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Abstract 11 

The International Tuberculosis Host Genetics Consortium (ITHGC) demonstrated the 12 

power of large-scale GWAS analysis across diverse ancestries in identifying tuberculosis 13 

(TB) susceptibility loci. Despite identifying a significant genetic correlate in the human 14 

leukocyte antigen (HLA)-II region, this association did not replicate in the African 15 

ancestry-specific analysis, due to small sample size and the inclusion of admixed samples. 16 

Our study aimed to build upon the findings from the ITHGC and  identify TB susceptibility 17 

loci in an admixed South African cohort using the local ancestry allelic adjusted 18 

association (LAAA) model. We identified a near-genome-wide significant association 19 

(rs3117230, p-value = 5.292 x10-6, OR = 0.437, SE = 0.182) in the HLA-DPB1 gene 20 

originating from KhoeSan ancestry. These findings extend the work of the ITHGC, 21 

underscore the need for innovative strategies in studying complex admixed populations, 22 

and confirm the role of the HLA-II region in TB susceptibility in admixed South African 23 

samples.  24 
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Introduction 30 

Tuberculosis (TB) is a communicable disease caused by Mycobacterium tuberculosis (M.tb) 31 

(World Health Organization, 2023). M.tb infection has a wide range of clinical manifestations 32 

from asymptomatic, non-transmissible, or so-called “latent”, infections to active TB (Zaidi et 33 
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al., 2023). Approximately 1/4 of the global population is infected with M.tb, but only 5-15% of 34 

infected individuals will develop active TB (Menzies et al., 2021). Several factors increase the 35 

risk of progressing to active TB, including co-infection with human immunodeficiency virus 36 

(HIV) and comorbidities, such as diabetes mellitus, asthma and other airway and lung 37 

diseases (Glaziou et al., 2018). Socio-economic factors including smoking, malnutrition, 38 

alcohol abuse, intravenous drug use, prolonged residence in a high burdened community, 39 

overcrowding, informal housing and poor sanitation also influence M.tb transmission and 40 

infection (Cudahy et al., 2020; Escombe et al., 2019; Laghari et al., 2019; Matose et al., 41 

2019; Smith et al., 2023). Additionally, individual variability in infection and disease 42 

progression has been attributed to variation in the host genome (Schurz et al., 2024; Caitlin 43 

Uren et al., 2021; Verhein et al., 2018). Numerous genome-wide association studies 44 

(GWASs) investigating TB susceptibility have been conducted across different population 45 

groups. However, findings from these studies often do not replicate across population groups 46 

(Möller & Kinnear, 2020; Möller et al., 2018; Caitlin Uren et al., 2017). This lack of 47 

replication could be caused by small sample sizes, variation in phenotype definitions among 48 

studies, variation in linkage disequilibrium (LD) patterns across different population groups 49 

and the presence of population-specific effects (Möller & Kinnear, 2020). Additionally, 50 

complex LD patterns within population groups, produced by admixture, impede the 51 

detection of statistically significant loci when using traditional GWAS methods (Swart et al., 52 

2020).  53 

 54 

The International Tuberculosis Host Genetics Consortium (ITHGC) performed a meta-55 

analysis of TB GWAS results including 14 153 TB cases and 19 536 controls of African, Asian 56 

and European ancestries (Schurz et al., 2024). The multi-ancestry meta-analysis identified 57 

one genome-wide significant variant (rs28383206) in the human leukocyte antigen (HLA)-II 58 

region (p = 5.2 x 10-9, OR = 0.89, 95% CI = 0.84-0.95). The association peak at the HLA-II locus 59 

encompassed several genes encoding crucial antigen presentation proteins (including HLA-60 

DR and HLA-DQ). While ancestry-specific association analyses in the European and Asian 61 

cohorts also produced suggestive peaks in the HLA-II region, the African ancestry-specific 62 

association test did not yield any associations or suggestive peaks. The authors described 63 

possible reasons for the lack of associations, including the smaller sample size compared to 64 

the other ancestry-specific meta-analyses, increased genetic diversity within African 65 

individuals and population stratification produced by two admixed cohorts from the South 66 
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African Coloured (SAC) population (Schurz et al., 2024). The SAC population (as termed in 67 

the South African census (Lehohla, 2012)) form part of a multi-way (up to five-way) admixed 68 

population with ancestral contributions from Bantu-speaking African (~30%), KhoeSan 69 

(~30%), European (~20%), and East (~10%) and Southeast Asian (~10%) populations 70 

(Chimusa et al., 2013). The diverse genetic background of admixed individuals can lead to 71 

population stratification, potentially introducing confounding variables. However, the power 72 

to detect statistically significant loci in admixed populations can be improved by leveraging 73 

admixture-induced local ancestry (Swart et al., 2021; Swart, van Eeden, et al., 2022). Since 74 

previous computational algorithms were not able to include local ancestry as a covariate for 75 

GWASs, the local ancestry allelic adjusted association model (LAAA) was developed to 76 

overcome this limitation (Duan et al., 2018). The LAAA model identifies ancestry-specific 77 

alleles associated with the phenotype by including the minor alleles and the corresponding 78 

ancestry of the minor alleles (obtained by local ancestry inference) as covariates. The LAAA 79 

model has been successfully applied in a cohort of multi-way admixed SAC individuals to 80 

identify novel variants associated with TB susceptibility (Swart et al., 2021; Swart, van 81 

Eeden, et al., 2022). 82 

 83 

Our study builds upon the findings from the ITHGC (Schurz et al., 2024) and aim to resolve 84 

the challenges faced in  African ancestry-specific association analysis. Here, we explore 85 

host genetic correlates of TB in a complex admixed SAC population using the LAAA 86 

model. 87 

 88 

Methods 89 

Data  90 

This study included the two SAC admixed datasets from the ITHGC analysis [RSA(A) and 91 

RSA(M)] as well as four additional TB case-control datasets obtained from admixed South 92 

African population groups (Table 1). Like the SAC population, the Xhosa population are 93 

admixed with rain-forest forager and KhoeSan ancestral contributions (Choudhury et al., 94 

2021). All datasets were collected over the past 30 years under different research projects 95 

(Daya et al., 2013; Kroon et al., 2020; Schurz et al., 2018; Smith et al., 2023; Ugarte‑Gil et 96 

al., 2020) and individuals that were included in the analyses consented to the use of their 97 

data in future research regarding TB host genetics. Across all datasets, TB cases were 98 

bacteriologically confirmed (culture positive) or diagnosed by GeneXpert. Controls were 99 
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healthy individuals with no previous or current history of TB disease or treatment. However, 100 

given the high prevalence of TB in South Africa [852 cases (95% CI 679-1026) per 100 00 101 

individuals 15 years and older (Cudahy et al., 2020)], most controls have likely been exposed 102 

to M.tb at some point (Gallant et al., 2010). For all datasets, cases and controls were 103 

obtained from the same community and thus share similar socio-economic status and 104 

health care access. 105 

 106 

Table 1. Summary of the datasets included in analysis. 107 
Dataset Genotyping platform Self-reported 

ethnicity 
Cases/controls Reference 

RSA(A) Affymetrix 500k SAC 642/91 (Daya et al., 2013) 

RSA(M) MEGA array 1.1M SAC 555/440 (Schurz et al., 2018; Swart et 
al., 2021) 

RSA(TANDEM) H3Africa array SAC and Bantu-
speaking African 

161/133 (Swart, Uren, et al., 2022) 

RSA(NCTB) H3Africa array SAC 49/111 
 

(Oyageshio et al., 2023) 

RSA(Worcester) H3Africa array SAC 61 cases Unpublished 

RSA(Xhosa) Whole genome 
sequencing 

IsiXhosa 44/120 
 

Unpublished 

 108 

A list of sites genotyped on the InfiniumTM H3Africa array 109 

(https://chipinfo.h3abionet.org/browse) were extracted from the whole-genome sequenced 110 

[RSA(Xhosa)] dataset and treated as genotype data in subsequent analyses. Quality control 111 

(QC) of raw genotype data was performed using PLINK v1.9 (Purcell et al., 2007). In all 112 

datasets, individuals were screened for sex concordance and discordant sex information 113 

was corrected based on X chromosome homozygosity estimates (Festimate < 0.2 for females 114 

and Festimate > 0.8 for males). In the event that sex information could not be corrected based 115 

on homozygosity estimates, individuals with missing or discordant sex information were 116 

removed. Individuals with genotype call rates less than 90% and SNPs with more than 5% 117 

missingness were removed as described previously (Swart et al., 2021). Monomorphic sites 118 

were removed. Individuals were screened for deviations in Hardy-Weinberg Equilibrium 119 

(HWE) for each SNP and sites deviating from the HWE threshold of 10-5 were removed. Sex 120 

chromosomes were excluded from the analysis. The genome coordinates across all datasets 121 

were checked for consistency and, if necessary, converted to GRCh37 using the UCSC 122 

liftOver tool (Kuhn et al., 2013).  123 

 124 
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Genotype datasets were pre-phased using SHAPEIT v2 (Delaneau et al., 2013) and imputed 125 

using the Positional Burrows-Wheeler Transformation (PBWT) algorithm through the Sanger 126 

Imputation Server (SIS) (Durbin, 2014). The African Genome Resource (AGR) panel (n=4 956), 127 

accessed via the SIS, was used as the reference panel for imputation (Gurdasani et al., 2015) 128 

since it has been shown that the AGR is the best reference panel for imputation of missing 129 

genotypes for samples from the SAC population (Schurz et al., 2019). Imputed data were 130 

filtered to remove sites with imputation quality INFO scores less than 0.95. Individual 131 

datasets were screened for relatedness using KING software (Manichaikul et al., 2010) and 132 

individuals up to second degree relatedness were removed. A total of 7 544 769 markers 133 

overlapped across all six datasets. This list of intersecting markers was extracted from each 134 

dataset using PLINK --extract flag. The datasets were then merged using the PLINK v1.9. After 135 

merging, all individuals missing more than 10% genotypes were removed, markers with more 136 

than 5% missing data were excluded and a HWE filter was applied to controls (threshold <10-137 
5). The merged dataset was screened for relatedness using KING and individuals up to second 138 

degree relatedness were subsequently removed. The final merged dataset after QC and data 139 

filtering (including the removal of related individuals) consisted of 1 544 individuals (952 TB 140 

cases and 592 healthy controls). A total of 7 510 057 variants passed QC and filtering 141 

parameters. 142 

 143 

Global ancestry inference 144 

ADMIXTURE was used to determine the correct number of contributing ancestral proportions 145 

in our multi-way admixed population cohort (Alexander & Lange, 2011). ADMIXTURE 146 

estimates the number of contributing ancestral populations (denoted by K) and population 147 

allele frequencies through cross-validation (CV). All 1 544 individuals were grouped into 148 

running groups of equal size together with 191 reference populations (Table 2). Running 149 

groups were created to ensure approximately equal numbers of reference populations and 150 

admixed populations. Xhosa and SAC samples were divided into separate running groups.  151 

 152 

Table 2. Ancestral populations included for global ancestry deconvolution. 153 
Population  n  Source  

European (British – GBR)  40  1000 Genomes (1000G) phase 3 (1000 Genomes 

Project Consortium et al., 2015) 

East Asian (Chinese – CHB)  40  1000G phase 3  
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Bantu-speaking African 

(Yoruba – YRI)  

40  1000G phase 3  

Southeast Asian (Malaysian)  38  Singapore Sequencing Malay Project (SSMP) (Wong et 

al., 2013) 

KhoeSan (Nama)  33  African Genome Variation Project (AGVP/ADRP) 

(Gurdasani et al., 2015) 

 154 

Redundant SNPs were removed by PLINK through LD pruning by removing each SNP with LD 155 

r2 > 0.1 within a 50-SNP sliding window (advanced by 10 SNPs at a time). Ancestral 156 

proportions were inferred in an unsupervised manner for K = 3-6 (1 iteration). The best value 157 

of K for the data was selected by choosing the K value with the lowest CV error across all 158 

running groups. Ten iterations of K = 3 and K = 5 was run for the Xhosa and SAC individuals 159 

respectively. Since it has been shown that RFMix (Maples et al., 2013) outperforms 160 

ADMIXTURE in determining global ancestry proportions (C Uren et al., 2020), RFMix was also 161 

used to refine inferred global ancestry proportions. Global ancestral proportions were 162 

visualised using PONG (Behr et al., 2016). 163 

 164 

Local ancestry inference 165 

The merged dataset and the reference file (containing reference populations from Table 2) 166 

were phased separately using SHAPEIT2. The local ancestry for each position in the genome 167 

was inferred using RFMix (Maples et al., 2013). Default parameters were used, but the 168 

number of generations since admixture was set to 15 for the SAC individuals and 20 for the 169 

Xhosa individuals (as determined by previous studies) (Caitlin Uren et al., 2016). RFMix was 170 

run with three expectation maximisation iterations and the --reanalyse-reference flag. 171 

 172 

Batch effect screening and correction 173 

Merging separate datasets generated at different timepoints and/or facilities, as we have 174 

done here, will undoubtedly introduce batch effects. Principal component analysis (PCA) is 175 

a common method used to visualise batch effects, where the first two principal components 176 

(PCs) are plotted with each sample coloured by batch, and a separation of colours is 177 

indicative of a batch effect (Nyamundanda et al., 2017). However, it is difficult to 178 

differentiate between separation caused by population structure and separation caused by 179 

batch effect using PCA alone. An alternative method to detect batch effects (Chen et al., 180 

2022) involves coding case/control status by batch followed by running an association 181 
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analysis testing each batch against all other batches. If any single dataset has more positive 182 

signals compared to the other datasets, then batch effects may be responsible for producing 183 

spurious results. Batch effects can be resolved by removing those SNPs which pass the 184 

genome-wide significance threshold from the merged dataset. We have adapted this batch 185 

effect correction method for application in a highly admixed cohort with complex population 186 

structure (Croock et al., 2024). Our modified method was used to remove 36 627 SNPs 187 

affected by batch effects from our merged dataset. 188 

 189 

Local ancestry allelic adjusted association analysis 190 

The LAAA association model was used to investigate if there are allelic, ancestry-specific or 191 

ancestry-specific allelic associations with TB susceptibility in our merged dataset. Global 192 

ancestral components inferred by RFMix, age and sex were included as covariates in the 193 

association tests. Variants with minor allele frequency (MAF) < 1% were removed to improve 194 

the stability of the association tests. Dosage files, which code the number of alleles of a 195 

specific ancestry at each locus across the genome, were compiled. Separate regression 196 

models for each ancestral contribution were fitted to investigate which ancestral 197 

contribution is associated with TB susceptibility. Details regarding the models have been 198 

described elsewhere (Swart, van Eeden, et al., 2022); but in summary, four regression 199 

models were tested to detect the source of the association signals observed: 200 

 201 

(1) Null model or global ancestry (GA) model: 202 

The null model only includes global ancestry, sex and age covariates. This test investigates 203 

whether an additive allelic dose exerts an effect on the phenotype (without including local 204 

ancestry of the allele). 205 

 206 

(2) Local ancestry (LA) model: 207 

This model is used in admixture mapping to identify ancestry-specific variants associated 208 

with a specific phenotype. The LA model evaluates the number of alleles of a specific 209 

ancestry at a locus and includes the corresponding marginal effect as a covariate in 210 

association analyses.  211 

 212 

(3) Ancestry plus allelic (APA) model: 213 
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The APA model simultaneously performs model (1) and (2). This model tests whether an 214 

additive allelic dose exerts an effect of the phenotype whilst adjusting for local ancestry. 215 

 216 

(4) Local ancestry adjusted allelic (LAAA) model: 217 

The LAAA model is an extension of the APA model, which models the combination of the 218 

minor allele and ancestry of the minor allele at a specific locus and the effect this interaction 219 

has on the phenotype. 220 

 221 

The R package STEAM (Significance Threshold Estimation for Admixture Mapping) (Grinde et 222 

al., 2019) was used to determine the genome-wide significance threshold given the global 223 

ancestral proportions of each individual and the number of generations since admixture (g = 224 

15). STEAM permuted these factors 10 000 times to derive a threshold for significance. 225 

Results were visualised in RStudio. A genome-wide significance threshold of p-value < 2.5 x 226 

10-6 was deemed significant by STEAM.  227 

 228 

Results  229 

Global and local ancestry inference 230 

After close inspection of global ancestry proportions generated using ADMIXTURE, the K 231 

number of contributing ancestries (the lowest k-value determined through cross-validation) 232 

was K = 3 for the Xhosa individuals and K = 5 for the SAC individuals (Figure 1). This is 233 

consistent with previous global ancestry deconvolution results (Chimusa et al., 2014; 234 

Choudhury et al., 2021). It is evident that our cohort is a complex, highly admixed group with 235 

ancestral contributions from the indigenous KhoeSan (~22 - 30%), Bantu-speaking African 236 

(~30 - 72%), European (~5 - 24%), Southeast Asian (~11%) and East Asian (~5%) population 237 

groups.  238 

 239 

 240 

 241 

 242 

 243 

 244 

Figure 1. Genome-wide ancestral proportions of all individuals in the merged dataset. Ancestral proportions for each 245 
individual are plotted vertically with different colours representing different contributing ancestries. 246 
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 247 

Local ancestry was estimated for all individuals. Admixture between geographically distinct 248 

populations creates complex ancestral and admixture-induced LD blocks, which can be 249 

visualised using local ancestry karyograms. Figure 2 shows  karyograms for three individuals 250 

from the merged dataset. It is evident that, despite individuals being from the same 251 

population group, each  possesses unique patterns of local ancestry arising from differing 252 

numbers and lengths of ancestral segments.   253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

Figure 2. Local ancestry karyograms of three admixed individuals from the SAC population. Each admixed individual 273 
has unique local ancestry patterns generated by admixture among geographically distinct ancestral population groups. 274 

 275 

Local ancestry-allelic adjusted analysis 276 

A total of 784 557 autosomal markers (with MAF > 1%) and 1 544 unrelated individuals (952 277 

TB cases and 592 healthy controls) were included in logistic regression models to assess 278 

whether any loci and/or ancestries were significantly associated with TB status (whilst 279 
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adjusting for sex, age, and global ancestry proportions). LAAA models were successfully 280 

applied for all five contributing ancestries (KhoeSan, Bantu-speaking African, European, East 281 

Asian and Southeast Asian). Only one variant (rs74828248) was significantly associated with 282 

TB status (p-value < 2.5 x 10-6) whilst utilising the LAAA model and whilst adjusting for Bantu-283 

speaking African ancestry on chromosome 20 (p-value = 2.272 x 10-6, OR = 0.316, SE = 0.244) 284 

(Supplementary Figure 1). No genomic inflation was detected in the QQ-plot for this region 285 

(Supplementary Figure 2). However, this variant is located in an intergenic region and the link 286 

to TB susceptibility is unclear (Supplementary Figure 3). 287 

 288 

Although no other variants passed the genome-wide significance threshold, multiple lead 289 

SNPs were identified. Notably, an appreciable peak was identified in the HLA-II region of 290 

chromosome 6 when using the LAAA model and adjusting for KhoeSan ancestry (Figure 3). 291 

The QQ-plot suggested minimal genomic inflation, which was verified by calculating the 292 

genomic inflation factor ( = 1.05289) (Supplementary Figure 4). The lead variants identified 293 

using the LAAA model whilst adjusting for KhoeSan ancestry in this region on chromosome 6 294 

are summarised in Table 3. The association peak encompasses the HLA-DPA1/B1 (major 295 

histocompatibility complex, class II, DP alpha 1/beta 1) genes (Figure 4). It is noteworthy that 296 

without the LAAA model, this association peak would not have been observed for this cohort. 297 

This highlights the importance of utilising the LAAA model in future association studies when 298 

investigating disease susceptibility loci in admixed individuals, such as the SAC population.  299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

 312 
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Figure 3. Log transformation of association signals obtained for KhoeSan ancestry whilst using the LAAA model on 313 
chromosome 6. The dashed red line represents the significant threshold for admixture mapping calculated with the 314 
software STEAM ( p-value = 2.5 x 10-6 ) and the black solid line represents the genome wide significant threshold ( p-315 
value = 5 × 10 −8 ). The four different models are represented in black (global ancestry only - GAO ), blue (local ancestry 316 
effect - LAO ), orange (ancestry plus allelic effect - APA ) and pink (local ancestry adjusted allelic effect - LAAA). 317 
 318 
 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

Figure 4. Regional plot indicating the nearest genes in the region of the lead variant (rs3117230) observed on 339 
chromosome 6. SNPs in linkage disequilibrium (LD) with the lead variant are coloured red/orange. The lead variant is 340 
indicated in purple. Functional protein-coding genes are coded in red and non-functional (pseudo-genes) are indicated 341 
in black. 342 

 343 

 344 

The lead variant lies within COL11A2P1 (collagen type X1 alpha 2 pseudogene 1). 345 

COL11A2P1 is an unprocessed pseudogene (ENSG00000228688). Unprocessed 346 

pseudogenes are seldomly transcribed and translated into functional proteins (Witek & 347 
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Mohiuddin, 2024). HLA-DPB1 and HLA-DPA1 are the closest functional protein-coding genes 348 

to our lead variants. 349 

 350 

Table 3. Suggestive associations (p-value < 1e-5) for the LAAA analysis adjusting for KhoeSan local ancestry on 351 
chromosome 6. 352 

Position Marker 

name 

Ref Alt AltFreq OR (95% CI) SE p-value 

(x10-6) 

Gene Location Imputed/typed INFO 

score 

33075635  rs3117230  A  G  0.370  0.437 (0.306; 

0.624) 

0.182  5.292 HLA-

DPB1 

Intergenic Genotyped NA 

33048661  rs1042151  A  G  0.325  0.437 (0.305; 

0.627) 

0.184  6.806 HLA-

DPB1 

Exonic  Imputed 0.992 

33058874  rs2179920  C  T  0.369  0.445 (0.313; 

0.633) 

0.180  6.960 HLA-

DPB1 

Intergenic Genotyped NA 

33072266  rs2064478  C  T  0.371  0.447 (0.313; 

0.637) 

0.181  8.222 HLA-

DPB1 

Intergenic Imputed 1 

33072729  rs3130210  G  T  0.371  0.447 (0.313; 

0.637) 

0.181  8.222 HLA-

DPB1 

Intergenic  Imputed 0.999 

33073440  rs2064475  G  A  0.371  0.447 (0.313; 

0.637) 

0.181  8.222 HLA-

DPB1 

Intergenic Imputed 1 

33074348  rs3117233  T  C  0.371  0.447 (0.313; 

0.637) 

0.181  8.222 HLA-

DPB1 

Intergenic  Imputed 1 

33074707  rs3130213  G  A  0.371  0.447 (0.313; 

0.637) 

0.181  8.222 HLA-

DPB1 

Intergenic  Imputed 0.970 

Ref, reference allele; Alt, alternate allele; AltFreq, alternate allele frequency; OR, odds ratio; SE, standard error 353 

 354 

The lead variant identified in the ITHGC meta-analysis, rs28383206, was not present in our 355 

genotype or imputed datasets. The ITHGC imputed genotypes using the 1000 Genomes 356 

(1000G) reference panel (Schurz et al., 2024). Variant rs28383206 has an alternate allele 357 

frequency of 11.26% in the African population subgroup within the 1000G dataset 358 

(https://www.ncbi.nlm.nih.gov/snp/rs28383206). However, rs28383206 is absent from our 359 

in-house whole-genome sequencing (WGS) datasets, which include Bantu-speaking African 360 

and KhoeSan individuals. This absence suggests that rs28383206 might not have been 361 

imputed in our datasets using the AGR reference panel, potentially due to its low alternate 362 

allele frequency in southern African populations. Our merged dataset contained two variants 363 

located within 800 base pairs of rs28383206: rs482205 (6:32576009) and rs482162 364 

(6:32576019). However, these variants were not significantly associated with TB status in our 365 

cohort (Supplementary Table 1). 366 
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Discussion 367 

The LAAA analysis of host genetic susceptibility to TB, involving 942 TB cases and 592 368 

controls, identified one suggestive association peak adjusting for KhoeSan local ancestry. 369 

The association peak identified in this study encompasses the HLA-DPB1 gene, a highly 370 

polymorphic locus, with over 2 000 documented allelic variants (Robinson et al., 2020). This 371 

association is noteworthy given that HLA-DPB1 alleles have been associated with TB 372 

resistance (Dawkins et al., 2022; Ravikumar et al., 1999; Selvaraj et al., 2008). The 373 

direction of effect the lead variants in our study (Table 3) similarly suggest a protective effect 374 

against developing active TB. However, variants in HLA-DPB1 were not identified in the ITHGC 375 

meta-analysis.  376 

 377 

Population stratification arising from the highly heterogeneous admixed cohorts might have 378 

masked this association signal in the African ancestry-specific association analysis. The 379 

association peak in the HLA-II region was only captured using the LAAA model whilst 380 

adjusting for KhoeSan local ancestry. This underscores the importance of incorporating 381 

global and local ancestry in association studies investigating complex multi-way admixed 382 

individuals, as the genetic heterogeneity present in admixed individuals (produced as a result 383 

of admixture-induced and ancestral LD patterns) may cause association signals to be missed 384 

when using traditional association models (Duan et al., 2018; Swart, van Eeden, et al., 385 

2022).  386 

 387 

We did not replicate the significant association signal in HLA-DRB1 identified by the ITHGC. 388 

However, the ITHGC also did not replicate this association in their own African ancestry-389 

specific analysis. The significant association, rs28383206, identified by the ITHGC appears 390 

to be tagging the HLA-DQA1*02:1 allele, which is associated with TB in Icelandic and Asian 391 

populations (Li et al., 2021; Sveinbjornsson et al., 2016; Zheng et al., 2018). It is possible 392 

that this association signal is specific to non-African populations, but additional research is 393 

required to verify this hypothesis. Both our study and the ITHGC independently pinpointed 394 

variants associated with TB susceptibility in different genes within the HLA-II locus (Figure 5). 395 

The HLA-II region spans ~0.8Mb on chromosome 6p21.32 and encompasses the HLA-DP, -396 

DR and -DQ alpha and beta chain genes. The HLA-II complex is the human form of the major 397 

histocompatibility complex class II (MHC-II) proteins on the surface of antigen presenting 398 

cells, such as monocytes, dendritic cells and macrophages. The innate immune response 399 
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against M.tb involves phagocytosis by alveolar macrophages. In the phagosome, 400 

mycobacterial antigens are processed for presentation on MHC-II on the surface of the 401 

antigen presenting cell. Previous studies have suggested that M.tb interferes with the MHC-II 402 

pathway to enhance intracellular persistence and delay activation of the adaptive immune 403 

response (Oliveira‑Cortez et al., 2016). For example, M.tb can inhibit phagosome maturation 404 

and acidification, thereby limiting antigen processing and presentation on MHC-II molecules 405 

(Chang et al., 2005). Given that MHC-II plays an essential role in the adaptive immune 406 

response to TB and numerous studies have identified HLA-II variants associated with TB (Cai 407 

et al., 2019; Chihab et al., 2023; de Sá et al., 2020; Harishankar et al., 2018; Schurz et al., 408 

2024; Selvaraj et al., 2008), additional research is required to elucidate the effects of HLA-II 409 

variation on TB risk status.  410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

Figure 5. A schematic diagram the location of HLA-II genes associated with TB susceptibility. Genes in red were 427 
identified by the ITHGC. Genes in blue were identified by this study. 428 

 429 

This analysis has a few limitations. First, unlike the ITHGC manuscript, we did not validate 430 

our SNP peak in the HLA-II region through fine mapping. Although we initially considered 431 

performing HLA imputation and fine-mapping using the HIBAG R package, as described in 432 
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the ITHGC article (https://hibag.s3.amazonaws.com/hlares_index.html#estimates), the 433 

African HIBAG model was trained on genotype data from African American and HapMap YRI 434 

populations, which have minimal to no KhoeSan ancestry. Since our association peak likely 435 

originates from KhoeSan ancestral haplotype blocks, using an imputation reference panel 436 

that includes individuals with KhoeSan ancestry is essential to this analysis. We 437 

acknowledge that HLA typing could validate the importance of our lead SNPs in the HLA-II 438 

region and support the LAAA model, but this was not feasible due to the absence of a suitable 439 

reference panel that includes KhoeSan ancestry. Second, our analysis has a notable case-440 

control imbalance (cases/controls = 1.610). While many studies discuss methods for 441 

addressing case-control imbalances with more controls than cases (which can inflate type 1 442 

error rates (Dai et al., 2021; Öztornaci et al., 2023; Zhou et al., 2018), few address the 443 

implications of a large case-to-control ratio like ours (952 cases to 592 controls). To assess 444 

the impact of this imbalance, we used the Michigan genetic association study (GAS) power 445 

calculator (Skol et al., 2006). Under an additive disease model with an estimated prevalence 446 

of 0.15, a disease allele frequency of 0.3, a genotype relative risk of 1.5, and a default 447 

significance level of 7 × 10⁻⁶, we achieved an expected power of approximately 75%. With a 448 

balanced sample size of 950 cases and 950 controls, power would exceed 90%, but it would 449 

drop significantly with a smaller balanced cohort of 590 cases and 590 controls. Given these 450 

results, we proceeded with our analysis to maximize statistical power despite the case-451 

control imbalance. 452 

 453 

In conclusion, application of the LAAA to a highly admixed SAC cohort revealed a suggestive 454 

association signal in the HLA-II region associated with protection against TB. Our study builds 455 

on the results of the ITHGC by demonstrating an alternative method to identify association 456 

signals in cohorts with complex genetic ancestry. This analysis shows the value of including 457 

individual global and local ancestry in genetic association analyses. Furthermore, we 458 

confirm HLA-II loci associations with TB susceptibility in an admixed South African 459 

population and hope that this publication will encourage greater appreciation for the role of 460 

the adaptive immune system in TB susceptibility and resistance. 461 
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Supplementary Material 743 
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 760 
Supplementary Figure 1. Log transformation of association signals obtained for Bantu-speaking African ancestry 761 
whilst using the LAAA model on chromosome 20. The dashed red line represents the significant threshold for admixture 762 
mapping calculated with the software STEAM (p-value = 2.5 x 10-6) and the black solid line represents the genome-wide 763 
significant threshold (p-value = 5 × 10−8). The four different models are represented in black (global ancestry only - 764 
GAO), blue (local ancestry effect - LAO), orange (ancestry plus allelic effect - APA) and pink (local ancestry-adjusted 765 
allelic effect - LAAA). 766 
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Supplementary Figure 2. QQ-plot of expected p-values and observed p-values for the association signals obtained 789 
for Bantu-speaking African ancestry located on chromosome 20. 790 
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Supplementary Figure 3. Regional plot indicating the nearest genes in the region of the lead variant (rs74828248) 823 
observed on chromosome 20. SNPs in linkage disequilibrium (LD) with the lead variant are coloured red/orange. The 824 
lead variant is indicated in purple. Functional protein-coding genes are coded in red and non-functional (pseudo-825 
genes) are indicated in black. 826 
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Supplementary Figure 4. QQ-plot of expected p-values and observed p-values for the association signals obtained 851 
for Khoisan ancestry located on chromosome 6. 852 
 853 
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 854 
 855 
Supplementary Table 1. Summary statistics for two variants within 800 base pairs of the ITHGC lead SNP (rs28383206) 856 
on chromosome 6 for the LAAA analysis adjusting for KhoeSan and Bantu-speaking African local ancestry.  857 
 858 

Position Marker 
name 

Ref Alt AltFreq p-value (KhoeSan local 
ancestry) 

p-value (Bantu-speaking 
African local ancestry) 

32576009 rs482205 T G 0.322 0.032 0.116 
32576019 rs482162 T C 0.322 0.032 0.116 
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