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Abstract 1 

Introduction: Urinary metabolism breakdown products reflect metabolic changes in atherosclerosis-2 

relevant tissues and may contain relevant therapeutic leads. We integrated data on urinary metabolism 3 

breakdown products, plasma proteins, atherosclerotic plaque tissue, and single-cell expression to 4 

identify druggable metabolic pathways for coronary heart disease (CHD).  5 

Methods: Mendelian randomisation was employed to interrogate findings from independent genome-6 

wide association studies on 954 urinary metabolism breakdown products, 1,562 unique proteins, and 7 

181,522 CHD cases, establishing directionally concordant associations. Using the Athero-Express 8 

Biobank, concordant plasma proteins were linked to plaque vulnerability using protein and mRNA 9 

expression in plaque. Single-cell RNA sequencing data obtained from carotid plaque samples were 10 

used to test for differential expression of concordant proteins across plaque cell types.  11 

Results: In total, 29 urinary metabolism breakdown products associated with CHD, predominantly 12 

originating from amino acid metabolism (n=12) or unclassified origin (n=9). We identified 113 13 

plasma proteins with directionally concordant associations with these urinary metabolism breakdown 14 

products and CHD. Of the 110 proteins available in plaque, 16 were associated with plaque 15 

vulnerability. This included positive control proteins targeted by drugs indicated for CHD, such as 16 

CAH1 (targeted by aspirin), IL6R (targeted by tocilizumab), and AT1B2 (targeted by digoxin), as 17 

well as two potential repurposing opportunities C1S (targeted by C1-esterase inhibitor and 18 

sutimlimab) and CATH (targeted by bortezomib). 19 

Conclusion: We have identified amino acid metabolism as an important contributing pathway to 20 

CHD risk and prioritised 16 proteins relevant for CHD with involvement in atherosclerotic plaques, 21 

providing important insights for drug development.  22 
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Introduction 1 

Atherosclerosis is characterised by the development of lesions accumulating lipoproteins and 2 

inflammatory cells in the arterial wall. As atherosclerosis progresses, plaque accumulates and may 3 

progress into high-risk vulnerable plaques. Such plaques are characterized by a thin fibrous cap, a 4 

large lipid core and high levels of inflammatory cells(1, 2), making them particularly prone to rupture. 5 

Plaque rupture can lead to rapid thrombus formation blocking the blood flow to the heart muscle, 6 

potentially leading to acute clinical events such as coronary heart disease (CHD), which remains a 7 

leading cause of burden and death globally.  8 

 9 

Metabolic disorders, such as metabolic syndrome (the co-occurrence of hypertension, 10 

hypercholesterolemia, diabetes, and obesity), are associated with a metabolic, pro-inflammatory, and 11 

pro-thrombotic state which are key drivers of atherosclerosis(3), reflecting the close interrelationship 12 

between immune response and metabolic homeostasis, where dysfunction in one system can adversely 13 

affect the other(4). Plasma proteins are markers of disease and targets of most drug compounds. 14 

Previous research has already linked plaque phenotypes to circulating proteins, identifying reduced 15 

plasminogen activator inhibitor levels in patients with an intermediate coronary artery disease risk 16 

profile, for example(5). 17 

 18 

Urinary metabolism breakdown products, which are the end-products of metabolism excreted in urine, 19 

reflect metabolic changes occurring in atherosclerosis-relevant tissues (e.g., body fat, liver, the arterial 20 

wall). These urinary breakdown products may provide key insights in the metabolic alterations 21 

associated with the progression of atherosclerosis to CHD. While urinary breakdown products are 22 

potentially important markers of disease, they are not directly actionable as they have been excreted 23 

from the body. On the contrary, plasma proteins are actionable targets for therapeutic intervention and 24 

therefore the integration of data on urinary metabolites and plasma proteins identifies relevant 25 

metabolic pathways and potential drug targets, offering a comprehensive approach to understanding 26 

and intervening in the progression of CHD. 27 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.11.24318833doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.11.24318833
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

 1 

In the current study, we used Mendelian randomisation (MR) to identify novel metabolic pathways for 2 

CHD by leveraging genetic data on urinary metabolism breakdown products (954 urinary metabolism 3 

breakdown products), plasma proteins (1,562 unique plasma proteins), and CHD (181,522 cases). The 4 

fixed nature of genotypes, established during gametogenesis(6, 7) allows genetic variants to be used 5 

as instrumental variables in MR, which is therefore robust against the presence of confounding bias 6 

and potential reverse causation. In the context of cardiovascular disease, this approach has been 7 

empirically validated(8-11). Plaque involvement was established by using data from carotid 8 

endarterectomy patients from the Athero-Express (AE) Biobank on protein expression, mRNA 9 

expression, and single-cell RNA sequencing. Finally, the potential druggability of these prioritised 10 

proteins was evaluated through linkage to ChEMBL.  11 

 12 

Methods 13 

Genetic data 14 

Genetic associations with 954 urinary metabolism breakdown product values were available from a 15 

genome-wide association study (GWAS) conducted on 1,627 individuals using a non-targeted mass 16 

spectrometry Metabolon assay(12). Metabolism breakdown products were grouped based on their 17 

metabolic origins, which led to nine metabolism classes: amino acid metabolism, carbohydrate 18 

metabolism, cofactor and vitamin metabolism, energy metabolism, lipid metabolism, nucleotide 19 

metabolism, peptide metabolism, xenobiotic metabolism, or unclassified metabolism. Metabolism 20 

breakdown products with an origin in xenobiotic metabolism are breakdown products from substances 21 

not naturally produced by the human body, such as drugs, pollutants, and synthetic compounds. 22 

Unclassified metabolism breakdown products represent potentially novel biomarkers, as they have not 23 

yet been related to an established metabolic origin. These breakdown products were noted for their 24 

recurring chromatographic and spectral properties and have been assigned unique COMP-IDs and/or 25 

CHEM-IDs (Appendix Table S1), allowing for identification and comparison in future studies and by 26 

other analysis platforms. We used eight GWAS on genetic associations with plasma protein values, 27 
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detailed in the Supplemental Methods, and a GWAS on genetic associations with incident or 1 

prevalent CHD (181,522 cases among 1,165,690 participants from European ancestry) obtained from 2 

Aragam et al.(13).  3 

 4 

Mendelian randomization analyses 5 

Three MR analyses were conducted: 1) genome-wide MR to identify urinary metabolism breakdown 6 

products associated with CHD through upstream effects in plasma (step 1 in Figure 1, Appendix 7 

Table S1), 2) cis-MR to identify plasma proteins affecting values of urinary metabolism breakdown 8 

products (step 2 in Figure 1), and 3) cis-MR to identify plasma proteins associated with CHD (step 3 9 

in Figure 1). For the genome-wide MR, genetic variants were selected from across the genome, while 10 

the cis-MR utilized genetic variants selected from a 200 kilobase pair window around and within the 11 

protein encoding gene. In all MRs, variants were selected based on an exposure F-statistic of at least 12 

24 and a minimal minor allele frequency of 0.01. The selected variants were clumped to a linkage 13 

disequilibrium (LD) r-squared of 0.30, using a random sample of 5,000 unrelated UK Biobank 14 

participants(14). The cis-MR analyses (steps 2-3 in Figure 1) were conducted per individual protein 15 

GWAS, where the largest sample size GWAS was used if protein measurements overlapped in 16 

different studies. 17 

 18 

MR analyses were conducted using generalized least squares (GLS) implementations of the inverse 19 

variance weighted (IVW) estimator, as well as MR-Egger estimator, known for its robustness to 20 

pleiotropy(15). The GLS implementation was used to additionally correct for residual LD, which 21 

optimized estimator precision(16). To reduce the potential for horizontal pleiotropy, variants with 22 

large leverage statistics (larger than three times the mean leverage) and/or outlier statistics (Chi-23 

square larger than 10.83) were excluded. We discarded analyses with fewer than six variants, ensuring 24 

we had sufficient data to accurately model the exposure effects. To further minimize the potential of 25 

horizontal pleiotropy, we applied a model selection framework identifying the MR model (IVW or 26 

MR-Egger) that is most supported by the available data(17).  27 

 28 
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Triangulation of evidence through consideration of concordant CHD effects 1 

We integrated findings from the three distinct MR analyses to triangulate evidence on the effects of 2 

urinary metabolism breakdown products and proteins on CHD. This involved 1) identifying urinary 3 

metabolism breakdown products affecting CHD, 2) identifying proteins associated with these urinary 4 

metabolism breakdown products, and 3) focussing on the subset of proteins with an effect on CHD 5 

that was directionally concordant with the effect of a urinary metabolism breakdown product on CHD 6 

and the protein on the same breakdown product. For example, if a higher value of a urinary 7 

metabolism breakdown product reduced CHD risk, and a protein increased the value of this urinary 8 

breakdown product, the protein effect was considered directionally concordant if higher protein values 9 

reduced CHD risk. We describe concordance in direction as a triangulated association (Figure 2). 10 

Given that potential horizontal pleiotropy acts through distinct pathways in each analysis (e.g., pre-11 

translational pleiotropy in cis-MR versus pre- or post-translational horizontal pleiotropy in genome-12 

wide MR(18)), focusing on results with directional concordance ensures identification of a robust 13 

subset of results with likely limited residual bias due to horizontal pleiotropy. 14 

 15 

Athero-Express Biobank atherosclerotic plaques 16 

Next, the Athero-Express (AE) Biobank data was used to prioritise findings on atherosclerotic plaque 17 

involvement. Patients enrolled in the AE Biobank were at risk of CHD, as well as other 18 

atherosclerosis associated diseases such as ischemic stroke, with carotid plaques from these patients 19 

providing a relevant marker of generalised atherosclerosis (54-58). Specifically, the AE contains 20 

samples of carotid endarterectomy patients, where we identified potential associations between 21 

protein (194 patients) or mRNA (632 patients) expression in plaque and the plaque vulnerability 22 

index. In addition, single-cell RNA sequencing data (4948 cells and 46 patients) were analysed to 23 

study cellular plaque expression. Please see Supplemental Methods for the relevant details, and 24 

Appendix Table S2 for AE patients characteristics. The performed study is in line with the 25 

Declaration of Helsinki, and informed consent was provided by all study participants after approval 26 

for this study by the medical ethical committees of the various hospitals (University Medical Center, 27 

Utrecht, The Netherlands, and St. Antonius Hospital, Nieuwegein, The Netherlands) was obtained. 28 
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 1 

Associations with plaque vulnerability 2 

We tested for associations between both protein expression and mRNA expression levels of MR-3 

prioritised proteins and plaque vulnerability index using a linear model, with protein expression 4 

available for 1,500 proteins and mRNA expression available from 55,105 transcripts, all measured in 5 

atherosclerotic plaques.   6 

 7 

Determining cellular expression using single-cell RNA sequencing  8 

Single-cell RNA sequencing was used to explore whether genes coding for MR-prioritised proteins 9 

where differentially expressed across plaque cell types, providing important information on the 10 

mechanisms driving atherosclerosis. A Wilcoxon rank-sum test was used to compare the expression in 11 

a single cell type to expression in the remaining cell types. The following cell types were considered: 12 

dendritic cells, endothelial cells I (ECs I), endothelial cells II (ECs II), foam cells, inflammatory 13 

macrophages, mast cells, memory B-cells, monocytes, natural killer cells (NK-cells), plasma B-cells, 14 

resident macrophages, smooth muscle cells (SMCs), and T-cells. Additionally, differential expression 15 

across broader clusters of cell types (structural cells, innate immune cells, and adaptive immune cells) 16 

was assessed using the Wilcoxon rank-sum test (Supplemental Methods). 17 

 18 

Annotations, effect estimates and multiple testing 19 

Proteins are referred to using their Uniprot label(19) and genes are referred to using the Ensembl label 20 

in italicised font. MR results are presented as mean differences (MD) for urinary metabolism 21 

breakdown products, or odds ratios (OR) for CHD, representing the effect of one standard deviation 22 

(SD) increase of the exposure (i.e., either urinary metabolism breakdown products or plasma protein 23 

value). Associations of the plaque vulnerability index with protein expression levels or mRNA 24 

expression levels are presented as MD in normalized count per unit increase in the plaque 25 

vulnerability index. All effect estimates are accompanied by 95% confidence intervals (CIs) and p-26 

values. Metabolism breakdown product effects on CHD were filtered for a multiplicity corrected p-27 

value threshold of 1.37×10�� based on the 365 principal components that were needed to explain 28 
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90% of the variance in the urinary metabolism breakdown products (Appendix Figure S1). Protein 1 

MR effect estimates of the metabolism breakdown product association were evaluated against a 2 

multiplicity corrected p-value threshold of 1.10×10-6 based on the number of tested proteins (n=1,562) 3 

and metabolism breakdown products (n=29). The multiplicity corrected p-value threshold was 4 

7.33×10-6 for the MRs of protein on CHD based on the number of tested proteins (n=682). For 5 

analyses of associations of protein and mRNA expression levels with plaque vulnerability, p-values 6 

were adjusted using the Benjamini-Hochberg method(20) with a false discovery rate threshold of 0.1. 7 

For differential expression testing using single-cell RNA sequencing data, we used a nominal p-value 8 

threshold of 0.05.  9 

 10 

Druggability of prioritised proteins 11 

We identified plasma proteins targeted by approved drugs (drugged proteins), as well as plasma 12 

proteins targeted by a developmental drug (druggable proteins) based on ChEMBL. For the drugged 13 

and druggable proteins, compound indications and side-effects were extracted from ChEMBL and the 14 

British National Formulary (BNF). 15 

 16 

Partial replication of protein associations with cardiac traits 17 

Due to the availability of eight proteomics GWAS, some studies measured the same proteins, which 18 

we used to replicate the associations with CHD risk. Replication was sought using a nominally 19 

significant p-value of 0.05 or smaller and considering the effect direction of the triangulated analysis. 20 

In addition, a more stringent p-value threshold of 6.94×10-4 (0.05 divided by the number of proteins 21 

that were available in more than one study) was used for more conservative replication.  22 

 23 

Results 24 

Urinary metabolism breakdown products associating with CHD 25 

Using Mendelian randomisation, we evaluated 954 urinary metabolism breakdown products to 26 

investigate their association with CHD (Appendix Table S1). Out of these, 29 were associated with 27 
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 9

CHD (Appendix Table S3, step 1 in Figure 1, Figure 3). Twelve of these metabolism breakdown 1 

products originated from amino acid metabolism. For example, higher values of N-acetyltyrosine 2 

increased the risk of CHD (OR 1.03 per one standard deviation increase, 95%CI 1.02; 1.04), while 3 

higher values of 3-methylglutaconate decreased the risk of CHD (OR 0.95 per one standard deviation 4 

increase, 95%CI 0.93; 0.97). Other associated urinary metabolism breakdown products originate from 5 

various metabolic processes: one from energy metabolism, four from lipid metabolism, and three from 6 

xenobiotic metabolism. Finally, nine urinary metabolism breakdown products of unclassified 7 

metabolic origin were associated with CHD, representing potential novel metabolic pathways.  8 

 9 

Triangulated proteins concordant with urinary metabolism breakdown products and CHD 10 

We used Mendelian randomisation to determine associations between plasma proteins and the 29 11 

urinary metabolism breakdown products identified as being associated with CHD. We identified 682 12 

proteins associating with at least one of these 29 urinary metabolism breakdown products (Appendix 13 

Figure S2). Among these, 113 proteins were identified with a directionally concordant association 14 

with CHD (steps 2-4 in Figure 1, Appendix Figure S3, Appendix Table S4). Please see, 15 

Supplemental Results and Appendix Tables S5-S6 for MR analyses replicating 83% of these 16 

findings in smaller independent GWAS.  17 

 18 

MR-prioritised proteins and plaque vulnerability index 19 

Of the 113 MR-prioritised proteins, 36 were available and detectable in the AE protein expression 20 

data measured in plaque samples (194 patients, Appendix Table S2 for characteristics) and 10 21 

proteins were associated with increased plaque vulnerability: A2M, AKR7A2, APOF, C1S, CA1, 22 

COMT, CTSD, CTSH, NAGK, and PLTP (Appendix Figure S4, Appendix Table S7). Data on 23 

mRNA expression in plaques was available for 110 genes coding for MR-prioritised proteins (632 24 

patients, Appendix Table S2 for characteristics), identifying an additional 6 proteins where mRNA 25 

expression was associated with plaque vulnerability: FER, IL6RA, ATF6B, AT1B2, SWP70, and 26 

SIG14 (Figure 4, Appendix Figure S5, Appendix Table S8).  27 

 28 
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 10

Single-cell RNA sequencing of MR-prioritised proteins 1 

To understand the cellular origin of the proteins, we additionally explored which genes encoding 2 

prioritised proteins were differentially expressed across cells in carotid plaques. For this, we used 3 

single-cell RNA sequencing data on over 4,900 cells available for 105 of our MR-prioritised proteins 4 

including all 16 proteins associated with plaque vulnerability. We identified 87 genes that showed to 5 

be enriched in one or more plaque cell types, which included 14 genes encoding for the proteins 6 

associated with plaque vulnerability (Appendix Table S9, Figure 5). For example, the gene ATP1B2, 7 

coding the protein AT1B2, was higher expressed in smooth muscle cells as compared to other plaque 8 

cell types (Figure 5, Appendix Figure S6, Appendix Table S9). The gene ATF6B, coding for the 9 

protein ATF6B, was higher expressed in T-cells as compared to other plaque cell types. Next, we used 10 

broader clusters of cell types, namely structural cells, innate immune cells, and adaptive immune 11 

cells. We found three (IL6RA, SIG14, and NAGK) out of 16 plaque vulnerability-associated proteins 12 

to be higher expressed in innate immune cells as compared to the other two clusters of cell types, 13 

while four (AT1B2, C1S, A2MG, and ARK72) were higher expressed in structural cells, five (COMT, 14 

CATD, CATH, PLTP, and SWP70) were higher expressed in both innate immune and structural cells 15 

and two (FER and ATF6B) were higher expressed in both innate immune cells and adaptive immune 16 

cells (Figure 4). Two proteins (CAH1 and APOF) were ubiquitous (i.e., no higher expression in any 17 

of the three clusters).  18 

 19 

Druggability of proteins 20 

The set of 16 proteins associated with plaque vulnerability included eight drugged proteins, four 21 

druggable proteins, and four not yet druggable proteins (step 6 in Figure 1, Figure 4-5). These 22 

proteins predominantly associated with amino acid breakdown products and unclassified breakdown 23 

products. Six drugged proteins (AT1B2, CAH1, CATD, COMT, FER, and IL6RA) were targeted by a 24 

drug with a cardiac indication and/or side-effect (Table 1, Figure 4, Appendix Tables S10-S11). The 25 

protein AT1B2 (targeted as part of a protein complex group through digoxin which is contraindicated 26 

in HCM) decreased the risk of CHD (OR 0.97, 95%CI 0.96; 0.99). Higher values of CAH1 (targeted 27 

by methocarbamol which has registered side-effects including blood pressure disorders, and by 28 
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dopamine and aspirin indicated for myocardial infarction and coronary artery disease) increased the 1 

risk of CHD (OR 1.31, 95%CI 1.17; 1.48). Higher values of COMT (targeted by the drugs tolcapone 2 

and entacapone belonging to the class of COMT-inhibitors indicated for Parkinson’s disease which 3 

have side-effects including chest pain and increased risk of CHD) decreased the risk of CHD (OR 4 

0.75, 95%CI 0.69; 0.81). Higher values of IL6RA, interleukin-6 receptor subunit alpha, decreased the 5 

risk of CHD (OR 0.97, 95%CI 0.97; 0.98). IL6RA is targeted by the interleukin-6 receptor antagonist 6 

tocilizumab indicated for auto-immune diseases, which is also in phase 2 development for CHD(21) 7 

and has registered side-effects of blood pressure disorders. Higher values of CATD (targeted by 8 

chloroquine indicated for malaria and cancer treatment, and in development for atrial fibrillation) 9 

decreased the risk of CHD (OR 0.96, 95%CI 0.94; 0.97). Higher values of FER (targeted by 10 

everolimus indicated in cancer and in development for acute coronary syndrome) decreased the risk of 11 

CHD (OR 0.77, 95%CI 0.72; 0.82). 12 

 13 

KLKB1 and PGFRB are two proteins directionally concordantly associated with unclassified and 14 

amino acid metabolism breakdown products and CHD. Both are targeted by drugs with cardiac 15 

indications or side-effects, but neither is associated with plaque vulnerability. Higher values of 16 

KLKB1, targeted by the inhibitor lanadelumab (in phase 2 development for hypotension during 17 

hemodialysis), decreased the risk of CHD (OR 0.97, 95%CI 0.95; 0.98). Similarly, higher values of 18 

PGFRB, targeted by the inhibiting cancer drugs regorafenib and dasatinib (which have known side-19 

effects including CHD, QT interval prolongation and blood pressure disorders), decreased the risk of 20 

CHD (OR 0.98, 95%CI 0.98; 0.99). 21 

 22 

Discussion  23 

In this study, we used Mendelian randomisation to assess relationships between 954 urinary 24 

metabolism breakdown products, 1,562 proteins and CHD, and we linked protein and mRNA 25 

expression levels in carotid plaque to plaque vulnerability. This was done to identify potential 26 

biomarkers of altered metabolism informative of CHD risk and plasma proteins which may be used as 27 
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targets for intervention in these metabolic pathways. Through our multi-layered approach we were 1 

able to prioritise 16 proteins associated with plaque vulnerability and CHD risk, where 83% of these 2 

CHD associations were independently replicated. The majority of these proteins were associated with 3 

urinary metabolism breakdown products from amino acid metabolism or unclassified origins.  4 

 5 

Altered amino acid metabolism in cardiovascular disease has been observed before(38-41). For 6 

example, the kynurenine pathway has been linked to the pathogenesis of atherosclerosis by 7 

modulating inflammation, oxidative stress, and endothelial function(42). Its breakdown products were 8 

identified as biomarkers of major cardiovascular events(43, 44), with previous studies showing the 9 

therapeutic potential of targeting this pathway to target vascular inflammation and plaque 10 

formation(45). We were able to link N-acetylkynurenine to the druggable proteins SIG14 and A2MG. 11 

SIG14 is member of the sialic acid-binding immunoglobulin-type lectins (Siglecs) family, which is 12 

involved in immune regulation and has been studied as drug target for various diseases including 13 

asthma, cancer, and autoimmune diseases(46). A2MG is a broad-spectrum protease inhibitor with an 14 

anti-inflammatory role and it has a dual role in coagulation(47, 48), which we now link to plaque 15 

vulnerability.   16 

 17 

The 16 prioritised proteins included two proteins with a known indication or side-effect on CHD: 18 

CAH1 and COMT. CAH1, is targeted by aspirin which is prescribed to reduce the risk of blood 19 

clots(22) in people at a high risk of (subsequent) cardiovascular events. COMT is affected by various 20 

drugs, including the Parkinson’s disease drugs entacapone and tolcapone which is known to increase 21 

the risk of myocardial infarction through effects on blood pressure, arteriosclerosis, and aortic 22 

stenosis(23).  23 

 24 

These positive control findings confirmed our analysis was able to identify known drug targets effect 25 

for CHD. Additionally, we identified four drugged proteins (AT1B2, CATD, FER, and IL6RA) which 26 

are in development for CHD or CHD-related diseases. IL6R inhibiting drugs (e.g., tocilizumab) are 27 

currently being repurposed for treatment of CHD(8, 11), where the phase 3 CANTOS trial evaluating 28 
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canakinumab, inhibiting IL-1 which is upstream of IL6 and IL6R, showed clinical effectiveness in 1 

preventing CHD(24). This provides additional support for our approach as we rediscovered known 2 

drug target effects for CHD.  3 

 4 

The drugged proteins C1S and CATH were identified as potential repurposing candidates for 5 

treatment of CHD and atherosclerosis. CATH is targeted by Bortezomib which is indicated for 6 

multiple myeloma, and due to side-effects such as thrombocytopenia, and neutropenia, not directly 7 

relevant to consider for CHD management. C1S on the other hand is targeted by inhibiting drugs (e.g., 8 

berotralstat and human c1-esterase inhibitor) indicated for conditions such as angioedema. C1S 9 

activates the classical pathway of the complement system, contributing to inflammation and 10 

endothelial dysfunction, which promotes atherosclerosis(25, 26). The here identified effects of higher 11 

values of C1S on increased CHD risk, and association with increased plaque vulnerability, along with 12 

higher expression in smooth muscle cells and endothelial cells in plaque, supports drug repurposing 13 

for management of CHD and atherosclerosis.    14 

 15 

We additionally identified four druggable proteins (A2MG, NAGK, PLTP, and SIG14) with 16 

associations with CHD and plaque vulnerability. NAGK is involved in amino sugar metabolism and 17 

plays a role in atherosclerosis through endothelial cell activation and inflammatory responses. 18 

Glucosamine, a substrate of NAGK, has been shown to suppress endothelial cell activation via O-19 

GlcNAc modification, thereby potentially reducing atherosclerotic inflammation(27). By identifying 20 

an association of higher values of NAGK with a higher CHD risk and plaque vulnerability, the current 21 

study provides further support that inhibiting NAGK may be a viable strategy to treat CHD and 22 

atherosclerosis. 23 

 24 

Four proteins that are not yet druggable (ARK72, APOF, ATF6B, SWP70) were identified as 25 

associated with CHD and plaque vulnerability. Higher values of APOF (apolipoprotein F) were 26 

associated with an increased CHD risk and its expression was higher in plaques with higher 27 

vulnerability. Previous studies have described APOF as a potential target for novel therapeutic 28 
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approaches(33). APOF inhibits CETP activity and reduces the transfer of cholesteryl esters from high 1 

density lipoprotein to low density lipoprotein (LDL), which is known to reduce LDL cholesterol 2 

plasma concentrations and atherosclerosis risk(34, 35). We have previously shown that despite many 3 

failed attempts to develop sufficiently potent and selective compounds targeting CETP, the drug 4 

target itself remains a viable target for preventing CHD supporting the ongoing phase 3 study of 5 

obicetrapib(10, 36, 37).  6 

 7 

Despite the robustness of our analyses, our study has a number of potential limitations. Firstly, the 8 

GWAS data we sourced used various high throughput assays, varying in accuracy and analytic 9 

scope(51). These assays do not directly measure concentrations of proteins or metabolism breakdown 10 

products, but evaluate relative values. Therefore, the magnitude of associations is unlikely to be a 11 

strong indicator of the effects of pharmacological perturbation of the target, and smaller MR effects 12 

may translate towards large drug effects and vice versa. Instead, these results predominantly provide 13 

information on the drug mechanisms and whether targets should be inhibited or activated. In the 14 

current study, urinary metabolism breakdown products were used as a proxy to identify more distal 15 

metabolic processes occurring in, or impacting, atherosclerotic relevant tissues. Hence, the 16 

associations between urinary metabolism breakdown products and CHD do not reflect a direct causal 17 

mechanism but rather point to the upstream metabolism origins of these breakdown products, which 18 

may play an important role in the development of atherosclerosis and the risk of CHD. For some of 19 

the MR-prioritised proteins linked with plaque vulnerability, we found an opposite direction of the 20 

association of the protein expression in plaque with the plaque vulnerability as compared to the effect 21 

of the circulating protein on CHD risk. These findings underscore the complexity of tissue-specific 22 

expression, and the molecular pathways involved in atherogenesis. Protein expression patterns can 23 

vary by tissue type and stage of atherosclerosis(52, 53), with certain proteins possibly being present 24 

due to cell death rather than active secretion, which may affect the interpretation of their direction of 25 

effect. Furthermore, MR-prioritised plasma proteins may be involved in CHD through mechanisms in 26 

other tissues, such as arterial constriction, without accumulating in plaques. As a result, these proteins 27 

may not be represented in our AE findings. However, since plaques do no synthetize proteins but 28 
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contain proteins originating from plasma, the plaque proteins we identified are likely linked to the 1 

plasma proteins prioritised by MR as being related to CHD. Both the GWAS and the AE Biobank 2 

data we used predominantly included European individuals, which may limit the generalizability of 3 

our findings to non-European populations. In addition, the observational nature of the AE and its 4 

high-risk study population introduces a risk of bias due to for example confounding, reverse 5 

causation, and index event bias. However, combining these analyses with MR, which is largely 6 

confounding-resistant, meaningfully enhances the robustness of our findings.  7 

 8 

In conclusion, we identified urinary biomarkers of altered metabolism, predominantly from amino 9 

acid metabolism and unclassified origins, associating with CHD risk. By integrating these findings 10 

with plasma proteins and plaque vulnerability, we identified 16 plasma proteins as potential drug 11 

targets for CHD, supporting the development of novel and repurposed therapeutic strategies. 12 

Additionally, our study highlights the value of integrating multi-modal evidence to uncover 13 

information potentially relevant for disease diagnosis, prognosis, and etiology.  14 
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Tables 

Table 1. Positive controls and repurposing opportunities: prioritised proteins related to plaque vulnerability  

PROTEIN GENE NAME UNIPROT ID DRUGGABILITY 
METABOLISM 
CLASS(ES) 

NO. 
BREAKDOWN 
PRODUCTS 

BREAKDOWN 
PRODUCT – CHD 
EFFECT 

PROTEIN-CHD 
EFFECT 

NO. 
DRUGS 

CARDIAC 
INDICATIO
N AND/OR 
SIDE-
EFFECT 

CARDIAC 
INDICATIO
N(S) 

CARDIAC SIDE -
FFECT(S) DRUG NAME(S) 

A2MG A2M P01023 Druggable 
Unclassified, Amino 
Acid 2 Increasing 0.89 (0.85; 0.94) 1 No - - Technetium tc 99m succimer 

ARK72 AKR7A2 O43488 Not yet druggable Unclassified 1 Decreasing 1.11 (1.08; 1.15) 0 No - -  

APOF APOF Q13790 Not yet druggable Energy 1 Increasing 1.12 (1.07; 1.17) 0 No - -  

ATF6B ATF6B Q99941 Not yet druggable Amino Acid 3 Mixed 1.10 (1.08; 1.13) 0 No - -  

AT1B2 ATP1B2 P14415 Drugged Lipid 1 Increasing 0.97 (0.96; 0.99) 9 Yes 
See Appendix 

Table S10 

Arrhythmias, 
Cardiac conduction 

disorder 

Deslanoside, Digitoxin, Digoxin, 
Acetyldigitoxin, Istaroxime, 

Lanatoside c, Omeprazole, 
Lansoprazole, Pantoprazole 

C1S C1S P09871 Drugged Unclassified 1 Decreasing 1.09 (1.07; 1.11) 3 No - - 
Human c1-esterase inhibitor, 

Sutimlimab, Berotralstat 

CAH1 CA1 P00915 Drugged 
Unclassified, Amino 
Acid 3 Mixed 1.31 (1.17; 1.48) 

8
7 Yes 

See Appendix 
Table S10 

Arrhythmias, Blood 
pressure disorders See Appendix Table S10 

COMT COMT P21964 Drugged 
Xenobiotics, 
Unclassified 2 Decreasing 0.75 (0.69; 0.81) 5 Yes 

Cardiovascula
r diseases, 

Myocardial 
infarction, 

Heart failure 

Myocardial 
infarction, Chest 

pain 

Tolcapone, Entacapone, 
Opicapone, Nebicapone, 

Dopamine 

CATD CTSD P07339 Drugged Amino Acid 1 Increasing 0.96 (0.94; 0.97) 4 Yes 
Atrial 

fibrillation - 
Chloroquine, Amprenavir, 

Bortezomib, Tipranavir 

CATH CTSH P09668 Drugged Xenobiotics 1 Decreasing 0.96 (0.95; 0.97) 1 No - - Bortezomib 

FER FER P16591 Drugged Unclassified 1 Increasing 0.77 (0.72; 0.82) 
6
0 Yes 

See Appendix 
Table S10 - See Appendix Table S10 

IL6RA IL6R P08887 Drugged Amino Acid 1 Increasing 0.97 (0.97; 0.98) 7 Yes 

Non-st 
elevated 

myocardial 
infarction, 

Pulmonary 
hypertension 

Blood pressure 
disorders 

Tocilizumab, Sarilumab, 
Vobarilizumab, Levilimab, 
Satralizumab, Raloxifene, 

Bazedoxifene 

NAGK NAGK Q9UJ70 Druggable Unclassified 1 Increasing 1.06 (1.04; 1.09) 0 No - -  

PLTP PLTP P55058 Druggable 
Unclassified, 
Xenobiotics 2 Mixed 1.03 (1.01; 1.04) 0 No - -  

SIG14 SIGLEC14 Q08ET2 Druggable 
Unclassified, Amino 
Acid 2 Mixed 0.99 (0.98; 0.99) 0 No - -  

SWP70 SWAP70 Q9UH65 Not yet druggable Amino Acid, Lipid 2 Mixed 0.94 (0.93; 0.96) 0 No - -  

 
 
N.B. Each row presents a plasma protein associated with coronary heart disease (CHD), and at least one urinary metabolism breakdown product, where the 
associations between protein, breakdown product(s), and CHD are directionally concordant (Figure 2). Associations were identified by Mendelian 
randomisation.  
Protein names are based on their Uniprot synonym. Druggability indicates whether the proteins are targeted by a developmental compound in clinical trials 
(druggable) or by a compound which has received marketing approval (drugged), based on ChEMBL and the British National Formulary. The metabolism 
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classes represent the identified metabolism origin of the urinary breakdown product. The breakdown product – CHD effect indicates whether the breakdown 
product’s effect on CHD is risk-increasing or risk-decreasing, based on cis-Mendelian randomisation. The protein - CHD effect estimates were obtained from 
cis-Mendelian randomisation and are presented as odds ratios representing the effect of a one standard deviation increase in protein values, along with 
corresponding confidence intervals. The No. drug column records the number of approved drugs with affinity for the protein as available in ChEMBL. For 
more details on metabolism breakdown products and full numerical Mendelian randomisation results please refer to Appendix Table S4. For a full list of the 
compounds and their indication and side-effects please refer to Appendix Table S10.   
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Figure legends 1 

 2 

Figure 1. Flowchart of the main steps of this study  3 

N.B. The first three steps are conducted using Mendelian randomisation, based on indicated GWAS 4 

data for CHD, urinary metabolism breakdown products, and plasma proteins. Directionally 5 

concordance is explained in Figure 2 and the Methods section. Measurements on mRNA and protein 6 

expression are available from carotid plaque samples from the Athero-Express Biobank. Druggability 7 

of plasma proteins is determined using ChEMBL and the British National Formulary. Abbreviations: 8 

CHD = coronary heart disease, MR = Mendelian randomisation, PVI = plaque vulnerability index. 9 

 10 

Figure 2. Example of a triangulated association with directional concordance between a protein 11 

and its effects on urinary metabolism breakdown product values and CHD 12 

N.B. The plus symbol (in red) represents a positive association. The minus symbol (in blue) 13 

represents a negative association (a risk-decreasing effect). Directional concordance is achieved when 14 

the direction of effects aligns consistently, whether increasing or decreasing. 15 

 16 

Figure 3. Associations of urinary metabolism breakdown products with CHD, presented per 17 

metabolism class 18 

N.B. Point estimates represent associations between urinary metabolism breakdown products and 19 

coronary heart disease (CHD), obtained from genome-wide Mendelian randomisation. The 20 

metabolism classes (amino acid, energy, lipid, xenobiotics, and unclassified) represent the metabolic 21 

origins of the breakdown product. The right y-axis indicates the number of drugged and druggable 22 

proteins associated with the metabolism breakdown product and CHD, where druggability is sourced 23 

from the British National Formulary and ChEMBL. Genetic associations with 954 urinary metabolism 24 

breakdown products were obtained from Schlosser et al. (n=1,627)(12). Genetic associations with 25 

CHD were obtained from Aragam et al. (181,522 CHD cases)(13). For more detailed information, 26 
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please refer to the Methods section and Appendix Tables S1-S2. Abbreviations: CI = confidence 1 

interval, OR = odds ratio. 2 

 3 

Figure 4. Associations of prioritised proteins with CHD and plaque vulnerability in 4 

atherosclerotic plaque 5 

N.B. Point estimates represent associations between plasma proteins and coronary heart disease 6 

(CHD), obtained from cis Mendelian randomisation. Druggability is based on ChEMBL and the 7 

British National Formulary, distinguishing between proteins targeted by approved drug (drugged 8 

proteins, top panel), proteins targeted by a drug in development (druggable proteins, middle panel) 9 

and not yet druggable proteins (bottom panel). Differential expression of genes coding for prioritised 10 

proteins is determined across cell types based on single-cell RNA sequencing data obtained from 11 

Athero-Express patients (4948 cells, 46 patients). The metabolism classes of the metabolism 12 

breakdown products affected by the protein are indicated on the right y-axis. Genetic associations 13 

with CHD were obtained from Aragam et al. (181,522 CHD cases)(13). For a more detailed 14 

description, please refer to the Methods section and the Supplemental Methods. Full numerical 15 

results can be found in Appendix Table S4. Abbreviations: CI = confidence interval, OR = odds 16 

ratio. 17 

 18 

Figure 5. Matrix of prioritised proteins associated with CHD and plaque vulnerability in 19 

atherosclerotic plaque 20 

N.B. Each column represents a prioritised protein associated with coronary heart disease (CHD) and 21 

plaque vulnerability. The gene names corresponding to each protein are presented in Table 1. The 22 

rows present the following: row 1, direction of the protein’s association with CHD as obtained by 23 

Mendelian randomisation; row 2-3, association of the gene’s mRNA or protein expression in plaque 24 

with plaque vulnerability, obtained from the Athero-Express Biobank; row 4-16, higher expression in 25 

a plaque cell type as compared to expression in all other plaque cell types, obtained from single-cell 26 

RNA sequencing in the Athero-Express Biobank; row 17-21, direction of the protein’s association 27 

with metabolism breakdown product(s) presented per metabolism class, based on Mendelian 28 
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randomisation; row 22, druggability status, distinguishing proteins targeted by approved drug 1 

(drugged proteins) from proteins targeted by a drug in development (druggable proteins) and not yet 2 

druggable proteins, based on ChEMBL and the British National Formulary. Full numerical results can 3 

be found in Appendix Tables S4, S7-S9. Abbreviations: CHD = coronary heart disease, ECs = 4 

endothelial cells, NK-Cells = natural killer cells, PVI = plaque vulnerability index, SMCs = smooth 5 

muscle cells. 6 
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