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Abstract 

Despite neurobiological overlap, alcohol use disorder (AUD) and body mass index (BMI) show 

minimal genetic correlation (rg), possibly due to mixed directions of shared variants. We applied 

MiXeR to investigate shared genetic architecture between AUD and BMI, conjunctional false 

discovery rate (conjFDR) to detect shared loci and their directional effect, Local Analysis of 

(co)Variant Association (LAVA) for local rg, Functional Mapping and Annotation (FUMA) to 

identify lead single nucleotide polymorphisms (SNPs), Genotype-Tissue Expression (GTEx) to 

examine tissue enrichment, and BrainXcan to assess associations with brain phenotypes. MiXeR 

indicated 82.2% polygenic overlap, despite a rg of -.03. ConjFDR identified 132 shared lead 

SNPs, with 53 novel, showing both concordant and discordant effects. GTEx analyses identified 

overexpression in multiple brain regions. Amygdala and caudate nucleus volumes were 

associated with AUD and BMI. Opposing variant effects explain the minimal rg between AUD 

and BMI, with implicated brain regions involved in executive function and reward, clarifying 

their polygenic overlap and neurobiological mechanisms. 
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Introduction 

Alcohol use disorder (AUD) and obesity adversely impact millions of individuals and 

contribute to hundreds of billions of dollars in combined annual economic cost1,2. The 

detrimental health impacts of AUD include increased risk for cancers of the liver, head, and 

neck; cardiovascular disease; and liver disease including cirrhosis3. Obesity, typically defined as 

a body mass index (BMI) of greater than 30 kg/m21, is associated with increased risk for 

hypertension, type II diabetes, coronary artery disease, liver disease, and various cancers4. The 

weighted prevalence of co-occurring heavy alcohol consumption and obesity in the United States 

rose from 1.8% in 1999-2000 to 3.1% in 2017-2020, representing a 72% increase5.  

Alcohol use disorder is thought to share pathophysiological mechanisms with unhealthy 

eating behavior, a primary risk factor for elevated BMI and obesity (for additional causes of 

excess weight, see6). For example, the neurotransmitter dopamine plays integral roles in both 

eating and alcohol-related behaviors by impacting motivation, self-regulation, and 

reinforcement7-9. Evidence of other overlapping neurocircuitry-based mechanisms that contribute 

to AUD and pathological overeating has also accumulated7,10, which supports the concept of 

food addiction11, though this remains controversial12. There is also overlap in the interaction of 

both alcohol and food with appetite-related neuroendocrine pathways such as ghrelin 13,14 and 

glucagon-like peptide-1 (GLP-1)15. Interest in this putative overlap has been heightened by 

recent reports that GLP-1 receptor agonists (GLP-1RAs)—approved for treating type 2 diabetes 

and obesity—may represent potential new pharmacotherapies for AUD16. Similarly, medications 

used to treat AUD reduce weight in individuals with obesity17. For example, topiramate, 

recommended as an off-label treatment for AUD18,19, is approved in combination with 

phentermine as a weight loss medication.  
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Both AUD and obesity have substantial genetic contributions, with an estimated 

heritability of 50% for AUD 20 and 40-70% for obesity21. Despite shared neurobiological 

pathways and a high rate of co-occurrence in some populations, the genetic correlation between 

alcohol- and BMI-related phenotypes is non-significant22,23. In the two largest studies to date, 

null genetic correlations were reported between obesity and problematic alcohol use (i.e., a 

phenotype that combines AUD diagnoses and a quantitative measure of harmful drinking; rg = -

0.03) and drinks per week (rg = 0.03) in European-ancestry individuals22,23.  

Although these findings are consistent with a modest amount of shared genetic variation 

between the two traits, an alternative hypothesis is that the presence of shared variants with both 

concordant and discordant effects across the two phenotypes obscures evidence of genome-wide 

correlation. Other analytic methods, such as bivariate causal mixture models, are not influenced 

by the directionality of the variants’ effects, making them more appropriate to evaluate the extent 

of polygenic overlap between the two conditions24. For example, accounting for concordant and 

discordant variant effects has revealed substantial shared genetic relationships between 

psychiatric and medical or cognitive traits despite small or null genetic correlations25. 

In this study, we utilized MiXeR to investigate the overall shared genomic  

architecture between AUD and BMI. MiXeR is a statistical method that estimates the potential 

causal variants for each trait and the total degree of overlap between two traits without regard to 

the direction of variants’ effects, thereby identifying the extent of unique and shared genetic 

architecture24. MiXeR has been used to identify genetic overlap across multiple psychiatric 

disorders25, psychiatric disorders and irritable bowel syndrome 26, and psychiatric disorders and 

cognitive traits such as educational attainment27,28. To complement MiXeR’s overarching 

approach, we also utilized Local Analysis of (co)Variant Association (LAVA) to estimate local 
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regional genetic correlations29 and the conjunctional false discovery rate (conjFDR) method to 

identify specific overlapping loci30.We hypothesized that the absence of genetic correlation 

between AUD and BMI is attributable to the presence of shared variants with inconsistent 

directions of effect and that this would be evidenced by both (1) greater genetic overlap than 

would be predicted by the observed genetic correlation and (2) shared loci showing a mixture of 

consistent and inconsistent effect directions. After testing those hypotheses, we conducted 

follow-up functional annotation and drug repurposing analyses on shared loci identified by 

conjFDR. Additionally, we examined the associations of AUD and BMI risk with brain image-

derived phenotypes (IDPs) to identify potential shared neural underpinnings. In doing so, we 

aimed to uncover the genomic architecture and physiologic pathways shared by AUD and BMI 

to advance our understanding of mechanisms contributing to their comorbidity and aid in the 

development of physiologically-informed interventions.    

Methods 
Samples 

We used summary statistics from two large-scale GWAS for AUD (N = 753,248; Ncase = 

113,325)23 and BMI (N = 681,275)31. The AUD GWAS summary statistics were derived from a 

meta-analysis of several cohorts of individuals with AUD or alcohol dependence (AD) diagnoses 

and controls with no diagnosis. Despite differences in the specific criteria used for diagnosis 

across cohorts, the genetic correlation across diagnostic categories and cohorts was very high 

(Million Veteran Program AUD and Psychiatric Genomics Consortium AD rg = .98)32. We 

excluded UK Biobank participants from the AUD GWAS to minimize the overlap of participants 

between the two studies and inflation by cross-trait enrichment30. The BMI GWAS summary 

statistics were derived from a meta-analysis of two cohorts: the Genetic Investigation of 

Anthropometric Traits (GIANT) consortium and the UK Biobank. All participants were of 
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European ancestry (for more details, see original publications and Table S1). The Uniformed 

Services University’s Human Research Protections Program Office determined the project to be 

considered research not involving human subjects per 32 CFR 219.102(e)(1), and applicable 

DoD policy guidance.  

Characterizing polygenic overlap 

MiXeR24,33 was applied to investigate the overall shared genetic architecture between 

AUD and BMI. Univariate MiXeR analyses were first conducted to estimate each trait’s 

polygenicity (i.e., the number of potential causal variants required to explain 90% of single 

nucleotide polymorphism [SNP] heritability) and discoverability (i.e., the average estimated 

effect size of causal variants). Prior to performing bivariate models, we confirmed that the 

Akaike and Bayesian information criteria (AIC and BIC) values of the univariate models were 

positive, supporting sufficient power for bivariate MiXeR analyses. Next, bivariate models were 

implemented to identify the number of unique and shared causal variants for each pair of traits. 

These models also provide estimates of the proportion of causal variants with concordant 

directions of effect. The Dice coefficient, an indicator of the proportion of polygenic overlap, is 

also computed. Conditional Q-Q plots were produced to visualize cross-trait enrichment. These 

plots show the distribution of p-values for a primary phenotype as a function of its association 

with the secondary phenotype at three p-value strata (p � 0.1, 0.01, and 0.001). As a secondary 

analysis, we used MiXeR to examine the shared genetic architectures of AUD and BMI with 

other psychiatric traits (major depressive disorder, attention-deficit/hyperactivity disorder 

[ADHD], schizophrenia)27,31,34,35. This secondary analysis shows how the shared genetic 

architecture of AUD and BMI compares with that of other psychiatric traits. Finally, the shared 

genetic architecture of AUD and BMI with left-handedness was included as a control36. For all 
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traits, LD Score regression (LDSC) v1.0.1 was used to calculate heritability37, genetic 

correlations, and standard errors.      

Local Analysis of (co)Variant Association (LAVA) was used to estimate local heritability 

(h2
SNP) and genetic correlations (rg) between AUD and BMI across 2,495 approximately equal-

sized linkage disequilibrium (LD) blocks29. Significance of local rg was adjusted using false 

discovery rate (FDR) correction39. 

We used conjFDR30,38 analysis to detect loci significantly associated with both 

phenotypes, including variants with opposite directions of effect. To achieve this, conditional 

false discovery rate (condFDR) estimates were first obtained by conditioning the primary 

phenotype’s (i.e., AUD) test statistics on a secondary phenotype’s (i.e., BMI’s) SNP 

associations. A condFDR value for the second phenotype conditioned on the first’s SNP 

associations was calculated by reversing the order of phenotypes from the first condFDR 

assessment. ConjFDR defines the value for each association as the maximum of the two 

condFDR values for the given SNP, providing a conservative estimate of the SNP association 

with both phenotypes. Statistical significance was defined as a conjFDR value < 0.05. We 

performed a replication analysis of the significant loci from the conjFDR using summary 

statistics from FinnGen v11. Specifically, we utilized the phenotypes: “body-mass index, 

inverse-rank normalized” (N = 321,672) and “alcohol use disorder, Swedish definition” (N = 

453,733; Ncase = 26,149)39.  Exact binomial tests (i.e., SNP sign tests) were performed to assess 

whether the shared genomic loci were collectively replicated in the independent samples40. The 

SNP sign test evaluates whether the directionality of allelic associations between the discovery 

and replication cohorts is consistent, with the null hypothesis being that the consistency of effect 

directions is 50%.   
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Genomic loci definition and gene-set enrichment 

SNPs having a conjFDR<.05, indicating significant SNP effects on both AUD and BMI, 

were input into Functional Mapping and Annotation (FUMA) v1.5.241 to identify LD-

independent genomic loci. Independent significant SNPs were identified using a LD block 

distance for merging of < 250 kb, r2 < 0.6, and the European ancestry 1000 Genomes reference 

panel42. Of the independent SNPs, lead SNPs were identified using r2 < 0.1. Each locus is 

represented by a single lead SNP with the lowest conjFDR value. The novelty of lead SNPs was 

determined by examining whether variants were genome-wide significant (p < 5x10-8) in the 

AUD and BMI summary statistics. Lead SNPs were assigned to genes based on presence within 

the gene or otherwise distance to the nearest gene transcription start site. Annotations for the lead 

SNPs corresponding to Variant Effect Predictor (VEP), Combined Annotation Dependent 

Deletion (CADD) scores, and nearest transcription start site were sourced from OpenTargets 

(https://genetics.opentargets.org/ v22.10)43. The presence of lead SNPs within genes was 

confirmed using dbGaP (https://www.ncbi.nlm.nih.gov/gap/). Genes linked to the lead SNPs 

were then used to conduct gene expression, tissue enrichment specificity, and gene-set 

enrichment analyses in FUMA41. Gene expression analyses used transcripts per million (TPM) 

normalization, which is robust to differences in library size and sequencing depth across 

samples. Analyses were corrected for multiple comparisons using the FDR correction. 

Drug repurposing 

We integrated drug-protein interaction/druggability information from the Target Central 

Resource Database (TCRD)44 and OpenTargets43. We searched for each gene in each database 

(https://pharos.nih.gov/ v3.18.0; https://platform.opentargets.org/ v23.12). The TCRD divides 

target development/druggability into four levels: (1) Tclin targets have approved drugs with 
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known mechanisms of action; (2) Tchem targets have drugs or small molecules that satisfy 

activity thresholds; (3) Tbio targets have no known drugs or small molecules that satisfy 

thresholds, but have Gene Ontology (GO) leaf term annotations or Online Mendelian Inheritance 

in Man (OMIM) phenotypes, or meet at least two of three conditions: a fractional PubMed count 

>5, >3 National Center for Biotechnology Gene Reference Intro Function annotations, or >50 

commercial antibodies; and (4) Tdark targets—proteins that have been manually curated in 

UniProt but do not meet criteria for the above categories. OpenTargets was utilized to identify 

approved drugs and drugs in development that target identified druggable genes.    

BrainXcan 

 We used BrainXcan software45 to evaluate the associations of AUD and BMI with 327 

brain image-derived phenotypes (IDPs) obtained from structural (T1-weighted) and diffusion 

magnetic resonance imaging (dMRIs). BrainXcan infers trait-IDP associations using GWAS 

summary statistics, brain feature prediction weights, and reference LD data. Prediction weights 

for BrainXcan were derived by training a ridge regression model on brain IDPs in 24,409 

individuals from the UK Biobank. Effect sizes and p-values of trait-IDP associations were 

adjusted using LD block-based permutation, and Bonferroni correction was used to account for 

multiple testing (T1: 0.05/109 = 4.59 x 10-4; dMRI = 0.05/218 = 2.29 x 10-4). Based on these 

results, we identified brain IDPs that were associated with both AUD and BMI. We also 

examined the concordance of effect direction for brain IDPs across the two traits.  

Results 

Shared global and local genomic architecture (MiXeR and LAVA) 

All univariate AIC and BIC estimates were positive, with the exception of the more 

stringent BIC criterion for left-handedness (AIC = 3.62, BIC = -5.99), which indicated there was 
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sufficient power overall for conducting bivariate MiXeR models. Bivariate AUD and BMI 

models show that the MiXeR estimated model had improved fit compared to the minimum 

overlap predicted by the genetic correlation alone (best vs. minimum AIC = 91.11, best vs. 

minimum BIC = 82.13, where positive values indicate improved fit) and fit significantly better 

than the maximum overlap model, which assumes maximum overlap of causal variants, when 

using AIC but not when considering the more stringent BIC (best vs. maximum AIC = 4.80, best 

vs. maximum BIC = -4.17); see Tables S2 and S3 for full univariate and bivariate MiXeR 

results). 

MiXeR analysis yielded an overall level of polygenic overlap between AUD and BMI of 

82.2% (as quantified by the Dice coefficient) despite a minimal genetic correlation (rg = -0.03, 

SE = .02). Of the 9.4K and 11.1K potential causal variants linked to AUD and BMI, respectively, 

8.4K were shared by the two traits (Figure 1). The estimated proportion of shared variants with a 

concordant direction of effect was 48.8%. Conditional Q-Q plots demonstrated enrichment of 

SNP associations with AUD that increased with the significance of the associations with BMI, 

and vice versa for BMI, both reflecting polygenic overlap (Figure S1).  

The rgs between BMI and other psychiatric phenotypes ranged from -0.11 for 

schizophrenia to 0.30 for ADHD. There were substantial shared genetic variants between BMI 

and other traits, including 8.2K of the 10.2K schizophrenia variants (Dice coefficient = 77.3%; 

concordance = 45.0%), 6.7K of the 7.2K MDD variants (Dice coefficient = 73.3%; concordance 

= 54.6%), and 5.0K of the 7.7K ADHD variants (Dice coefficient = 53.3%; concordance = 

74.8%). Finally, of the 4.2K potential causal variants linked to the control condition left-

handedness, 3.3K (Dice coefficient = 43.4%; concordance = 46.8%) were shared with BMI. Of 

note, BMI had 7.7K potential causal variants that were not shared with left-handedness. 
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There were moderate genetic correlations (rgs = .35-.41) and shared genetic variants 

between AUD and other psychiatric traits, including 6.4K of the 10.2K schizophrenia variants 

(Dice coefficient = 65.6%; concordance = 71.9%), 4.3K of the 7.2K MDD variants (Dice 

coefficient = 51.4%; concordance = 90.8%), and 5.4K of the 7.7K ADHD variants (Dice 

coefficient = 63.5%; concordance = 74.8%). Finally, of the 4.2K potential causal variants linked 

to the control condition left-handedness, 2.0K (Dice coefficient = 28.3%; concordance = 73.2%) 

were shared with AUD (Figure 1). 

Of the 2,495 independent regions examined in LAVA, local h2
SNP was significant (p < 

.05) in 2,293 regions for both AUD and BMI. Furthermore, local rg between AUD and BMI was 

significant in 41 regions after FDR correction (q < .05). Just under half of these regions (19/41) 

had positive genetic correlations between the two phenotypes (Table S5).  

Shared genetic loci (cond/conj FDR) 

At conjFDR<0.05, we identified 132 significant loci associated with both AUD and BMI 

(Figure 2). Most (121) of these variants were not significant in the original AUD GWAS and 53 

were not significant in the original BMI GWAS. Notably, all 53 loci that were novel for BMI 

were also novel for AUD (Table S4). Of the shared loci, 56 lead SNPs (42.4%) had consistent 

effect directions for AUD and BMI and 76 (57.6%) had opposite effect directions. This supports 

the hypothesis that the lack of genetic correlation is due to mixed effect directions of variants 

shared by AUD and BMI.  

The two most significant loci exerted opposite directions of effect for BMI and AUD. 

The first was an intronic variant (rs9939973) in the well-known obesity risk gene, FTO (also 

linked to numerous other traits, including substance use disorders, major depression, and 

schizophrenia46. The second was an intronic variant (rs13114738) in the highly pleiotropic gene 
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SLC39A847. The most significant locus (rs10511087) with a concordant direction of effect was 

CADM2, which encodes cell adhesion molecule 2 and has been linked to array of cognition, pain, 

substance use, and metabolic phenotypes48,49. 

Of the 2,495 independent regions examined in LAVA, local h2
SNP was significant (p < 

.05) in 2,293 regions for both AUD and BMI. Furthermore, local rg between AUD and BMI was 

significant in 41 regions after FDR correction (q < .05). Just under half of these regions (19/41) 

had positive genetic correlations between the two phenotypes (Table S5).  

Replication in FinnGen 

We performed replication analysis of the 132 significant loci using independent AUD (N 

= 453,733; Ncase = 26,149) and BMI summary statistics (N = 321,672) from FinnGen v11. In the 

independent AUD summary statistics, 124 loci (94%) had sign concordance, 75 (57%) were 

nominally significant, and 55 (42%) were significant after FDR correction. In the independent 

BMI summary statistics, 125 loci (95%) had sign concordance, 97 (73%) were nominally 

significant, and 95 (72%) were significant after FDR correction (Table S4). The SNP sign tests 

supported the overall replication of loci effect directions across both the AUD (p < 2.2x10-16) and 

BMI (p < 2.2x10-16) independent cohorts. An important caveat to these analyses is that FinnGen 

sample is from an isolated population, and the AUD replication sample had only a quarter of the 

number of cases as the original discovery sample. The fact that a larger proportion of BMI loci 

replicated is likely attributable to more comparable sample sizes between the original and 

replication datasets (321,672/681,275 = 47%). The consistency of replication reported here is 

comparable to that found in other GWAS of complex traits50-52. 

Functional annotations 
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The Variant Effect Predictor (VEP) analysis of the 132 lead SNPs in the loci shared 

between AUD and BMI indicated that 74 were intronic, 31 intergenic, 7 downstream, 6 non 

coding transcript exon variant, 5 missense, 4 upstream, 3 in the 3’UTR, 1 synonymous, and 1 

regulatory (Table S4). Ten of the 132 variants had CADD scores > 12.37, indicating possible 

deleteriousness53.  

Analysis of Genotype-tissue Expression (GTEx)54 samples showed that genes linked to 

the lead SNPs were significantly overexpressed in the brain (Figure S2). Specifically, 47 genes 

were significantly upregulated in the frontal cortex (BA9), hypothalamus, cortex, anterior 

cingulate cortex (BA24), hippocampus, and amygdala (Figures 3 and 4). Analysis of GTEx 

samples for the shared genes linked to concordant loci identified significant upregulation in the 

hypothalamus and amygdala (Figure S4). Finally, analysis of the of the shared genes linked to 

discordant loci identified significant upregulation in the frontal cortex (BA9), hypothalamus, 

cortex, anterior cingulate cortex (BA24) (Figure S5). 

GO gene-set analysis identified 30 biological processes where shared genes were 

significantly enriched, with “cell morphogenesis involved in differentiation”, “cell 

morphogenesis”, “axon development”, and “presynaptic active zone organization” being the top 

four processes (Table S6). Additionally, genes were enriched for seven GO cellular component 

processes, including “synapse”, “GABAergic synapse”, and “presynapse”. Finally, the genes 

were enriched for 21 cell type signatures55, the top seven of which were in the midbrain and 

included “HGABA”, “HNBGABA”, “HDA1”, “HDA”, “HDA2”, “HNBML5”, and “HSERT”. 

These cell types are GABAergic, dopaminergic, serotonergic, and neuroblast-related. Analysis of 

the gene-set linked to concordant loci identified the biological process, “presynaptic active zone 

organization” and three cell type signatures, HGABA and HNBGABA in the midbrain as well as 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.03.24306773doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306773


  
 

15 
 

“fetal limbic system neurons” (Table S7). The gene-set linked to discordant loci identified many 

more mechanisms including 11 biological processes and 14 cell-type signatures, though the latter 

did not include limbic system neurons (Table S8). 

Drug repurposing analysis  

Of the 131 unique genes associated with the 132 lead SNPs, six (OPRM1, RET, DPYD, 

ADH1A, PDE4B, PRKCB) were located in the gene or nearest to the transcription start site of 

genes associated with FDA-approved drugs (i.e., Tclin; Table S4), including naltrexone 

(OPRM1) among others. Eleven other genes were Tchem (i.e., known to bind to small molecules 

with high potency), followed by 101 Tbio and 13 Tdark44. Two of the 11 Tchem targets are 

targeted by known drugs in OpenTargets. Specifically, FTO is targeted by bisantrene for acute 

myeloid leukemia (Phase II), and GRM2 is targeted by four investigational drugs for central 

nervous system disorders including schizophrenia, major depressive disorder, perceptual 

disorders, bipolar disorder, psychosis, methamphetamine dependence, post-traumatic stress 

disorder, and seizure disorder.   

BrainXcan 

AUD was significantly associated with gray matter volume in four subcortical brain 

regions after applying p-value corrections for LD structure and multiple testing: the bilateral 

caudate nucleus (positive association), left amygdala (negative association), and right thalamus 

(positive association) (Table S9, Figures S6 and S7). After p-value adjustments, BMI had a total 

of 98 significant associations with brain IDPs. Approximately three-quarters of the BMI 

associations were with diffusion MRI IDPs (n = 74; 75.51%), with the remainder coming from 

structural MRIs. The top associations for BMI were with the medial lemniscus, a white matter 

tract that is part of the somatosensory pathway responsible for transmitting tactile, 
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proprioceptive, and other sensations from the body to higher brain centers56. All significant 

associations for AUD had the same direction of effect for BMI (Figure 5), 76 of the BMI 

associations had the same direction of effect as AUD, and 22 had effects in the opposite direction 

for the two traits (Table S9, Figures S8 and S9). Gray matter volume in three brain regions—the 

bilateral caudate and the left amygdala—was significantly associated with both AUD and BMI.   

Discussion 

Analyses revealed several key findings regarding the genetic relationship between AUD 

and BMI. Both MiXeR and conjFDR analyses showed that more than half the variants shared by 

AUD and BMI exerted opposite directions of effect on the traits, supporting our hypothesis that 

this underlies their lack of genetic correlation. Leveraging conjFDR, we identified 132 shared 

genomic loci, including 53 that were novel from the original GWAS for AUD and BMI. 

Furthermore, analyses in a smaller independent sample demonstrated high replicability of the 

sign concordance of these results and moderate replicability of the significant associations, 

enhancing confidence in the findings. Expression analysis of genes linked to both phenotypes 

identified heightened expression in brain regions implicated in executive functioning, reward, 

homeostasis, and food intake regulation. BrainXcan analyses of brain IDPs from the UK 

Biobank reinforced these findings, identifying significant shared associations with caudate 

nucleus and amygdala. Overall, these findings detail the extensive polygenic overlap between 

AUD and BMI, elucidate several overlapping neurophysiological mechanisms, and suggest 

possible targets for intervention. 

The low genetic correlation found in the present and prior studies22,23 is explained by the 

mixed directionality of genetic effects of the phenotypes. MiXeR analysis indicated high 

polygenic overlap (82%) between AUD and BMI, with 49% concordance in the variants’ effect 
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directions. Similarly, using conjFDR, 42.4% (n = 56) of the 132 loci significantly associated 

with both AUD and BMI had the same direction of effect. Comparison analyses examining the 

overlap of AUD and BMI with other psychiatric phenotypes (ADHD, MDD, schizophrenia) 

yielded a range of genetic correlations and effect direction concordance, all showing substantial 

genetic overlap, consistent with prior work23,57,58. AUD and BMI exhibited the highest 

proportion of estimated shared causal variants of all other phenotype pairings, despite having the 

lowest absolute genetic correlation of any pairing, which underscores the importance of 

accounting for variants’ effect direction. The LAVA analysis corroborated these findings, 

revealing that 41 of the 2,495 independent regions exhibited significant genetic correlations 

between AUD and BMI, with nearly half (19 out of 41) showing positive correlations. 

The FTO and SLC39A8 gene loci exhibited the most significant discordant effects, and 

the CADM2 gene locus exhibited the most significant concordant effects. Specifically, the effect 

allele of rs9939973, intronic within the FTO gene, was associated with a reduced likelihood of 

AUD and increased BMI. While BMI and alcohol-related GWAS have identified intronic FTO 

variants23,59,60, this conjunctional analysis highlights this locus as the region that is most 

significantly associated with both phenotypes. Obesity research suggests that the FTO gene 

region alters the function of nearby genes (IRX3 and IRX5), which impact the involvement of fat 

cells in thermogenesis 61,62. The psychiatric literature suggests that this region also affects 

neuronal activity, namely dopamine receptor type 2 and 3 function 63,64. The SLC39A8 gene, 

which encodes the metal ion transporter protein ZIP8 65, was associated with both AUD and 

BMI, but with opposite directions of effect. This locus is highly pleiotropic and has been linked 

to an array of psychiatric and neurological diseases and Crohn’s disease, possibly due its role in 

maintaining manganese homeostasis47,66,67. Conversely, the most significant variant with 
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concordant effects on AUD and BMI was rs10511087, intronic within the CADM2 gene. 

CADM2 is expressed in some brain regions implicated in the present study, namely the frontal 

cortex (BA9) (Figure 3), and has been associated with cognition, pain, impulsivity, substance 

use, other risky behaviors, obesity, and other metabolic traits 48,49,68-70. 

Drug repurposing analysis yielded targets of FDA-approved drugs and others that are in 

development or have not been examined. In particular, PDE4B, which is targeted by FDA-

approved medications for chronic obstructive pulmonary disease and psoriasis/psoriatic arthritis, 

has shown evidence of reducing alcohol consumption71,72 and is under investigation as a 

treatment target for AUD (NCT05414240), weight loss, and other metabolic conditions73-75. 

Additionally, OPRM1 is targeted by naltrexone, which is FDA-approved for treating AUD and 

opioid use disorder, and as a combination drug, naltrexone-bupropion, for the treatment of 

obesity19,76 Importantly, both the PDE4B and OPRM1 loci exhibited concordant effects on AUD 

and BMI. However, studies have not examined the effectiveness of these medications in treating 

both conditions simultaneously in a clinical setting and this study underscores the relevance of 

examining treatment options focused on genes linked to both phenotypes.  

A final promising target identified in this study is, GRM2, which encodes for the 

metabotropic glutamate receptor 2 (mGluR2) and exhibited a discordant effect between AUD 

and BMI in the present study. Both metabotropic glutamate receptor (mGluR) 2/3 agonists and 

mGluR2 positive allosteric modulators have been found to reduce drinking after alcohol 

deprivation77, alcohol self-administration78,79, cue-induced reinstatement78, and stress-induced 

reinstatement79 (for a review of preclinical alcohol studies see 80). Administration of an mGluR2 

agonist has also been shown to simultaneously reduce ethanol- and sucrose-seeking, and body 

weight81. It will be important for future studies to investigate the discordant effect identified in 
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the present study and further evaluate the promise of this mechanism for the treatment of AUD 

and obesity.  

Several brain regions and neural cell types were identified across the various downstream 

analyses. Genes linked to the lead SNPs were significantly up-regulated in the prefrontal and 

anterior cingulate cortex, hypothalamus, hippocampus, and amygdala. Additionally, amygdala 

and caudate nucleus gray matter volumes were significantly associated with AUD and BMI risk 

in BrainXcan analyses. Furthermore, GO gene-set analysis yielded enrichment for signatures in 

the midbrain, including GABAeric, dopaminergic, and serotonergic cell types. Shared genes 

linked to concordant loci identified up-regulation in the amygdala and hypothalamus and 

implicated limbic system neurons, whereas discordant loci genes implicated the prefrontal and 

anterior cingulate cortex. The brain regions and cell types identified here have consistently been 

implicated in obesity82,83, binge eating disorder84,85, and AUD86,87. The prefrontal cortex and 

amygdala are dysregulated after drug use, resulting in withdrawal, craving, impulsivity, and 

negative affect, which drive continued use87,88. Similarly, the frontal cortex, amygdala, caudate, 

and hypothalamus exhibit hyperreactivity to food-associated cue exposure in obese and 

overweight individuals83. Evidence also suggests that the caudate nucleus plays a key role in 

mediating external stimuli and internal preferences to guide behavior89. The hypothalamus is 

integral to stress responses and homeostatic regulation of caloric intake to meet real and 

perceived nutrition needs90,91. Dysfunction in these areas is progressive with eating and drug use, 

resulting in altered reward processing and a shift in ‘liking’ vs. ‘wanting’ the hyper-fixated 

substance92-94. Overall, these findings underscore the utility of leveraging human genomic and 

transcriptomic data analysis and align with insights from preclinical and human neuroimaging 

studies on the neurophysiological mechanisms driving AUD and obesity. Future studies 
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leveraging high resolution single-cell RNA sequencing datasets95 are needed to parse the brain 

regions implicated and understand the mechanisms underlying concordant and discordant shared 

loci. 

 There are notable limitations to this study. BMI may not optimally measure obesity, both 

because it is used as a continuous variable in this study, and because there is no distinction 

between weight from fat, bone, or muscle mass. However, BMI is easily and inexpensively 

measured, and is a longstanding, well-studied surrogate measure of obesity 96. Nonetheless, 

future studies should expand these analyses to examine complementary phenotypes, such as 

body composition, waist-to-hip ratio97, and binge-eating disorder98, and to clinical 

subpopulations (e.g., through GWAS of BMI in individuals with and without AUD) 99.  

A second limitation is that the data used in this study are limited to individuals of 

European ancestry to ensure compatible genetic architectures. As sample sizes increase, a high 

priority must be placed on including individuals of non-European ancestry. The potential 

consequences of excluding diverse ancestral groups include the inequitable distribution of the 

benefits of genetic research and exacerbation of existing health disparities100-102. Thus, future 

studies should replicate these findings using more diverse ancestral samples as biobanks continue 

to grow. This shift towards more diverse samples will improve result generalizability and 

understanding of cross-population genetic variation.  

Finally, while the use of data aggregated from large biobank studies enables highly 

powered genomic analyses, there is limited ability to account for environmental exposures and 

longitudinal progression. Family studies such as the Collaborative Study on the Genetics of 

Alcoholism (COGA)103 can provide complementary data to larger-scale biobank studies. Indeed, 

follow-up studies leveraging data from studies like COGA will enable a better understanding of 
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AUD and BMI progression, remission and recovery, antecedents and sequelae, and the interplay 

between genetic and socio-environmental factors.  

In summary, our study found that the absence of genetic correlation between AUD and 

BMI is attributable to the presence of shared variants with opposite directions of effect (i.e., a 

variant protective for obesity increases risk for AUD and vice versa). Follow-up analyses 

specified overlapping genomic loci and identified brain regions implicated in executive 

functioning, reward, homeostasis, and food intake regulation. Together, these findings increase 

our understanding of the shared polygenic architecture of AUD and BMI and lend further 

support to the notion that eating behavior and AUD share overlapping neurobiological 

mechanisms. 

 

Data availability 

Full summary statistics from two genome-wide association studies can be accessed at the 

following locations: GIANT Consortium website 

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files) 

and through the Gelernter Lab website without restriction 

(https://medicine.yale.edu/lab/gelernter/stats/) or dbGaP (accession number phs001672, under 

the ‘Addiction’ Analysis; registration and approval are needed following dbGaP’s data accessing 

process). Researchers seeking access to the exact AUD summary statistics cohort used in this 

study should contact the original study authors for more information (Zhou et al., 2023). 

Replication summary statistics can be accessed at the FinnGen website 

(https://www.finngen.fi/en/access_results). 

Code availability 
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MiXeR (https://github.com/precimed/mixer) was used to investigate the overall shared 

genetic architecture between AUD and BMI. LD Score regression (LDSC) v1.0.1 

(https://github.com/bulik/ldsc) was used to calculate heritability, genetic correlations, and 

standard errors. conjFDR (https://github.com/precimed/pleiofdr) analysis was used to detect loci 

significantly associated with both phenotypes. Local Analysis of [co]Variant Association 

(LAVA) was used to estimate local heritability and local genetic correlations 

(https://github.com/josefin-werme/LAVA). Functional Mapping and Annotation (FUMA) was 

used to identify lead single nucleotide polymorphisms and to implement gene expression, tissue 

enrichment specificity, and gene-set enrichment analyses. FUMA can be accessed here: 

https://fuma.ctglab.nl. Annotations for the lead SNPs corresponding to Variant Effect Predictor 

(VEP), Combined Annotation Dependent Deletion (CADD) scores, and nearest transcription 

start site were sourced from OpenTargets (https://genetics.opentargets.org/ v22.10). The 

presence of lead SNPs within genes was confirmed using dbGaP 

(https://www.ncbi.nlm.nih.gov/gap/). The Target Central Resource Database (TCRD) and 

OpenTargets were accessed to integrate drug-protein interaction/druggability information 

(https://pharos.nih.gov/ v3.18.0; https://platform.opentargets.org/ v23.12). BrainXcan was used 

to evaluate the shared associations of AUD and BMI with brain image-derived phenotypes. 

BrainXcan documentation can be found here: https://liangyy.github.io/brainxcan-

docs/docs/overview.html. 
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Figure 1. MiXeR Venn diagrams showing the estimated number of shared causal variants in the 

thousands and genetic correlations (rg) of AUD and BMI with each other and psychiatric 

disorders. Left-handedness was included as a control. h2
SNP = SNP-based heritability. Standard 

errors for genetic correlations and heritability estimates are included in parentheses. ADHD = 

attention-deficit/hyperactivity disorder, AUD = alcohol use disorder, BMI = body mass index, 

MDD = major depressive disorder, SCZ = schizophrenia.  
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Figure 2. Manhattan plot of variants jointly associated with AUD and BMI. The plot depicts 

log10 transformed conjFDR values for each SNP on the y-axis and chromosomal position on the 

x-axis. The horizontal line is the threshold for significant shared associations between AUD and 

BMI (conjFDR < 0.05). Independent lead SNPs are green. The results are also shown in Table 

S4. 
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Figure 3. Significant up-regulated differential gene expression (DEG) in the frontal cortex 

(BA9), hypothalamus, cortex, anterior cingulate cortex (BA24), hippocampus, and amygdala. 

Tissues are significantly enriched at Bonferroni corrected p-value ≤ 0.05 for 54 GTEx tissue 

types. Only genes with a Bonferroni corrected p-value and absolute log fold change ≥ 0.58 for a 

given tissue are included. For full results across all brain tissues, regardless of significance, see 

Figure S3. 
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Figure 4. Differential gene expression (DEG) in 54 GTEx tissue types for genes linked to lead 

SNPs in distinct loci significantly associated with AUD and BMI. Significant enrichment (p < 

.05 after Bonferroni correction) is highlighted in red. 
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Figure 5. Brain visualization of subcortical features significantly associated with AUD and BMI. 

Z-scores of the associations of the brain regions significant after false discovery rate correction 

(bilateral caudate, right thalamus, left amygdala) are shown, with orange indicating positive 

associations and blue indicating negative associations. AUD = alcohol use disorder, BMI = body 

mass index. 
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Figure S1. Conditional Q-Q plots showing the distribution of observed versus expected –log10 p-

values for the primary phenotypes (AUD and BMI) for SNPs conditional on associations of a 

secondary trait at three p-value strata (p < 0.1, 0.01, and 0.001). ADHD = attention deficit 

hyperactivity disorder, AUD = alcohol use disorder, BMI = body mass index, MDD = major 

depressive disorder, SCZ = schizophrenia. 
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Figure S2. A) Differential gene expression (DEG) in 30 general GTEx tissues for genes linked to 

lead SNPs in distinct loci significantly associated with both AUD and BMI. Significant 

enrichment (p<.05 after Bonferroni correction) is highlighted in red. B) Gene expression 

heatmap for 30 GTEx general tissues for genes linked to lead SNPs in distinct loci significantly 

associated with both AUD and BMI. 
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Figure S3. Gene expression heatmap for 54 GTEx tissues for genes linked to lead SNPs in 

distinct loci significantly associated with both AUD and BMI.  

 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.05.03.24306773doi: medRxiv preprint 

https://doi.org/10.1101/2024.05.03.24306773


  
 

39 
 

Figure S4. Concordant enrichment. A) Differential gene expression (DEG) in 30 general GTEx 

tissues for genes linked to concordant lead SNPs in distinct loci significantly associated with 

both AUD and BMI. There was no significant enrichment (p<.05 after Bonferroni correction). B) 

Gene expression heatmap for 30 GTEx general tissues for genes linked to concordant lead SNPs 

in distinct loci significantly associated with both AUD and BMI. C) Differential gene expression 

(DEG) in 54 general GTEx tissues for genes linked to concordant lead SNPs in distinct loci 

significantly associated with both AUD and BMI. Significant enrichment (p<.05 after Bonferroni 

correction) is highlighted in red. D) Gene expression heatmap for 54 GTEx general tissues for 

genes linked to concordant lead SNPs in distinct loci significantly associated with both AUD and 

BMI. 
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Figure S5. Discordant enrichment. A) Differential gene expression (DEG) in 30 general GTEx 

tissues for genes linked to discordant lead SNPs in distinct loci significantly associated with both 

AUD and BMI. There was no significant enrichment (p<.05 after Bonferroni correction). B) 

Gene expression heatmap for 30 GTEx general tissues for genes linked to discordant lead SNPs 

in distinct loci significantly associated with both AUD and BMI. C) Differential gene expression 

(DEG) in 54 general GTEx tissues for genes linked to discordant lead SNPs in distinct loci 

significantly associated with both AUD and BMI. Significant enrichment (p<.05 after Bonferroni 

correction) is highlighted in red. D) Gene expression heatmap for 54 GTEx general tissues for 

genes linked to discordant lead SNPs in distinct loci significantly associated with both AUD and 

BMI. 
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Figure S6. Structural brain features associated with AUD risk. LD-adjusted Z-scores are 

provided for region-specific associations of structural IDPs with AUD risk.  
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Figure S7. Diffusion features associated with AUD risk. LD-adjusted Z-scores are provided for 

region-specific associations of diffusion MRI IDPs with AUD risk.
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Figure S8. Structural features associated with BMI risk. LD-adjusted Z-scores are provided for 

region-specific associations of structural IDPs with BMI risk. 
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Figure S9. Diffusion features associated with BMI risk. LD-adjusted Z-scores are provided for 

region-specific associations of diffusion MRI IDPs with BMI risk.  
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