly higher (h2=0.31) than in PPMI (h2=0.20). Out of the 9,777, we identified a subset

of 1,016 eGenes with eQTL signals that colocalize across cohorts and measured the

relationship of differential genetic variance of index SNPs to differential h2 (Δh2) across genes.

Despite the assumption of shared causal variants for signals that colocalize across cohorts, we

find that Δh2, the difference in heritability, is positively associated with differential genetic

variance (p-value=2.9×10-43), accounting for 17% of variation in Δh2 (Fig. 3b, Suppl. Fig. 4a). We

also find that the ratio of unexplained to heritable variation, defined as q = h2 / (1-h2) is

associated with differential genetic variance of eVariants (Fig. 3c; Suppl. Fig. 4b,c; Suppl. Table

4), indicating that comparisons of heritability of shared casual signals are confounded by

differential MAF.

Standard best practices in eQTL calling adequately control for ancestry as

confounder

To assess unmodeled effects of ancestry on our findings in eQTL sharing and heritability, we

compared the contribution of global ancestry using the standard approach of genetic PC

covariates to modeling local ancestry using Tractor34, and found that 80% of eGenes were

identified in both models (Suppl. Fig. 5a).  Another 15% of eGenes were significant in both

models but with different eVariants. As Hou et al.35, we found that Tractor was well-powered to

identify effect size heterogeneity by ancestry and underpowered otherwise (Suppl. Fig. 6b), and

for the majority of eQTLs we did not observe effect heterogeneity. We concluded that individual

eQTL datasets were not impacted by ancestry-induced biases.

Genetic determinants of Duffy-null associated neutrophil count connect

gene expression to cellular and physiological phenotypes

Reasoning that blood cell phenotypes with greater prevalence in Africans compared to

Europeans should have detectable correlates in BRGR eQTLs, we investigated eQTL signals for

Duffy-null associated neutrophil count (DnANC), a phenotype characterized by lower neutrophil

and leukocyte counts without increased infection risk36,37. DnANC is observed in individuals of

African, Middle Eastern, and West Indian descent, with estimated prevalence as high as

25-50% in AFR38. DnANC is driven by the Duffy-null genotype CC of rs2814778 (ClinVar:18395)

in ACKR137,39. Individuals with Duffy-null allele have increased protection against Plasmodium

vivax malaria infection and increased susceptibility to HIV-1 trans-infection40. ACKR1 venous

blood expression correlates with neutrophil counts because of its effects on neutrophil
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homeostasis; however ACKR1 is a chemokine scavenger receptor expressed in erythrocytes

and endothelial cells, not neutrophils.

We found multiple eQTLs for ACKR1 in the BRGR and PPMI cohorts (Fig. 4): rs2814778

is an eQTL in the BRGR study (β±se=-0.96±0.02, p-value<2.2×10-308), is more common in

Africans (MAFAFR=0.16, MAFEUR=0.002, based on gnomAD41 v4) and is located in the promoter

of ACKR1. In BCX, rs2814778 has the strongest association of any blood-cell trait in

African-ancestry individuals, and is associated with counts of neutrophils (β=0.86±0.02,

p-value=3.99×10-432), white blood cells (β=0.70±0.02, p-value=1.02×10-330) and monocytes

(β=0.32±0.02, p-value=1.92×10-63). We also identified rs863005 as a secondary ACKR1 eQTL in

the BRGR cohort. We detected rs12075 as an eQTL for ACKR1 in PPMI. This variant is more

common in Europeans (MAFAFR=0.07, MAFEUR=0.42) and is a QTL for monocyte

(β=0.027±0.002, p-value=3.24×10-41) and basophil counts (β=0.028±0.002, p-value=6.63×10-39)

in Europeans in BCX. rs12075 is a coding variant for ACKR142 and has been reported as a

regulator of the monocyte chemokine MCP-143. This European eQTL colocalizes (H4=0.6) with

the rs863005 eQTL from BRGR. We didn’t detect any eQTLs for ACKR1 in the LCL datasets, as

this gene is not expressed in B cells44,45.

African ancestry eQTLs improve annotation of African-American GWAS

To assess the utility of African ancestry eQTL datasets for annotating African-American GWAS,

we mapped associations in 22 GWAS performed in African-American cohorts: 8

cardio-metabolic traits from the Million Veteran Program (MVP), 13 blood measurement traits

from the Blood Cell Consortium (BCX) and 23andMe’s GWAS of height (Suppl. Table 5). Across

the board, using AFR eQTLs lead to higher fractions of African-American GWAS signals

annotated with at least one gene mapping hypothesis. In MVP, BCX and height studies BRGR

eQTLs mapped 1.3-3x more signals to genes compared to PPMI. In BCX and height studies,

LCL_AFR eQTLs mapped 1.75-2.77x more signals than GEUVADIS. GEUVADIS eQTLs didn’t

contribute to gene mapping in MVP while LCL_AFR eQTLs mapped 1.3% of association

signals to genes (Table 3). BRGR eQTLs map at least one GWAS hit per phenotype in 71.4% of

BCX phenotypes and 80% of MVP phenotypes, compared to 42.9% and 40% for PPMI

respectively. Similarly, LCL_AFR eQTLs annotate at least one GWAS hit per phenotype in 50%

of BCX and 60% of MVP phenotypes compared 35.7% and 0% for GEUVADIS. All four eQTL

datasets annotated at least one GWAS hit in 23andMe height.

eQTLs discovered in BRGR and not shared with PPMI contributed 50 gene-phenotype

hypotheses relating 38 GWAS signals in 15 phenotypes to 40 genes, while only 9

geno-phenotype pairs (9 GWAS signals in 3 phenotypes and 9 genes) were discovered with

eQTLs unique to PPMI. eQTLs discovered in LCL_AFR and not shared with GEUVADIS
8
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contributed 34 gene-phenotype hypotheses (31 GWAS signals in 8 phenotypes, 32 genes),

while only 4 were discovered with eQTLs unique to GEUVADIS (4 GWAS signals in 2

phenotypes, 4 genes).

We next explored the novelty of our gene-phenotype hypotheses in OpenTargets

Genetics v22.10, regardless of the specific eQTL or discovery tissue or cohort. Of the

gene-phenotype hypotheses contributed by eQTLs only discovered in BRGR, 20 out of 50

hypotheses have not been previously reported. Notably this includes thalassemia variant

rs33930165 (Clinvar ID: 15126) and the hemoglobin gene HBD and BCX phenotypes MCHC,

RBC, RDW (all H4=1.0; see Suppl. Table 6). Of those that have a close matching phenotype in

OpenTargets — e.g. TRIP10 and BCX phenotype mean platelet volume (MVP)46; max

H4,OpenTargets=0.37 and H4, BRGR=0.99 — the average relative increase of H4 under African eQTLs

was 6.1x greater than H4 reported previously. For LCL_AFR, 17 out of 34 hypotheses were not

reported in OpenTargets, including ITM2 and height47 (H4=0.97; see Suppl. Table 6). Of those

reported previously, the average relative increase in P(H4) was 6.8x greater using LCL_AFR

eQTLs in comparison to reported H4; with EDC3 and height as example, we find H4 2.3x greater

in LCL_AFR compared to OpenTargets’ reporting of height48.

Out of gene-phenotype pairs derived from eQTLs unique to African cohorts, only 2 were

seen in both BRGR and LCL_AFR: DRICH1 and eosinophil count in BCX (rs5759953 is eVariant

in both cohorts) and LLGL1 and height (rs112521610 eVariant in both). While colocalizations

between DRICH1 and lymphocyte, white blood cell and neutrophil count GWAS were observed

in BCX49 using European-based eQTLs, colocalization with eosinophil count has not previously

been reported. LLGL1 eQTL signals have previously been observed to colocalize with GWAS of

height, standing height and height at 10 years of age in Europeans48–50.

Discussion
The increased genetic diversity of individuals with African ancestry improves discovery power

for regulatory mechanisms compared to Europeans. We performed eQTL studies in venous

blood and LCLs in African and European cohorts and discovered that at the level of variants

that passed QC, African ancestry cohorts have approximately 2x as many variants by tissue

compared to European. We found enrichment of eQTLs in African compared to European

cohorts: 3.7x more eQTLs in venous blood, and 5.6x more eQTLs in LCLs. While the

discrepancy in number of variants or eQTLs in LCLs can be partially attributed to a nearly 2x

greater sample size of the LCL_AFR compared to GEUVADIS, for venous blood PPMI sample

size is slightly greater than BRGR.
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Variant-for-variant, power increases with the increase in MAF from one population to

another51,52. Here, 55.1% of eQTLs in BRGR and 61.7% in LCL_AFR are at least 3.16x more

frequent as compared to PPMI or GEUVADIS. To facilitate comparisons between African and

European eQTLs, we used a common human genome reference (GRCh38) and did not include

the 297Mbp of genomic contigs identified in a large African WGS cohort53 that are absent from

GRCh38. Using this updated reference may yield more ancestry-specific eQTLs than were

discovered in the present study.

We avoided ancestry-based confounding in eQTL calling by using genetic and

expression PCs, and showed that results were not affected by local ancestry. Interestingly, it

was recently shown that DNA methylation QTLs are sensitive to local ancestry54, indicating that

further work is needed to fully disentangle the contribution of local ancestry to different

modalities of molecular phenotypes in cis.

For variants with comparable allele frequencies in African and European cohorts, we

quantified sharing of eQTLs using four measurements: exact (eGene, eVariant) pair,

colocalization, replication and sharing at the level of eGenes. Within a tissue and across

ancestry groups, we find QTLs shared under any definition to be low when considered as a

fraction of total. Low eQTL sharing across tissues has previously been observed to hold

generally in cross-tissue comparisons55, which we also observe in comparisons across tissues

within an ancestry group.

Kachuri et al.13 stratified eQTLs into multiple tiers of sharing according to a decision

tree, which does not readily allow direct comparison to other work. Nonetheless, of the genes

they identified as heritable, 47.4% had no overlapping CS in their AFRhigh cohort as compared

to their AFRlow cohort. As only 9,609 genes met their definition of heritable, their conclusions

broadly agree with ours. Recently, the AFGR18 cohort released a preprint studying the same

HapMap samples comprising the LCL_AFR cohort, and report extensive sharing of eQTL

effects with European LCL eQTLs. However, they measure sharing with mashr56, which

specifically assesses whether a variant’s effect size is 0 or not in one or more groups. While

interesting, this question is per-variant, and is only comparable to our exact match analysis,

whereas our use of colocalization is targeted at identifying shared causal signals, and our

replication analysis considers credible sets, both of which avoid confounding by unmodeled

linkage disequilibrium. Despite the low eQTL sharing, shared eQTLs have similar effect sizes,

agreeing with Stranger et al.15 that 34% of genetic effects are shared between ancestry groups

with similar effect sizes. Beyond eQTLs, Kanai et al.57 studied the replication of fine-mapped

GWAS variants (PIP > 0.9; “hits”) across three biobanks of different ancestry groups. Although

their definitions of replication are both different from ours and multi-tiered, they find that 55% of

hits meet their definition of fine-mapping-based replication, in broad agreement with our
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findings. Of the variants found not to replicate, they note that approximately 42% can be

attributed to simply lower power in the other cohort(s), and another 42% can be attributed to

differential allele frequencies. We speculate that the low replication rates observed in the

present work may also be attributable to either lack of power, or differential allele frequency,

especially given the pronounced differences in allele spectra we observe between ancestry

groups (Fig. 2a, 2f).

Kachuri et al.13 found heritability of gene expression to differ by ancestry group,

specifically their AFRhigh group having more heritability on average as compared to their AFRlow

group. We observed similar heritability differences when comparing BRGR and PPMI, and

further showed that this comparison was confounded by differential genetic variance, and

caution against overinterpretation of these findings in either the previous or current work.

In terms of gene mapping, we observed a meaningful increase in gene hypotheses

when matching ancestries of GWAS and eQTL cohorts, and discovered colocalizations not

previously reported. We also observed increased confidence in a number of previously reported

gene hypotheses. While colocalization between GWAS and eQTL signals doesn’t necessarily

imply that changes in gene expression levels of the eGene mediate genetic effects on disease

in every instance58, the fact that only about 10% of index SNPs in the GWAS Catalog are

located in the coding regions55 does mean that the use of eQTLs will remain a major strategy

for nominating gene mapping hypotheses in a vast majority of GWAS loci. GWAS annotation

analyses indicate the existence of novel gene-phenotype pairs discoverable only in African

cohorts. We anticipate the release of the BRGR and LCL_AFR datasets will enable further

research on these and other important questions pertaining to genetic regulation of gene

expression in individuals of African descent.

Online Methods
Black Representation in Genomic Research (BRGR). We recruited a cohort of 23andMe

consented research participants who self-identified as being of African descent, were predicted

to have ≥ 50% African ancestry by the 23andMe Ancestry Composition algorithm26, had no

known blood related cancers or illness, and resided in the continental United States (see Suppl.

Fig. 1 for details). WGS was performed on biobanked DNA from saliva samples of BRGR

participants, and a venous blood sample was collected for RNA-seq. RNA extraction of 787

venous blood samples that were collected from 23andMe research participants using PAXgene

blood RNA tubes was performed at the New York Genome Center (New York, NY). 2 samples

were dropped due to contamination and an additional 14 were removed due to sample swaps.

DNA extracted from blood cells in saliva samples of 23andMe customers was whole-genome

sequenced at the Broad Institute (Cambridge, MA) with aligned CRAMs produced using their
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standard pipeline59. The average passing aligned read depth was 22.5x in the BRGR cohort.

Randomization of BRGR WGS samples was performed to prevent batch effects using the

blockTools R library60. 976 subjects had usable WGS samples. A total of 737 individuals from

this cohort had saliva and venous blood samples of sufficiently high quality for downstream

WGS and RNA-seq, respectively (see Suppl. Table 1 for details).

Ethical approval. All biological sample collection was performed in accordance with the terms

of informed consents and under an IRB approved protocol. Participants provided informed

consent and participated in the research under a research protocol reviewed and approved by an

external AAHRPP-accredited IRB, Ethical and Independent Review Services

(www.eandireview.com). Participants consented to sharing of genetic and transcriptomic data via

the NIH Database of Genotypes and Phenotypes (dbGaP).

LCL_AFR. Lymphoblastoid cell lines (LCLs) from 660 individuals from the 1000 Genomes

Project African superpopulation (all except HG02756, which is no longer available) were thawed

and clones expanded at the Coriell Institute for Medical Research (Camden, NJ). This included

individuals from the Yoruban, Esan, Gambian, Mende and Luhya continental African

populations (including all YRI samples from the GEUVADIS project), as well as admixed

African-American individuals from the U.S. Southwest and Afro-Caribbean individuals from

Barbados (see Suppl. Table 3 for details). RNA from LCLs was extracted at the Coriell Institute.

The final sample count was 659.

RNA library preparation and sequencing. BRGR and LCL_AFR samples that met the

following QC criteria: (1) minimum of 2µg total DNase-treated RNA, (2) absorbance values of

OD260/280 ≥ 1.9 and (3) BioAnalyzer RIN value ≥ 8, were fragmented to 350bp average

fragment length and prepared for sequencing using mRNA TruSeq Stranded kits (Illumina, San

Diego, CA). Library preparation and RNA-sequencing of paired end 2x100bp reads was

performed on Illumina NovaSeq sequencers at the New York Genome Center (New York, NY) to

an average coverage of 60M reads.

Parkinson Progression Marker Initiative (PPMI). The PPMI22,29 cohort contains WGS and a

series of functional measurements performed during the course of progression of Parkinson

disease. We downloaded RNA-seq data and VCF files (Tier 2 Data) from the Image and Data

Archive run by the Laboratory of Neuro Imaging (LONI) at the USC Mark and Mary Stevens

Neuroimaging and Informatics Institute. For each sample, we took the RNA-seq from the

earliest time point. Average coverage was about 100M reads per sample. The 1,379 initial

samples as downloaded from USC were predominantly European (μEuropean=0.97±0.07), with the

plurality of local European ancestry being Ashkenazi Jewish (μAshkenazi=0.36±0.48), followed by

British and Irish (μBritish-Irish=0.22±0.03). 1,238 samples were of broadly European ancestry.

Relatedness was highest in individuals of Ashkenazi descent (defined as μAshkenazi>0.25) with
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49.2% of pairwise comparisons having at least 0.05% of their genome that is IBD (Suppl. Fig.

2, Suppl. Table 7). In order to remove a potential bias in relatedness and heritability calculations

due to including individuals from this founder population, and to standardize sample numbers

in BRGR and PPMI cohorts so we remove an obvious confounder in eQTL statistical discovery

power, we have excluded the 481 Ashkenazi Jewish individuals from our PPMI cohort. After

removing 5 additional samples with incomplete gene expression data, the final sample count

was 752.

GEUVADIS. We downloaded RNA-seq data for the 358 European ancestry samples from the

Geuvadis Consortium from https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-GEUV-1.

Average coverage was about 20M reads per sample. LCL_AFR and GEUVADIS samples were

part of the 1000 Genomes Project, and we downloaded high-coverage WGS data generated by

the New York Genome Center20 from https://www.internationalgenome.org/data-portal/data-

collection/30x-grch38.

Variant calling. Variant calls were made using DeepVariant61 with joint calling performed by

GLnexus62,63. The 1000 Genomes Project WGS samples (LCL_AFR and GEUVADIS cohorts)

were processed with DeepVariant-0.8.0 and GLNexus-1.2.3 while for BRGR we used

DeepVariant-1.1.0 and GLNexus-1.2.7. For PPMI, variant call files were downloaded through

the LONI portal; variant calling in this cohort has been previously described64. Multi-allelic sites

were split into individual alleles using bcftools norm -m -any. Genotypes with GQ<20 were set

to missing, then variants were excluded where any of: >20% of genotypes missing, had no

genotype with an alternative allele present or HWE exact test p-value<10-50.

Ancestry inference. To identify the ancestral origins of chromosomal segments across

cohorts, we performed local ancestry inference using 23andMe's Ancestry Composition26.

Ancestry Composition uses support vector machine classifiers to assign one of 45 fine-scale

ancestry populations to locally phased 300-SNP windows based on 541,948 SNPs. These

preliminary assignments are next processed with an autoregressive pair hidden Markov model

that smooths and corrects any phasing errors. The resulting posterior probabilities are

recalibrated with an isotonic regression model. Local ancestry segments within each individual

are finally summarized to produce a genome-wide proportion. For the purpose of this study,

any population assignment with a mean less than 5% in either PPMI, African LCL, or BRGR

was binned into a trace ancestry category. Finally, we performed independent randomization

tests on 18 relevant ancestry populations to determine if the BRGR cohort ancestral

representation is significantly different from that of a larger subset of individuals of African

American participants. In each case, we performed a randomization test by randomly sampling

(with replacement) 1000 23andMe research participants who identified as African-American

based on survey answers and have >50% African ancestry (n=203,916) across 1000 iterations.

For each iteration, we calculated the difference in mean genome-wide ancestry proportions
13
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between BRGR and the initial random subset (Δμ Ancestry
1 ), then created two additional cohorts

of 1000 individuals each by randomly sampling individuals from both starting cohorts and

determined the difference in the means of these second cohorts ( Δμ Ancestry
2 ). We determined

p-values as the number of times that Δμ Ancestry
2 was greater than or equal to Δμ Ancestry

1 out of

the 1000 iterations.

Identity-by-descent (IBD). To determine relatedness between individuals we calculated the

amount of DNA that is identical-by-descent between all pairs of individuals using phase-aware

templated positional Burrows-Wheeler transform IBD detection (TPBWT-IBD)65. TPBWT-IBD

was performed on all pairwise combinations of individuals across the PPMI, African LCL, and

BRGR cohorts and a subset of additional 1000 Genomes Project19 and Human Genome

Diversity Cell Line Panel (HGDP)66 populations. To maximize the accuracy of IBD detection, we

used default parameters on an optimized set of 541,948 SNPs and retained IBD segments ≥ 5

centimorgans (cM). Finally, to visualize fine-scale ancestry, we arranged individuals in a graph

based on the total amount of IBD they share using the ForceAtlas228 layout. Force Atlas is an

algorithm that situates individuals (or nodes) in a graph using a physical magnetic model. In this

case, individuals with more IBD sharing will be attracted to one another and individuals with

less IBD sharing are repelled. ForceAtlas2 runs until balance between repulsion and attraction

is achieved, essentially illustrating fine-structure of individuals using the total IBD shared.

RNA-seq mapping. RNA-seq reads were aligned to the human reference genome GRCh38

using STAR67 with 2 passes. Quality control for technical factors was done with FastQC68 and

MultiQC69, and sample swaps were checked for using verifyBamID70. Per sample strand

orientation was verified using the infer_experiment.py module in RSeQC71. Gene-level

expression was quantified by HTSeq72 (--stranded=reverse) using GENCODE73,74 v28 gene

models. RNA-seq reads were aligned to the whole transcriptome, but subsequently all analyses

here and throughout the manuscript were limited to protein-coding genes.

RNA-seq normalization. RNA-seq datasets were filtered for genes where ≥20% samples had

a CPM (count per million) ≥0.1. Genes passing this threshold were further normalized first by

scaling by library size using edgeR75,76, then converting to log2 scale. Finally, for all genes with

more than 95% of samples exhibiting normalized expression value less than 4 standard

deviations away from the expression mean, samples were right-truncated to the 95%-ile of

normalized expression values; genes with 5% or more samples exhibiting normalized

expression greater than 4 standard deviations from the mean were discarded from downstream

analysis.

eQTL discovery: eQTL discovery was done using the susieR package30 with default

parameters: maximum 10 independent signals per gene, sum of credible set-level posterior

inclusion probabilities (“coverage”) of 0.95 and minimum within-credible-set correlation
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(“purity”) of 0.5. The analysis was restricted to protein-coding genes and variants within a

±1Mbp window centered on the tested gene’s transcription start site (TSS). We tested SNVs

and indels ≤ 500bp that had in-sample MAF≥1% and missingness < 5%. Covariates used

across all datasets for eQTL calling included age, sex and 10 genetic PCs. Expression PCs

were used to adjust for hidden covariates in RNA-seq data. The number of PCs was selected

per dataset using the elbow method77, leading to 18 expression PCs for BRGR, 31 for

LCL_AFR, 19 for PPMI and 23 for GEUVADIS. BRGR also included unique read fraction, RNA

integrity number78 and % African ancestry as inferred by 23andMe Ancestry Classifier model26.

GTEx also included sequencing platform and cohort (post-mortem, organ donor or surgical) as

covariates.

African-American GWAS. To assess the utility of the eQTL datasets for annotating GWAS hits,

we downloaded African-American GWAS summary statistics from the VA Million Veteran

Program (specifically blood lipids23, VTE24 and T2D25), and GWAS of blood traits from the Blood

Cell Consortium14. Summary of all included GWAS are shown in Suppl. Table 5. As these

GWAS had moderate sample sizes and numbers of genome-wide significant hits, we did not

fully condition association signals in these studies.

In addition, we ran a GWAS of height in 23andMe’s African-American cohort, using our

standard GWAS pipeline as described previously79. In short, we compute association test

results for the genotyped and the imputed SNPs. For tests using imputed data, we use the

imputed dosages rather than best-guess genotypes. As standard, we include covariates for

age, gender, the first 6 PC of genetic ancestry to account for residual population structure, and

indicators for genotype platforms to account for genotype batch effects. The association test

p-value we report is computed using a likelihood ratio test. Association tests are performed by

linear regression. Results for the chrX are computed similarly, with male genotypes coded as if

they were homozygous diploid for the observed allele. Height GWAS signals were fully

conditioned using the step-down conditional process: for each association genome wide, we

re-ran the association test with the top variant from the preceding step in the model as an

additional covariate at each iteration. The process is repeated up to 20 times or until no

association is detected at p-value≤10-5. All conditionally independent variants identified were

then introduced in a joint model. At each iteration one of the variants is left out to compute

conditional leave each out (CLEO) statistics to be used in downstream analysis.

Variant-to-gene mapping. African-American GWAS hits were linked to eGenes via

colocalization analysis. Approximate Bayes factors80 were derived directly from MVP GWAS

marginal summary statistics as the GWAS were likely underpowered to confidently detect

secondary signals. For 23andMe African American height, each marginal association was

further analyzed for conditionally independent signals using conditional leave each out (CLEO)

analysis, and ABFs were computed using these conditionally-resolved statistics. ABFs
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representing independent signals were colocalized against SuSiE-derived eGenes using the

coloc R package function coloc.susie_bf, with default parameters. Gene-trait pairs with a

posterior probability of colocalization H4≥ {0.5, 0.8} are reported as colocalizing.

Local ancestry-based eQTL calling. Local ancestry was incorporated into cis-eQTL calling

using the Tractor34 model. We used Tractor to estimate European and African ancestry-specific

effects and p-values by including alternate allele counts for each ancestry into the model. This

was compared to a “standard” generalized linear regression model which measured the

alternate allele effect, regardless of haplotype ancestry. In both models, we tested all variants

within a 1Mb cis-window of each gene with MAF ≥ 5% and MAC ≥ 10 for both ancestry tracts.

We adjusted for covariates including age, sex, 10 genetic PCs, 35 PEER factors, and

sequencing factors in both models and for the Tractor model we also adjusted for the number

of African ancestry haplotypes per locus.

Heritability analysis. GCTA GREML33 was used to estimate cis-heritability for significant

eGenes in BRGR and PPMI, separately, for autosomal variants with MAF ≥ 0.01. The

phenotype used for GREML analysis was the normalized expression residualized on age, sex,

10 PCs of genetic ancestry, 35 PEER factors and sequencing covariates. We identified 9,777

eGenes that showed significant (p-value < 0.05) heritability in both cohorts. To avoid inflating

estimates of h2 through relatedness, we filtered each cohort to the subset of individuals for

which pairwise IBD < 0.025. To identify a high-confidence gene set for comparing heritability

between BRGR and PPMI, we first derived fine-mapped30,81 credible sets for eQTLs in each

cohort.

We focused our comparison on the 183 genes which had significant heritability

estimates in both cohorts, and for which all 95% credible sets colocalized29 across the two

cohorts with P(H12) > 0.5. For each gene g in each cohort, we approximately quantified the

genetic variation (Vg) that contributes to gene expression as the sum of genotype variance

across the index variants in BRGR of k credible sets as

𝑣
𝑔
 : =  

𝑘

∑  2 𝑓
𝑘 

1 − 𝑓
𝑘( ) 

where fk is the cohort-specific in-sample MAF for gene g. Here we assume that the genetic

effect sizes are the same across cohorts and independent on variants so that, on average

across the genes, we have Vg
BRGR / Vg

PPMI
g

BRGR / g
PPMI. We use the BRGR index variants≈ 𝑣 𝑣

under the assumption that these colocalizing signals are shared causal eQTLs, and note that

using PPMI index variants does not change our conclusions (Fig. 3). We compared the

difference in heritability between BRGR and PPMI (Δh2 = h2
BRGR - h2

PPMI) and the difference in vg

(Δvg = vg, BRGR - vg, PPMI).
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For each cohort, we define the ratio of genetic to environmental variance explained for a

given gene g as

𝑞
𝑔

=  
ℎ

2

1−ℎ
2  =

𝑉
𝑔

𝑉
𝑒

.

With terms k1 = Ve
BRGR / Ve

PPMI (ratio of environmental variances) and k2 = Vg
BRGR / Vg

PPMI (ratio of

genetic variances), for gene g we can relate BRGR and PPMI as

.𝑞
𝑔

𝐵𝑅𝐺𝑅
 =  

𝑉
𝑔

𝐵𝑅𝐺𝑅

𝑉
𝑒

𝐵𝑅𝐺𝑅  =
𝑘

2

𝑘
1

𝑞
𝑔

𝑃𝑃𝑀𝐼

That is, the ratio of unexplained to explained variance for a gene in PPMI is proportional to the

same quantity in BRGR. Under the assumption of approximately equal environmental variation,

k1 ≈ 1, and

𝑞
𝑔

𝐵𝑅𝐺𝑅

𝑞
𝑔

𝑃𝑃𝑀𝐼  ≈  𝑘
2

=  
𝑉

𝑔

𝐵𝑅𝐺𝑅

𝑉
𝑔

𝑃𝑃𝑀𝐼  ≈  
𝑣

𝑔

𝐵𝑅𝐺𝑅

𝑣
𝑔

𝑃𝑃𝑀𝐼

across genes broadly. This latter hypothesis can be tested by defining similar difference terms

Δlog(q) and Δlog(vg), which are expected to be correlated. Relatedly, under this line of

reasoning, log(qBRGR) = Δlog(vg) + log(qPPMI).

OpenTargets Genetics access. OpenTargets Genetics v22.10 was accessed via API with

queries against colocalization tables. We consider all gene-phenotype pairs reported in

OpenTargets, regardless of eQTL or GWAS discovery cohorts, or tissues or cell types of

discovery in the case of eQTLs. For a given eGene-phenotype pair discovered through one of

the AFR cohorts, we search for similar OpenTargets Genetics phenotypes (i.e. MPV in BCX and

‘Mean platelet volume’ in UKB), and report the result from phenotype with the largest

colocalization H4 with the eGene.

Data availability
Consistent with the research consent provided, we made these datasets publicly available to all

qualified researchers. RNA-seq and WGS data for Black Representation in Genomic Research

is available as dbGaP study phs002969.v1.p1, and RNA-seq for the 1000 Genomes Project

African superpopulation LCLs as SRA project PRJNA1108327. Upon publication the full

summary statistics for the 23andMe African-American height GWAS and the BRGR eQTL study

will be made available through 23andMe to qualified researchers under an agreement with

23andMe that protects the privacy of the 23andMe participants. Please visit

https://research.23andme.com/collaborate/#dataset-access for more information and to apply

to access the data. Upon publication genome-wide association summary statistics for the

African LCL eQTL study will be freely available for download via

https://www.internationalgenome.org.
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Figure Legends

Figure 1 | Schematic diagram of the study design and Ancestry Composition estimates

for each eQTL cohort. (a) Schematic diagram of the four eQTL study arms. Fuchsia-colored

boxes indicate new RNA-seq or WGS data generated for this study. (b) Results of the Ancestry

Composition algorithm applied to the four eQTL cohorts. Each vertical line represents

genome-wide proportions for a single individual.

Figure 2 | Statistics of eQTL calls and eQTL sharing across cohorts. (a) Minor allele

frequency histograms of all variants and all detected eQTLs, as well as for eQTLs that were

also observed in the matching tissue in the complementary population. (b) Scatter plot of

number of eQTLs discovered against cohort size shows higher numbers of eQTLs in African

ancestry groups even when normalized by study size. (c) Distributions of numbers of distinct

eVariants per eGene show a higher number of eVariants in AFR cohorts. (d) Distributions of

credible set sizes have smaller medians in European ancestry datasets. (e) Sharing of eGenes

and eQTLs between African and European studies in the same tissue or cell type is broadly

low, irrespective of the method of comparison. (f) Spectra of log10(MAFAFR / MAFEUR) for eQTLs

from African (red) and European (blue) ancestry cohorts, in venous blood and LCLs

respectively. (g) Shared eQTLs are largely concordant in their direction of effect (Pearson r2 =

0.89-0.91 for exactly the same eVariants, r2 = 0.79-0.83 for colocalizing eVariants), with on
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average slightly elevated magnitude of effect in African cohorts (blue line is best linear fit, black

line x=y for comparison).

Figure 3 | Cis-heritability of gene expression in venous blood and difference in genetic

diversity explaining population differences. (a) Comparison of h2 across populations (BRGR

in blue and PPMI in yellow) showing a significant difference in h2 (p-value < 2.2×10-16). (b), (c)

Among the 183 genes whose credible sets are colocalized between BRGR and PPMI, we

define the causal eQTLs as the index variants from BRGR (blue) or PPMI (yellow) credible sets

and calculate the genetic diversity vg of the causal eQTLs in BRGR and PPMI respectively. To

examine the relation between genetic diversity and heritability, we introduce a transformed

heritability, q = h2 / (1 - h2). (b) For each of the 183 genes, differences in genetic diversity Δvg =

vg, BRGR - vg, PPMI are shown on x-axis and differences in heritability Δh2 = h2
BRGR - h2

PPMI are shown

on y-axis. The line is drawn from the linear fit Δh2 ~ 1 + Δvg. (c) For each of the 183 genes,

differences in logarithm of genetic diversity between BRGR and PPMI (Δlog(vg) = log(vg, BRGR) -

log(vg, PPMI)) are shown on x-axis and differences in logarithm of transformed heritability (Δlog(q)

= log(qBRGR) - log(qPPMI)) are shown on y-axis. The line is drawn from the linear fit Δlog(q) ~ 1 +

Δlog(vg).

Figure 4 | ACKR1 eQTLs in BRGR and PPMI, colored by in-sample LD to highest logBF

variant. Shown are SuSiE log Bayes factors (logBFs) for each SNP in a given eQTL signal.

logBFs reflect the evidence that a SNP is the causal SNP, and are proportional to posterior

inclusion probabilities. BGRG signal #1 (PIP = 1.0), with the Duffy null allele variant rs2814778

as the eVariant. BRGR signal #2 (PIP = 0.996), with rs863005 as the eVariant. Compared to

signal #2, #1 exhibits a longer segment of variants in linkage disequilibrium with each other,

which may reflect the selective pressure specifically on the haplotype carrying the CC allele of

rs2814778. PPMI signal for rs12075 (PIP = 0.999). The signal is localized to the eVariant, and is

in linkage disequilibrium with few nearby variants.
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Tables

Table 1 | Summary of the four cohorts and eQTLs discoveries. eQTLs are defined as

(eVariant, eGene) pairs, eVariants as variants associated with a change in gene expression of

one or more protein-coding eGenes, and eGenes as protein-coding genes having one or more

eQTLs.

Cell line / tissue Venous blood LCL

Dataset BRGR PPMI LCL_AFR GEUVADIS

Population AFR EUR AFR EUR

Sample size 737 752 659 358

Total variants in cohort 15,598,612 8,672,989 15,585,478 8,895,186

Genes tested 14,162 17,233 13,584 14,624

eGenes discovered 10,044 (70.9%) 4,277 (24.8%) 8,843 (65.1%) 2,527 (17.3%)

eQTLs discovered 21,130 5,661 16,265 2,904

eVariants discovered 20,295 5,380 15,832 2,843
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Table 2 | Summary of eQTLs and eGenes overlap across populations and tissues.

Replicating here means that (eGene, eVariant) pair from the first dataset appeared in one of the

credible sets for the same eGene in the second dataset. We report both directions of replication

(1st replicating in 2nd; 2nd replicating in 1st) separately. Where applicable, numbers in square

brackets are values of Jaccard similarity coefficient defined as the size of the intersection

divided by the size of the union. For replication, numbers in square brackets are % of hits

replicating. Numbers and % in parentheses indicate eQTLs with a common directionality of

effect. For exact eVariant match and replication, direction was based on the sign of coefficient

of the eVariant; for coloc, direction was based on the sign of the z-score correlation coefficient.

BRGR and

PPMI

(both venous

blood)

LCL_AFR and

GEUVADIS

(both LCL)

BRGR and

LCL_AFR

(both AFR)

PPMI and

GEUVADIS

(both EUR)

Exact eVariant

match

872 [0.03]

(866; 99%)

341 [0.02]

(341; 100%)

1,987 [0.06]

(1,938; 98%)

176 [0.02]

(168; 95%)

Colocalizing

eQTLs (H4≥0.8)

2,772 [0.11]

(2,534; 91%)

1,330 [0.07]

(1,199; 90%)

4,161 [0.10]

(3,858; 93%)

656 [0.08]

(558; 85%)

Colocalizing

eQTLs (H4≥0.5)

3,145 [0.13]

(2,820, 90%)

1,569 [0.09]

(1,398, 89%)

4,545 [0.14]

(4,159; 92%)

769 [0.10]

(630; 82%)

1st replicating in

2nd

4,508 [21%]

(4,408; 98%)

2,621 [16%]

(2,598; 99%)

3,406 [16%]

(3,279; 96%)

836 [15%]

(763; 91%)

2nd replicating in

1st

1,295 [23%]

(1,283; 99%)

511 [18%]

(511; 100%)

3,405 [21%]

(3,278; 96%)

536 [18%]

(492; 92%)

Shared eGenes 3,822 [0.37] 2,153 [0.23] 6,843 [0.57] 1,331 [0.24]
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Table 3 | Summary of variant-to-gene mapping of African-American GWAS signals. MVP -

the VA Million Veteran Program; BCX - Blood Cell Consortium. Detailed per-phenotype GWAS

breakdown is provided in Suppl. Table 5.

GWAS

dataset

GWAS

signals

H4 cutoff

Number of GWAS-to-eQTL signal colocalizations

BRGR

AFR

PPMI

EUR

LCL_AFR

AFR

GEUVADIS

EUR

r2 with

coding

MVP 312 0.8 6 2 4 0 15

0.5 9 2 4 1 16

BCX 461 0.8 32 12 14 8 5

0.5 41 16 19 9 5

Height 810 0.8 32 22 26 8 21

0.5 52 35 46 17 37
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The genetic architecture of gene expression in

individuals of African and European ancestry

Supplementary Figures

Supplementary Fig. 1 | U.S. states / countries of birth for the Black Representation in Genomics

Research cohort. Geographic representation of the BRGR cohort based on self-reported (a) birth locations

(number of participants) and (b) birthplace of each grandparent (number of participants' grandparents).

Supplementary Fig. 2 | Summary of identical-by-descent (IBD) sharing in the BRGR and PPMI cohorts.

(a) ForceAtlas2 network plot of individuals of African, European, and American descent using the total amount

of DNA that is identical-by-descent between individuals. PPMI AJ individuals are those from the PPMI dataset

that have > 25% Ashkenazi Jewish ancestry, whereas PPMI NOAJ constitutes individuals with < 25 %

Ashkenazi ancestry. (b) Difference in the proportion of genome that is identical by descent between BRGR,

PPMI, and PPMI subset by individuals of Ashkenazi descent (PPMI AJ; > 25% Ashkenazi ancestry) and

individuals with < 25% Ashkenazi ancestry (PPMI NO AJ).

Supplementary Fig. 3 | Distributions of credible set sizes in the four eQTL datasets and intersection of

datasets.

Supplementary Fig. 4 | Explaining population differences in heritability using the differences in genetic

diversity. Among the 183 genes whose credible sets are colocalized between BRGR and PPMI, we define the

genetic diversity in three ways. Firstly, we assume that the causal eQTLs come from index variants of BRGR

credible sets. Then the genetic diversity is calculated from the cohort-specific MAF of BRGR index variants

(colored in blue). Similarly, we can define the genetic diversity based on the cohort-specific MAF of PPMI

index variants (colored in yellow). Lastly, without determining the causal variants, we define the genetic

diversity based on the index variants of the credible sets identified in the corresponding cohort (colored in

black). (a) For each of the 183 genes, differences in genetic diversity Δvg = vg, BRGR - vg, PPMI are shown on x-axis

and differences in heritability Δh2 = h2
BRGR - h2

PPMI are shown on y-axis. The line is drawn from the linear fit Δh2

~ 1 + Δvg. (b) For each of the 183 genes, differences in logarithm of genetic diversity between BRGR and

PPMI (Δlog(vg) = log(vg, BRGR) - log(vg, PPMI)) are shown on x-axis and differences in logarithm of transformed

heritability (Δlog(q) = log(qBRGR) - log(qPPMI)) are shown on y-axis. The line is drawn from the linear fit Δlog(q) ~ 1

+ Δlog(vg). (c) For each of the 183 genes, the residuals of log(qBRGR) and Δlog(vg) after regressing out log(qPPMI)

(intercept is also regressed out) are shown on y-axis and x-axis. The line is drawn from the linear fit

residual(log(qBRGR)) ~ residual(Δlog(vg)) whose slope is equal to the coefficient of Δlog(vg) in the linear fit

log(qBRGR) ~ 1 + log(qPPMI) + Δlog(vg).

Supplementary Fig. 5 | Local ancestry based cis-eQTL mapping using Tractor for 737 samples with

admixed African ancestry from BRGR. Comparisons of genome-wide significant (p < 5x10-8) cis-eQTLs
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identified using a local-ancestry model, Tractor, or standard generalized linear model. (a) Shows the number of

eGenes shared by or specific to each model. The majority of eGenes were identified in both models (“Same

eGene, same eVar '' or “Same eGene, different eVar”). (b) For significant cis-eQTLs across both models, we

compared p-values computed for each model. Ancestry-specific effects, estimated by Tractor, were also

tested for significant differences. P-values were largely concordant between models for all cis-eQTLs;

however, the p-value estimated by Tractor was slightly smaller for a subset of cis-eQTLs with heterogeneous

effects between ancestries.
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Supplementary Tables

Supplementary Table 1 | Summary of the Black Representation in Genomic Research (BRGR) cohort.

The 737 donors that had both RNA-seq and WGS samples were included in the BRGR eQTL study. Location

of sample collection was reported in terms of census regions as defined by the U.S. Census Bureau

(https://www.census.gov/programs-surveys/economic-census/guidance-geographies/levels.html).

BRGR Descriptor All donors eQTL study

Total 1,012 737

Only WGS sample 239 0

Only RNA-seq sample 36 0

Genetically female 698 (69.0%) 511 (69.3%)

Genetically male 314 (31.0%) 226 (30.7%)

Location: Midwest Census Region 145 111

Location: Northeast Census Region 177 128

Location: South Census Region 401 298

Location: West Census Region 195 136

Median age 37 38
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Supplementary Table 2 | Mean genome-wide Ancestry Composition (± standard deviation) of

represented broad and local populations in each cohort. 23andMe African-American reference dataset

consists of 203,937 research participants in the 23andMe database that self-identify as African-American and

have ≥ 50% African ancestry. A Bonferroni corrected p-value < 0.012 indicates that the distribution of

ancestry proportions between 23andMe African-American and BRGR are indistinguishable based on a

1000-iteration randomization test.

Ancestral population
23andMe

African-American
BRGR LCL_AFR PPMI EUR

GEUVADIS

EUR
P-value

Continental

African 0.807 ( ± 0.105) 0.802 ( ± 0.107) 0.96 ( ± 0.09) 0.001 ( ± 0.005) 0.001 ( ± 0.001) 0.009

European 0.166 ( ± 0.097) 0.17 ( ± 0.101) 0.03 ( ± 0.07) 0.97 ( ± 0.07) 0.99 ( ± 0.002) 0.004

Local

Nigerian 0.296 ( ± 0.107) 0.29 ( ± 0.097) 0.41 ( ± 0.43) 0 0 0.007

Sengembian & Guinean 0.061 ( ± 0.044) 0.06 ( ± 0.03) 0.18 ( ± 0.37) 0 0 0.001

Coastal West African 0.198 ( ± 0.084) 0.201 ( ± 0.076) 0.198 ( ± 0.36) 0 0 0.019

Congolese Bantu 0.083 ( ± 0.059) 0.086 ( ± 0.051) 0.16 ( ± 0.35) 0 0 0.082

East Bantu 0.012 ( ± 0.045) 0.014 ( ± 0.055) 0.15 ( ± 0.36) 0 0 0.01

Somali 0.004 ( ± 0.062) 0.002 ( ± 0.038) 0 0 0 0.013

Sudanese 0.004 ( ± 0.046) 0.007 ( ± 0.068) 0 0 0 0.014

Hunter-Gatherer 0.002 ( ± 0.003) 0.002 ( ± 0.003) 0.002 ( ± 0.002) 0 0 0

Native American 0.008 ( ± 0.015) 0.008 ( ± 0.014) 0.003 ( ± 0.034) 0.001 ( ± 0.007) 0 0.002

British & Irish 0.073 ( ± 0.049) 0.074 ( ± 0.049) 0.023 ( ± 0.05) 0.22 ( ± 0.034) 0.39 ( ± 0.44) 0.005

French & German 0.012 ( ± 0.02) 0.014 ( ± 0.024) 0.004 ( ± 0.015) 0.18 ( ± 0.29) 0.05 ( ± 0.15) 0.11

Iberian 0.008 ( ± 0.02) 0.008 ( ± 0.018) 0.001 ( ± 0.004) 0.07 ( ± 0.025) 0 0.001

Italian 0.001 ( ± 0.005) 0.001 ( ± 0.007) 0.002 ( ± 0.001) 0.04 ( ± 0.16) 0.26 ( ± 0.15) 0.001

Finnish 0 0 0 0.001 ( ± 0.02) 0.24 ( ± 0.43) 0

East European 0 0 0.002 ( ± 0.001) 0.05 ( ± 0.16) 0.002 ( ± 0.04) 0

Scandinavian 0.004 ( ± 0.006) 0.004 ( ± 0.006) 0.006 ( ± 0.002) 0.011 ( ± 0.78) 0.03 ( ± 0.11) 0

Ashkenazi Jewish 0.001 ( ± 0.011) 0.002 ( ± 0.015) 0 0.36 ( ± 0.48) 0.001 ( ± 0.01) 0.024
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Supplementary Table 3 | Summary of the 1000 Genomes Project samples included in the African

ancestry superpopulation LCL eQTL cohort, and in the European component of GEUVADIS.

Superpopulation Code Population Females Males Both sexes

AFR ACB African Caribbeans in Barbados 49 47 96

AFR ASW Americans of African Ancestry in SW USA 35 26 61

AFR ESN Esan in Nigeria 46 53 99

AFR GWD Gambian in Western Divisions in the Gambia 58 53 111

AFR LWK Luhya in Webuye, Kenya 55 44 99

AFR MSL Mende in Sierra Leone 43 42 85

AFR YRI Yoruba in Ibadan, Nigeria 56 52 108

AFR Total 342 (51.8%) 318 (48.2%) 659

EUR CEU CEPH 44 45 89

EUR FIN Finns 56 36 92

EUR GBR British 43 43 86

EUR TSI Toscani 44 47 91

EUR Total 187 (52.2%) 171 (47.8%) 358
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Supplementary Table 4 | Coefficients of the regression analysis in testing the relation between

differences in heritability and differences in genetic diversity. Assuming no differential causal effect and

environmental noise, we derived a relation describing how genetic diversity differences result in differences in

heritability: vg, BRGR / vg, PPMI ≈ qBRGR / qPPMI or equivalently Δlog(vg) - Δlog(q) ≈ 0. This relation is examined in

various regression analysis using the 183 genes whose credible sets are colocalized between BRGR and

PPMI. The following linear regression analysis were performed: 1) Δh2 ~ 1 + Δvg; 2) Δlog(q) ~ 1 + Δlog(vg); 3)

log(qBRGR) ~ 1 + log(qPPMI) + Δlog(vg). The coefficients, standard errors, and p-values of these regressions are

shown.

Model variable Coefficient SE P-value Model formula

asis (Intercept) 0.12573 0.00962 6.25E-28 diff_h2 ~ 1 + diff_vg

asis diff_vg 0.32275 0.06208 5.38E-07 diff_h2 ~ 1 + diff_vg

BRGR (Intercept) 0.12086 0.00950 6.42E-27 diff_h2 ~ 1 + diff_vg

BRGR diff_vg 0.36830 0.06177 1.27E-08 diff_h2 ~ 1 + diff_vg

PPMI (Intercept) 0.12726 0.00953 9.25E-29 diff_h2 ~ 1 + diff_vg

PPMI diff_vg 0.35329 0.06400 1.16E-07 diff_h2 ~ 1 + diff_vg

asis (Intercept) -0.01985 0.10985 0.857 logq_BRGR ~ 1 + logq_PPMI + diff_logvg

asis logq_PPMI 0.53315 0.05462 2.47E-18 logq_BRGR ~ 1 + logq_PPMI + diff_logvg

asis diff_logvg 0.33927 0.07286 6.23E-06 logq_BRGR ~ 1 + logq_PPMI + diff_logvg

BRGR (Intercept) 0.02254 0.10892 0.836 logq_BRGR ~ 1 + logq_PPMI + diff_logvg

BRGR logq_PPMI 0.57524 0.05531 3.88E-20 logq_BRGR ~ 1 + logq_PPMI + diff_logvg

BRGR diff_logvg 0.38416 0.07215 3.00E-07 logq_BRGR ~ 1 + logq_PPMI + diff_logvg

PPMI (Intercept) 0.01767 0.11045 0.873 logq_BRGR ~ 1 + logq_PPMI + diff_logvg

PPMI logq_PPMI 0.55065 0.05512 5.63E-19 logq_BRGR ~ 1 + logq_PPMI + diff_logvg

PPMI diff_logvg 0.36581 0.07634 3.44E-06 logq_BRGR ~ 1 + logq_PPMI + diff_logvg

asis (Intercept) 0.81573 0.05925 5.70E-30 diff_logq ~ 1 + diff_logvg

asis diff_logvg 0.44315 0.08495 4.95E-07 diff_logq ~ 1 + diff_logvg

BRGR (Intercept) 0.76469 0.05773 1.93E-28 diff_logq ~ 1 + diff_logvg

BRGR diff_logvg 0.54317 0.07942 1.18E-10 diff_logq ~ 1 + diff_logvg

PPMI (Intercept) 0.82142 0.05810 4.64E-31 diff_logq ~ 1 + diff_logvg

PPMI diff_logvg 0.50699 0.08675 2.33E-08 diff_logq ~ 1 + diff_logvg
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Supplementary Table 5 | Summary of African-American GWAS used and detailed summary of variant-to-gene mapping. MVP - the VA

Million Veteran Program; BCX - Blood Cell Consortium.

Source Trait

dbGaP

analysis

accession

Cases Controls GWAS hits

N coloc (H4 ≥ .8) N coloc (H4 ≥ .5)

BRGR PPMI LCL_AFR GEUVADIS BRGR PPMI LCL_AFR GEUVADIS

MVP blood lipids - HDL pha004827.1

57,332

63 2 1 3 - 4 1 3 -

MVP blood lipids - LDL pha004830.1 53 1 - - - 1 - - -

MVP blood lipids - total cholesterol (TC) pha004833.1 77 1 - - - 2 - - -

MVP blood lipids - triglycerides (TG) pha004836.1 47 - 1 1 - - 1 1 1

MVP venous thromboembolism (VTE) pha004962.1 2,261 49,400 16 1 - 1 - 1 - - -

MVP type 2 diabetes (T2D) pha004943.1 24,646 31,446 56 1 - - - 1 - - -

MVP total across all traits 312 6 2 4 0 9 2 4 1

BCX red blood cell count (RBC count)

Up to 15,171.

Varies variant by

variant depending

on how many

studies were

included in a

meta-analysis.

32 2 - - - 2 1 1 -

BCX hemoglobin concentration (HGB) 22 - - 1 - - - 1 -

BCX hematocrit (HCT) 17 - - - - - - - -

BCX mean corpuscular hemoglobin (MCH) 19 - - - 1 - - - 1

BCX mean corpuscular volume (MCV) 21 2 1 1 1 2 2 1 1

BCX mean corpuscular hemoglobin

concentration (MCHC)

39 3 - 1 - 7 1 4 -

BCX RBC distribution width (RDW) 27 2 - - - 2 - - -

BCX total white blood cell count (WBC count) 46 5 - - - 6 - - -

BCX neutrophil count (Neutro) 37 4 1 - - 4 1 - -

BCX lymphocyte count (Lympho) 29 1 - 2 - 1 - 2 -

BCX monocyte count (Mono) 33 3 2 - - 3 2 1 -

BCX basophil count (Baso) 35 - - - - - - - -

BCX eosinophil count (Eosin) 28 2 2 2 3 2 3 2 3

BCX platelet count (PLT count) 38 4 2 3 2 7 3 4 2

BCX mean platelet volume (MPV) 38 4 3 3 1 5 3 3 2

BCX total across all traits 461 32 11 13 8 41 16 19 9

23andMe height NA 273,215 803 37 28 36 13 69 53 64 24
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Supplementary Table 6 | Variant-to-gene hypothesis derived from eQTLs unique to African ancestry

cohorts. MVP - the VA Million Veteran Program; BCX - Blood Cell Consortium.

Supplementary Table 7 | Number of relationships based on the proportion of the genome that is

identical-by-descent (IBD) between all pairwise combinations of individuals in each cohort.

N pairwise relationships

IBD Range

(proportion genome) PPMI PPMI (with AJ) BRGR Typical relationship(s) in range

< 0.001 575,626 118,123 1,015,119 Unrelated

0.001-0.005 4,841 84,903 8,959 4th, 5th and distant cousins

0.005-0.01 92 28,924 27 3rd cousins

0.01-0.025 17 770 11 Half 2nd cousins

0.025-0.05 13 5 5 2nd cousins

0.05-0.1 5 5 5 Great grandparents

0.1-0.2 12 5 5 1st cousins

0.2-0.3 6 12 5 Grandparents, avuncular

0.3-1 32 59 8 Full siblings, parents, twins
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