

CFSAN/OAO

BIOSTATISTICS AND BIOINFORMATICS STAFF

WASTEWATER SARS-COV2 ANALYSIS REPORT

Summary

Sample#	Sample name	Total #reads	Reads aligned PF*	Genomic coordinates 0X	Genomic coordinates <10X
1	CFSANSMP000117854	2967188	2408377 (81%)	119nt (0%)	184nt (0%)
2	CFSANSMP000117855	2834566	2515428 (88%)	94nt (0%)	180nt (0%)
3	CFSANSMP000118326	4062754	3632580 (89%)	65nt (0%)	157nt (0%)
4	CFSANSMP000118328	1905298	1724073 (90%)	97nt (0%)	270nt (0%)
5	CFSANSMP000118506	1300104	1097393 (84%)	119nt (0%)	159nt (0%)
6	CFSANSMP000118507	2106332	1848070 (87%)	119nt (0%)	214nt (0%)
7	CFSANSMP000118583	2338632	2140098 (91%)	94nt (0%)	248nt (0%)
8	CFSANSMP000118584	2526212	2345410 (92%)	119nt (0%)	410nt (1%)
9	CFSANSMP000118585	2829500	2527472 (89%)	119nt (0%)	324nt (1%)
10	CFSANSMP000118586	2750930	2432859 (88%)	145nt (0%)	471nt (1%)
11	CFSANSMP000118587	2531278	1323983 (52%)	121nt (0%)	523nt (1%)
12	CFSANSMP000119220	2955272	1493268 (50%)	119nt (0%)	393nt (1%)
13	CFSANSMP000119222	2214544	1635964 (73%)	144nt (0%)	392nt (1%)
14	CFSANSMP000119223	4089396	3182172 (77%)	92nt (0%)	504nt (1%)
15	CFSANSMP000119224	6440258	2062962 (32%)	127nt (0%)	879nt (2%)
16	CFSANSMP000119624	3821038	3303434 (86%)	94nt (0%)	174nt (0%)
17	CFSANSMP000119626	3761430	1843202 (49%)	122nt (0%)	277nt (0%)
18	CFSANSMP000119627	3257848	1756675 (53%)	178nt (0%)	464nt (1%)
19	CFSANSMP000119629	3144978	1390136 (44%)	369nt (1%)	998nt (3%)
			2691770		

20	<u>Undetermined</u>	4361554	(61%)	119nt (0%)	126nt (0%)
21	<u>Water</u>	45196	1515 (3%)	19387nt (64%)	25466nt (85%)

*Quantity of raw reads that align to the reference sequence and pass filter, i.e. the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4. SNR refers to the ratio of SC2-mapping reads aligned that pass filter in the sample vs. that in the auto-detected negative control samples (if any). The dashed line represents the baseline level of covid reads detected from the negative control or their average if multiple negative controls we included.

QC-bot (Experimental)

QC category	Subjective definition	Objective metrics
A	No QC issues evident	0x coordinates <1% 10x coordinates <5% average coverage > 1000X average quality score >35 for Illumina, >15 if ONT, >70 if PacBio HiFi most abundant taxon is coronovirinae
В	Some QC issues, but accurate variant calling possible	0x coordinates <20% 10X coordinates < 40% >80% of diverse SNPs covered average coverage > 100X average quality score >35 for Illumina >15 if ONT, >70 if PacBio HiFi
С	Some QC issues, and accurate variant calling impossible	0x coordinates <99% 10X coordinates <95%
F	Significant QC/study design issues	Contamination (SNR<50) No/negligible coverage (< 1X) Biological/technical replicates' results are irreconcileable.

Sample Number	Suggested category	Suggested QC flags
1	A	None
2	А	None
3	А	None
4	А	None
5	А	None
6	А	None

7	А	None
8	А	None
9	А	None
10	А	None
11	А	None
12	А	None
13	А	None
14	А	None
15	А	None
16	А	None
17	А	None
18	А	None
19	B/C	low_coverage_breadth
20	А	None
21	F	sample_contamination

Machine-learning based prediction of the SC2 variant calling accuracy of Freyja of this dataset. The model is a random forest trained on FDA/CFSAN's experimental wastewater WGS data obtained in January 2022 and aims to assess the impact of the potential coverage gaps on the variant abundance estimates. The plotted values represent the predicted deviation of the omicron percentage points from the value that would have been obtained if the coverage was near-complete.

CFSANSMP000117854

CFSANSMP000117855

CFSANSMP000118506

CFSANSMP000118507

CFSANSMP000118583

CFSANSMP000118585

CFSANSMP000118586

CFSANSMP000119220

CFSANSMP000119223

CFSANSMP000119224

CFSANSMP000119624

CFSANSMP000119627

CFSANSMP000119629

<u>Water</u>

CFSAN/OAO BIOSTATISTICS AND BIOINFORMATICS STAFF

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000117854
Date generated:	2023-02-01, 20:08:32 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.121 (aka n121.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	2967188
Reads aligned:	2501230 (84%)
Average read quality:	36.7
Average read length:	149
Reads passing filter:	2408377 (81%)
Average read quality passing filter:	37.0
Average read length passing filter:	149
Average coverage passing filter:	12000X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

Overall sequence characteristics

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	119nt (0%)	184nt (0%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	10nt (1%)

SNPs refer to the polymorphic sites currently in circulation that were detected out of recent GISAID entries. The sites that differ from the SC2 reference sequence are denoted as "common" if [90%, 100%] of the submissions carry this mutation, whereas those that are prevalent in [0%,10%] of the submissions are grouped under the "rare" category. The population is still diverse at the mutation sites that are observed in (10%,90%) of the entries and these coordinates are grouped under the "diverse" category.

Hits to SARS-Cov2 genome (kraken2):	1282992 reads (86.48%)
Hits to human genome (kraken2):	733 reads (0.05%)
Hits to synthetic sequences (kraken2, taxid 28384):	238 reads (0.02%)
Most abundant organisms (kraken2, family level):	Coronaviridae (86.48%) Hominidae (0.05%) Staphylococcaceae (0.02%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 63.58% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.62. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

Under the assumption that the presence of a variant requires the detection of all respective mutations of the variant, the characteric mutations which support the presence of the respective variant are indicated in the respective column of the table. Numbers show the number of mutations detected, if any, and the number of mutations expected to be present based on the variant definitions.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(3 of 13) S:G142D S:L452R S:T478K	(17 of 26) M:D3G NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G ORF1AB:A2710T ORF1AB:I3758V ORF1AB:K856R S:A67V S:G446S S:G496S S:L981F S:N856K S:Q493R S:T547K S:T951	(23 of 31) N:S413R NUC:A20055G NUC:A9424G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(13 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:A67V S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C2584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T42I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

<u>Jaccard Index</u> is a measure of similarity between two sets A and B, reaching the maximum value of 1 if A=B and minimum value of 0 if $A \cap B = \{\}$. In the c(d) representation below, c represents the Jaccard index of the set of mutations that were experimentally detected for this sample as listed above, whereas d refers to the ideal value of the Jaccard index expected from complete genome coverage without any sequencing errors.

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.08 (<u>0.10</u>)	0.11 (<u>0.21</u>)	0.05 (<u>0.08</u>)	0.05 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.08 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.44 (<u>0.33</u>)	0.62 (<u>0.63</u>)	0.61 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.11 (<u>0.21</u>)	0.44 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.37 (<u>0.30</u>)	0.35 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.05 (<u>0.08</u>)	0.62 (<u>0.63</u>)	0.37 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.05 (<u>0.08</u>)	0.61 (<u>0.59</u>)	0.35 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

Detected mutations

Excluded from this pdf version due to file size limitations.

CFSAN/OAO BIOSTATISTICS AND BIOINFORMATICS STAFF

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000117855
Date generated:	2023-02-01, 20:10:30 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.108 (aka n108.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	2834566
Reads aligned:	2620595 (92%)
Average read quality:	36.7
Average read length:	149
Reads passing filter:	2515428 (88%)
Average read quality passing filter:	36.9
Average read length passing filter:	149
Average coverage passing filter:	12533X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

Overall sequence characteristics

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	94nt (0%)	180nt (0%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	28nt (12%)	29nt (12%)
Rare SNPs:	9nt (0%)	10nt (1%)

SNPs refer to the polymorphic sites currently in circulation that were detected out of recent GISAID entries. The sites that differ from the SC2 reference sequence are denoted as "common" if [90%, 100%] of the submissions carry this mutation, whereas those that are prevalent in [0%,10%] of the submissions are grouped under the "rare" category. The population is still diverse at the mutation sites that are observed in (10%,90%) of the entries and these coordinates are grouped under the "diverse" category.

Hits to SARS-Cov2 genome (kraken2):	1332746 reads (94.04%)
Hits to human genome (kraken2):	151 reads (0.01%)
Hits to synthetic sequences (kraken2, taxid 28384):	65 reads (0.00%)
Most abundant organisms (kraken2, family level):	Coronaviridae (94.04%) Bacteroidaceae (0.07%) Hominidae (0.01%)

Abundance of variants by linear regression Abundance of variants by kallisto Omicron BA.1 65.6% 16 5% 67.3% BA.2 3.7% Other 9.2% 6.3% BA.5 6.2% BA.5 25.2% **BA.4** BA.2

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 65.56% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.63. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

Under the assumption that the presence of a variant requires the detection of all respective mutations of the variant, the characteric mutations which support the presence of the respective variant are indicated in the respective column of the table. Numbers show the number of mutations detected, if any, and the number of mutations expected to be present based on the variant definitions.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(3 of 13) S:G142D S:L452R S:T478K	(16 of 26) M:D3G NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G ORF1AB:A2710T ORF1AB:I3758V ORF1AB:I3758V ORF1AB:K856R S:G446S S:G496S S:L981F S:N856K S:Q493R S:T547K S:T95I	(23 of 31) N:S413R NUC:A20055G NUC:A9424G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:L3201F ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C2584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

<u>Jaccard Index</u> is a measure of similarity between two sets A and B, reaching the maximum value of 1 if A=B and minimum value of 0 if $A \cap B = \{\}$. In the c(d) representation below, c represents the Jaccard index of the set of mutations that were experimentally detected for this sample as listed above, whereas d refers to the ideal value of the Jaccard index expected from complete genome coverage without any sequencing errors.

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.08 (<u>0.10</u>)	0.08 (<u>0.21</u>)	0.05 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.08 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.46 (<u>0.33</u>)	0.62 (<u>0.63</u>)	0.61 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.08 (<u>0.21</u>)	0.46 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.05 (<u>0.08</u>)	0.62 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.61 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

Detected mutations

Excluded from this pdf version due to file size limitations.

CFSAN/OAO BIOSTATISTICS AND BIOINFORMATICS STAFF

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000118326
Date generated:	2023-02-01, 20:15:34 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.108 (aka n108.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	4062754
Reads aligned:	3798618 (93%)
Average read quality:	36.6
Average read length:	149
Reads passing filter:	3632580 (89%)
Average read quality passing filter:	36.9
Average read length passing filter:	149
Average coverage passing filter:	18100X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

Overall sequence characteristics

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	65nt (0%)	157nt (0%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	7nt (3%)	29nt (12%)
Rare SNPs:	1nt (0%)	10nt (1%)

SNPs refer to the polymorphic sites currently in circulation that were detected out of recent GISAID entries. The sites that differ from the SC2 reference sequence are denoted as "common" if [90%, 100%] of the submissions carry this mutation, whereas those that are prevalent in [0%,10%] of the submissions are grouped under the "rare" category. The population is still diverse at the mutation sites that are observed in (10%,90%) of the entries and these coordinates are grouped under the "diverse" category.

Hits to SARS-Cov2 genome (kraken2)	1925235 reads (94 77%)
Thes to SANS COVE genome (Riakenz).	1525255 (6445 (54.7776)
Hits to human genome (kraken2):	224 reads (0.01%)
Hits to synthetic sequences (kraken2, taxid 28384):	51 reads (0.00%)
Most abundant organisms (kraken2, family level):	Coronaviridae (94.77%) Staphylococcaceae (0.08%) Hominidae (0.01%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 63.15% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.62. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

Under the assumption that the presence of a variant requires the detection of all respective mutations of the variant, the characteric mutations which support the presence of the respective variant are indicated in the respective column of the table. Numbers show the number of mutations detected, if any, and the number of mutations expected to be present based on the variant definitions.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(3 of 13) S:G142D S:L452R S:T478K	(15 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G ORF1AB:A2710T ORF1AB:I3758V ORF1AB:K856R S:G446S S:G496S S:L981F S:N856K S:Q493R S:T547K S:T951	(23 of 31) N:S413R NUC:A20055G NUC:A9424G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T42I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

<u>Jaccard Index</u> is a measure of similarity between two sets A and B, reaching the maximum value of 1 if A=B and minimum value of 0 if $A \cap B = \{\}$. In the c(d) representation below, c represents the Jaccard index of the set of mutations that were experimentally detected for this sample as listed above, whereas d refers to the ideal value of the Jaccard index expected from complete genome coverage without any sequencing errors.

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.09 (<u>0.10</u>)	0.08 (<u>0.21</u>)	0.05 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.09 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.46 (<u>0.33</u>)	0.62 (<u>0.63</u>)	0.61 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.08 (<u>0.21</u>)	0.46 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.05 (<u>0.08</u>)	0.62 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.61 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

Detected mutations

Excluded from this pdf version due to file size limitations.

CFSAN/OAO BIOSTATISTICS AND BIOINFORMATICS STAFF

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000118328	
Date generated:	2023-02-01, 20:06:45 EST	
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500	
Executed by:	Jasmine Amirzadegan (Jasmine.Amirzadegan@fda.hhs.go	
Executed on:	172.20.44.137 (aka n137.raven.cfsan)	

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	1905298
Reads aligned:	1798522 (94%)
Average read quality:	36.6
Average read length:	149
Reads passing filter:	1724073 (90%)
Average read quality passing filter:	36.9
Average read length passing filter:	149
Average coverage passing filter:	8590X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

Overall sequence characteristics

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	97nt (0%)	270nt (0%)
Common SNPs:	0nt (0%)	1nt (2%)
Diverse SNPs:	28nt (12%)	29nt (12%)
Rare SNPs:	9nt (0%)	47nt (5%)

SNPs refer to the polymorphic sites currently in circulation that were detected out of recent GISAID entries. The sites that differ from the SC2 reference sequence are denoted as "common" if [90%, 100%] of the submissions carry this mutation, whereas those that are prevalent in [0%,10%] of the submissions are grouped under the "rare" category. The population is still diverse at the mutation sites that are observed in (10%,90%) of the entries and these coordinates are grouped under the "diverse" category.

Hits to SARS-Cov2 genome (kraken2):	908271 reads (95.34%)
Hits to human genome (kraken2):	94 reads (0.01%)
Hits to synthetic sequences (kraken2, taxid 28384):	15 reads (0.00%)
Most abundant organisms (kraken2, family level):	Coronaviridae (95.34%) Arcobacteraceae (0.04%) Hominidae (0.01%)

Abundance of variants by linear regression Abundance of variants by kallisto Omicron **BA.2** 61.4% 54.3% BA.1 10.8% 3.8% Other 6.6% 17.8% 8.8% BQ.1 BA.5 20.8% 15.7% **BA.5** BA.2 BA.4

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 61.41% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.60. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by $\underline{BA.2}$ lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

Under the assumption that the presence of a variant requires the detection of all respective mutations of the variant, the characteric mutations which support the presence of the respective variant are indicated in the respective column of the table. Numbers show the number of mutations detected, if any, and the number of mutations expected to be present based on the variant definitions.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(3 of 13) S:G142D S:L452R S:T478K	(13 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G ORF1AB:A2710T ORF1AB:K856R S:G446S S:G496S S:L981F S:N856K S:Q493R S:T95I	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:C493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T342I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

<u>Jaccard Index</u> is a measure of similarity between two sets A and B, reaching the maximum value of 1 if A=B and minimum value of 0 if $A \cap B = \{\}$. In the c(d) representation below, c represents the Jaccard index of the set of mutations that were experimentally detected for this sample as listed above, whereas d refers to the ideal value of the Jaccard index expected from complete genome coverage without any sequencing errors.

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.09 (<u>0.10</u>)	0.09 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.09 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.48 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.63 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.09 (<u>0.21</u>)	0.48 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.63 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

Detected mutations

Excluded from this pdf version due to file size limitations.

CFSAN/OAO BIOSTATISTICS AND BIOINFORMATICS STAFF

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000118506	
Date generated:	2023-02-01, 20:05:44 EST	
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500	
Executed by:	Jasmine Amirzadegan (Jasmine.Amirzadegan@fda.hhs.go	
Executed on:	172.20.44.127 (aka n127.raven.cfsan)	

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	1300104
Reads aligned:	1160847 (89%)
Average read quality:	36.4
Average read length:	149
Reads passing filter:	1097393 (84%)
Average read quality passing filter:	36.7
Average read length passing filter:	149
Average coverage passing filter:	5468X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

Overall sequence characteristics

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	119nt (0%)	159nt (0%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	10nt (1%)

SNPs refer to the polymorphic sites currently in circulation that were detected out of recent GISAID entries. The sites that differ from the SC2 reference sequence are denoted as "common" if [90%, 100%] of the submissions carry this mutation, whereas those that are prevalent in [0%,10%] of the submissions are grouped under the "rare" category. The population is still diverse at the mutation sites that are observed in (10%,90%) of the entries and these coordinates are grouped under the "diverse" category.

Hits to SARS-Cov2 genome (kraken2):	593765 reads (91.34%)
Hits to human genome (kraken2):	140 reads (0.02%)
Hits to synthetic sequences (kraken2, taxid 28384):	83 reads (0.01%)
Most abundant organisms (kraken2, family level):	Coronaviridae (91.34%) Enterobacteriaceae (0.06%) Hominidae (0.02%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 64.97% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.63. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

Under the assumption that the presence of a variant requires the detection of all respective mutations of the variant, the characteric mutations which support the presence of the respective variant are indicated in the respective column of the table. Numbers show the number of mutations detected, if any, and the number of mutations expected to be present based on the variant definitions.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(3 of 13) S:G142D S:L452R S:T478K	(14 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G ORF1AB:A2710T ORF1AB:I3758V S:G446S S:G496S S:L981F S:N856K S:Q493R S:T547K S:T95I	(23 of 31) N:S413R NUC:A20055G NUC:A9424G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C2584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S137F S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

<u>Jaccard Index</u> is a measure of similarity between two sets A and B, reaching the maximum value of 1 if A=B and minimum value of 0 if $A \cap B = \{\}$. In the c(d) representation below, c represents the Jaccard index of the set of mutations that were experimentally detected for this sample as listed above, whereas d refers to the ideal value of the Jaccard index expected from complete genome coverage without any sequencing errors.

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.09 (<u>0.10</u>)	0.08 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.09 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.46 (<u>0.33</u>)	0.62 (<u>0.63</u>)	0.61 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.08 (<u>0.21</u>)	0.46 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)
BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.62 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.61 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000118507
Date generated:	2023-02-01, 20:09:26 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.108 (aka n108.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	2106332
Reads aligned:	1930920 (91%)
Average read quality:	36.6
Average read length:	149
Reads passing filter:	1848070 (87%)
Average read quality passing filter:	36.9
Average read length passing filter:	149
Average coverage passing filter:	9208X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	119nt (0%)	214nt (0%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	46nt (4%)

Hits to SARS-Cov2 genome (kraken2):	982969 reads (93.33%)
Hits to human genome (kraken2):	192 reads (0.02%)
Hits to synthetic sequences (kraken2, taxid 28384):	0 reads (0.00%)
Most abundant organisms (kraken2, family level):	Coronaviridae (93.33%) Hominidae (0.02%) Staphylococcaceae (0.01%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 62.68% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.61. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(3 of 13) S:G142D S:L452R S:T478K	(14 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G ORF1AB:A2710T ORF1AB:I3758V S:A67V S:G446S S:G496S S:L981F S:N856K S:Q493R S:T951	(23 of 31) N:S413R NUC:A20055G NUC:A9424G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(13 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:A67V S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T42I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.09 (<u>0.10</u>)	0.12 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.09 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.44 (<u>0.33</u>)	0.62 (<u>0.63</u>)	0.61 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.12 (<u>0.21</u>)	0.44 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.37 (<u>0.30</u>)	0.35 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.62 (<u>0.63</u>)	0.37 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.61 (<u>0.59</u>)	0.35 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000118583
Date generated:	2023-02-01, 20:07:40 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.132 (aka n132.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	2338632
Reads aligned:	2216589 (94%)
Average read quality:	36.8
Average read length:	149
Reads passing filter:	2140098 (91%)
Average read quality passing filter:	37.0
Average read length passing filter:	149
Average coverage passing filter:	10663X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	94nt (0%)	248nt (0%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	28nt (12%)	29nt (12%)
Rare SNPs:	9nt (0%)	10nt (1%)

Hits to SARS-Cov2 genome (kraken2):	1117100 reads (95.53%)
Hits to human genome (kraken2):	111 reads (0.01%)
Hits to synthetic sequences (kraken2, taxid 28384):	6 reads (0.00%)
Most abundant organisms (kraken2, family level):	Coronaviridae (95.53%) Arcobacteraceae (0.05%) Staphylococcaceae (0.01%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 61.26% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.62. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(4 of 13) N:D377Y S:G142D S:L452R S:T478K	(11 of 26) NUC:C25000T NUC:C25584T NUC:T13195C ORF1AB:A2710T S:G446S S:G496S S:L981F S:N856K S:Q493R S:T547K S:T95I	(23 of 31) N:S413R NUC:A20055G NUC:A9424G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C12880T NUC:C15714T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C2584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.10 (<u>0.10</u>)	0.10 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.10 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.46 (<u>0.33</u>)	0.62 (<u>0.63</u>)	0.61 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.10 (<u>0.21</u>)	0.46 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.62 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.61 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000118584
Date generated:	2023-02-01, 20:10:05 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.108 (aka n108.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	2526212
Reads aligned:	2451480 (97%)
Average read quality:	36.6
Average read length:	149
Reads passing filter:	2345410 (92%)
Average read quality passing filter:	36.9
Average read length passing filter:	149
Average coverage passing filter:	11686X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	119nt (0%)	410nt (1%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	46nt (4%)

Hits to SARS-Cov2 genome (kraken2):	1232483 reads (97.58%)
Hits to human genome (kraken2):	90 reads (0.01%)
Hits to synthetic sequences (kraken2, taxid 28384):	19 reads (0.00%)
Most abundant organisms (kraken2, family level):	Coronaviridae (97.58%) Mycobacteriaceae (0.01%) Hominidae (0.01%)

Abundance of variants by linear regression Abundance of variants by kallisto BA.2 Omicron 61.8% 44.5% BA.1 7.5% 1.3% Other 7.7% Other 12.9% 22.5% BA.4 14.4% 27.3% BA.5 BA.2 BA.5

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 61.82% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.62. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by $\underline{BA.2}$ lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(4 of 13) N:D377Y S:G142D S:L452R S:T478K	(11 of 26) NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G S:G446S S:G496S S:L981F S:N856K S:Q493R S:T547K S:T95I	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T342I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T342I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.10 (<u>0.10</u>)	0.10 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.10 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.48 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.63 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.10 (<u>0.21</u>)	0.48 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.63 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000118585
Date generated:	2023-02-01, 20:10:44 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.108 (aka n108.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	2829500
Reads aligned:	2627859 (92%)
Average read quality:	36.7
Average read length:	149
Reads passing filter:	2527472 (89%)
Average read quality passing filter:	36.9
Average read length passing filter:	149
Average coverage passing filter:	12593X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	119nt (0%)	324nt (1%)
Common SNPs:	0nt (0%)	1nt (2%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	47nt (5%)

Hits to SARS-Cov2 genome (kraken2):	1329189 reads (93.95%)
Hits to human genome (kraken2):	438 reads (0.03%)
Hits to synthetic sequences (kraken2, taxid 28384):	46 reads (0.00%)
Most abundant organisms (kraken2, family level):	Coronaviridae (93.95%) Staphylococcaceae (0.09%) Hominidae (0.03%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 58.98% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.60. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(4 of 13) N:D377Y S:G142D S:L452R S:T478K	(9 of 26) NUC:C25000T NUC:C25584T NUC:T13195C ORF1AB:A2710T ORF1AB:I3758V ORF1AB:K856R S:L981F S:N856K S:Q493R	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C2584T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:C493R S:R408S S:S371F S:T19I S:T376A	(11 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:T3090I S:D405N S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C2584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.11 (<u>0.10</u>)	0.05 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.07 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.11 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.50 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.63 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.05 (<u>0.21</u>)	0.50 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.40 (<u>0.30</u>)	0.38 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.40 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.07 (<u>0.08</u>)	0.63 (<u>0.59</u>)	0.38 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000118586
Date generated:	2023-02-01, 20:05:19 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.127 (aka n127.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	2750930
Reads aligned:	2533050 (92%)
Average read quality:	36.7
Average read length:	149
Reads passing filter:	2432859 (88%)
Average read quality passing filter:	37.0
Average read length passing filter:	149
Average coverage passing filter:	12122X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	145nt (0%)	471nt (1%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	46nt (4%)

Hits to SARS-Cov2 genome (kraken2):	1285745 reads (93.48%)
Hits to human genome (kraken2):	126 reads (0.01%)
Hits to synthetic sequences (kraken2, taxid 28384):	24 reads (0.00%)
Most abundant organisms (kraken2, family level):	Coronaviridae (93.48%) Enterobacteriaceae (0.08%) Mycobacteriaceae (0.01%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 60.37% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.61. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by $\underline{BA.2}$ lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(4 of 13) N:D377Y S:G142D S:L452R S:T478K	(10 of 26) NUC:C25000T NUC:C25584T NUC:T13195C ORF1AB:A2710T S:G446S S:G496S S:L981F S:N856K S:Q493R S:T95I	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T42I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.10 (<u>0.10</u>)	0.10 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.07 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.10 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.48 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.63 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.10 (<u>0.21</u>)	0.48 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.07 (<u>0.08</u>)	0.63 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000118587
Date generated:	2023-02-01, 20:04:21 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.127 (aka n127.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing		
Source site:	Missing (?,?)		
Sampling date:	Missing		
Collected by:	Missing		
Sequenced by:	Missing		
Total number of reads:	2531278		
Reads aligned:	1373578 (54%)		
Average read quality:	36.8		
Average read length:	149		
Reads passing filter:	1323983 (52%)		
Average read quality passing filter:	37.0		
Average read length passing filter:	149		
Average coverage passing filter:	6597X		

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	121nt (0%)	523nt (1%)
Common SNPs:	0nt (0%)	1nt (2%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	47nt (5%)

Hits to SARS-Cov2 genome (kraken2):	774679 reads (61.21%)
Hits to human genome (kraken2):	734 reads (0.06%)
Hits to synthetic sequences (kraken2, taxid 28384):	1357 reads (0.11%)
Most abundant organisms (kraken2, family level):	Coronaviridae (61.21%) Enterobacteriaceae (0.46%) Flavobacteriaceae (0.08%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 58.03% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.60. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(4 of 13) N:D377Y S:G142D S:L452R S:T478K	(10 of 26) NUC:C25000T NUC:C25584T NUC:T13195C ORF1AB:A2710T ORF1AB:I3758V ORF1AB:K856R S:G446S S:L981F S:N856K S:Q493R	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C2584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25584T NUC:C4321T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T42I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.10 (<u>0.10</u>)	0.10 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.07 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.10 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.48 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.63 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.10 (<u>0.21</u>)	0.48 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)
BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------
BA.5	0.04 (<u>0.03</u>)	0.07 (<u>0.08</u>)	0.63 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000119220
Date generated:	2023-02-01, 20:06:45 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.127 (aka n127.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	2955272
Reads aligned:	1563410 (52%)
Average read quality:	36.6
Average read length:	149
Reads passing filter:	1493268 (50%)
Average read quality passing filter:	36.9
Average read length passing filter:	149
Average coverage passing filter:	7440X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	119nt (0%)	393nt (1%)
Common SNPs:	0nt (0%)	1nt (2%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	47nt (5%)

Hits to SARS-Cov2 genome (kraken2):	886306 reads (59.98%)
Hits to human genome (kraken2):	1255 reads (0.08%)
Hits to synthetic sequences (kraken2, taxid 28384):	165 reads (0.01%)
Most abundant organisms (kraken2, family level):	Coronaviridae (59.98%) Enterococcaceae (0.61%) Hominidae (0.08%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 58.51% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.60. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.5</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(4 of 13) N:D377Y S:G142D S:L452R S:T478K	(10 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C ORF1AB:I3758V ORF1AB:K856R S:L981F S:N856K S:Q493R S:T95I	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(11 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:D405N S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.10 (<u>0.10</u>)	0.05 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.07 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.10 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.50 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.63 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.05 (<u>0.21</u>)	0.50 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.40 (<u>0.30</u>)	0.38 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.40 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.07 (<u>0.08</u>)	0.63 (<u>0.59</u>)	0.38 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000119222
Date generated:	2023-02-01, 20:04:39 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.127 (aka n127.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	2214544
Reads aligned:	1699294 (76%)
Average read quality:	36.8
Average read length:	149
Reads passing filter:	1635964 (73%)
Average read quality passing filter:	37.0
Average read length passing filter:	149
Average coverage passing filter:	8151X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	144nt (0%)	392nt (1%)
Common SNPs:	0nt (0%)	1nt (2%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	47nt (5%)

Hits to SARS-Cov2 genome (kraken2):	880953 reads (79.56%)
Hits to human genome (kraken2):	515 reads (0.05%)
Hits to synthetic sequences (kraken2, taxid 28384):	114 reads (0.01%)
Most abundant organisms (kraken2, family level):	Coronaviridae (79.56%) Staphylococcaceae (0.29%) Hominidae (0.05%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 58.85% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.59. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(3 of 13) S:G142D S:L452R S:T478K	(10 of 26) NUC:C25000T NUC:C25584T NUC:T13195C ORF1AB:A2710T ORF1AB:K856R S:A67V S:L981F S:N856K S:Q493R S:T547K	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:A67V S:D405N S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T42I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.10 (<u>0.10</u>)	0.10 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.07 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.10 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.48 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.63 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.10 (<u>0.21</u>)	0.48 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.07 (<u>0.08</u>)	0.63 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000119223
Date generated:	2023-02-01, 20:09:40 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.108 (aka n108.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	4089396
Reads aligned:	3400167 (83%)
Average read quality:	36.4
Average read length:	149
Reads passing filter:	3182172 (77%)
Average read quality passing filter:	36.8
Average read length passing filter:	149
Average coverage passing filter:	15856X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	92nt (0%)	504nt (1%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	28nt (12%)	29nt (12%)
Rare SNPs:	9nt (0%)	46nt (4%)

Hits to SARS-Cov2 genome (kraken2):	1770380 reads (86.58%)
Hits to human genome (kraken2):	651 reads (0.03%)
Hits to synthetic sequences (kraken2, taxid 28384):	294 reads (0.01%)
Most abundant organisms (kraken2, family level):	Coronaviridae (86.58%) Enterococcaceae (0.18%) Hominidae (0.03%)

Abundance of variants by linear regression Abundance of variants by kallisto Omicron 60.1% BA.2 BA.1 62.7% 11.4% 0.1% Other 6.8% Other 22.2% 11.7% 10.5% 7.4% 7.1% BA.5 BA.4.6 BA.2 BA.4 BA.4

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 60.10% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.61. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by BA.2 lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(3 of 13) S:G142D S:L452R S:T478K	(14 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G ORF1AB:A2710T ORF1AB:I3758V ORF1AB:I3758V ORF1AB:K856R S:A67V S:G446S S:L981F S:N856K S:Q493R S:T95I	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(13 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:A67V S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C2584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.09 (<u>0.10</u>)	0.12 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.09 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.46 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.63 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.12 (<u>0.21</u>)	0.46 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.37 (<u>0.30</u>)	0.35 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.37 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.63 (<u>0.59</u>)	0.35 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000119224
Date generated:	2023-02-01, 20:06:45 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.132 (aka n132.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	6440258
Reads aligned:	2162483 (33%)
Average read quality:	36.6
Average read length:	148
Reads passing filter:	2062962 (32%)
Average read quality passing filter:	36.9
Average read length passing filter:	148
Average coverage passing filter:	10210X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	127nt (0%)	879nt (2%)
Common SNPs:	0nt (0%)	1nt (2%)
Diverse SNPs:	28nt (12%)	31nt (13%)
Rare SNPs:	9nt (0%)	47nt (5%)

Hits to SARS-Cov2 genome (kraken2):	1342375 reads (41.69%)
Hits to human genome (kraken2):	2944 reads (0.09%)
Hits to synthetic sequences (kraken2, taxid 28384):	134 reads (0.00%)
Most abundant organisms (kraken2, family level):	Coronaviridae (41.69%) Staphylococcaceae (0.86%) Flavobacteriaceae (0.11%)

BA.1

Other

BA.4.6

BA.4

Abundance of variants by linear regression Abundance of variants by kallisto Omicron BA.2 58.1% 56.2% 9.8% 11.4% 16.4% 9.8% BA.5 10.5% 12.0% 15.7% BA.2

Detected variants (Experimental)

BA.4

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 58.07% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.59. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(3 of 13) S:G142D S:L452R S:T478K	(9 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C ORF1AB:A2710T S:G446S S:L981F S:N856K S:Q493R	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:C493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C2584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(21 of 28) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.11 (<u>0.10</u>)	0.11 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.07 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.11 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.48 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.65 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.11 (<u>0.21</u>)	0.48 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.38 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.88 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.07 (<u>0.08</u>)	0.65 (<u>0.59</u>)	0.38 (<u>0.29</u>)	0.88 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000119624
Date generated:	2023-02-01, 20:14:45 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.108 (aka n108.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	3821038
Reads aligned:	3447227 (90%)
Average read quality:	36.6
Average read length:	149
Reads passing filter:	3303434 (86%)
Average read quality passing filter:	36.9
Average read length passing filter:	149
Average coverage passing filter:	16460X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	94nt (0%)	174nt (0%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	28nt (12%)	29nt (12%)
Rare SNPs:	9nt (0%)	10nt (1%)

Hits to SARS-Cov2 genome (kraken2):	1746934 reads (91.44%)
Hits to human genome (kraken2):	218 reads (0.01%)
Hits to synthetic sequences (kraken2, taxid 28384):	1496 reads (0.08%)
Most abundant organisms (kraken2, family level):	Coronaviridae (91.44%) Enterococcaceae (0.14%) Halomonadaceae (0.03%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 61.91% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.62. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(3 of 13) S:G142D S:L452R S:T478K	(12 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G ORF1AB:I3758V S:G446S S:G496S S:L981F S:N856K S:Q493R S:T95I	(23 of 31) N:S413R NUC:A20055G NUC:A9424G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.09 (<u>0.10</u>)	0.09 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.09 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.46 (<u>0.33</u>)	0.62 (<u>0.63</u>)	0.61 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.09 (<u>0.21</u>)	0.46 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.62 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.61 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000119626
Date generated:	2023-02-01, 20:07:25 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.127 (aka n127.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing		
Source site:	Missing (?,?)		
Sampling date:	Missing		
Collected by:	Missing		
Sequenced by:	Missing		
Total number of reads:	3761430		
Reads aligned:	1935752 (51%)		
Average read quality:	36.6		
Average read length:	148		
Reads passing filter:	1843202 (49%)		
Average read quality passing filter:	36.9		
Average read length passing filter:	149		
Average coverage passing filter:	9184X		

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	122nt (0%)	277nt (0%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	46nt (4%)

Hits to SARS-Cov2 genome (kraken2):	1124635 reads (59.80%)
Hits to human genome (kraken2):	1126 reads (0.06%)
Hits to synthetic sequences (kraken2, taxid 28384):	176 reads (0.01%)
Most abundant organisms (kraken2, family level):	Coronaviridae (59.80%) Pseudomonadaceae (0.28%) Enterobacteriaceae (0.17%)

Detected variants (Experimental)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 58.00% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.60. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(4 of 13) N:D377Y S:G142D S:L452R S:T478K	(9 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C S:G446S S:G496S S:L981F S:N856K S:Q493R	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.11 (<u>0.10</u>)	0.11 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.07 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.11 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.48 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.63 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.11 (<u>0.21</u>)	0.48 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)
BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------
BA.5	0.04 (<u>0.03</u>)	0.07 (<u>0.08</u>)	0.63 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000119627
Date generated:	2023-02-01, 20:05:40 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.127 (aka n127.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	3257848
Reads aligned:	1842055 (56%)
Average read quality:	36.6
Average read length:	149
Reads passing filter:	1756675 (53%)
Average read quality passing filter:	36.9
Average read length passing filter:	149
Average coverage passing filter:	8753X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	178nt (0%)	464nt (1%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	28nt (12%)	29nt (12%)
Rare SNPs:	45nt (4%)	46nt (4%)

SNPs refer to the polymorphic sites currently in circulation that were detected out of recent GISAID entries. The sites that differ from the SC2 reference sequence are denoted as "common" if [90%, 100%] of the submissions carry this mutation, whereas those that are prevalent in [0%,10%] of the submissions are grouped under the "rare" category. The population is still diverse at the mutation sites that are observed in (10%,90%) of the entries and these coordinates are grouped under the "diverse" category.

Hits to SARS-Cov2 genome (kraken2):	1024906 reads (62.92%)
Hits to human genome (kraken2):	1328 reads (0.08%)
Hits to synthetic sequences (kraken2, taxid 28384):	416 reads (0.03%)
Most abundant organisms (kraken2, family level):	Coronaviridae (62.92%) Hominidae (0.08%) Staphylococcaceae (0.06%)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 59.71% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.60. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

Under the assumption that the presence of a variant requires the detection of all respective mutations of the variant, the characteric mutations which support the presence of the respective variant are indicated in the respective column of the table. Numbers show the number of mutations detected, if any, and the number of mutations expected to be present based on the variant definitions.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(4 of 13) N:D377Y S:G142D S:L452R S:T478K	(13 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G ORF1AB:A2710T S:G446S S:G496S S:L981F S:N856K S:Q493R S:T547K S:T547K S:T95I	(22 of 31) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C26858T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T342I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(21 of 28) N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

<u>Jaccard Index</u> is a measure of similarity between two sets A and B, reaching the maximum value of 1 if A=B and minimum value of 0 if $A \cap B = \{\}$. In the c(d) representation below, c represents the Jaccard index of the set of mutations that were experimentally detected for this sample as listed above, whereas d refers to the ideal value of the Jaccard index expected from complete genome coverage without any sequencing errors.

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.09 (<u>0.10</u>)	0.09 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.09 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.48 (<u>0.33</u>)	0.64 (<u>0.63</u>)	0.65 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.09 (<u>0.21</u>)	0.48 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.38 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.64 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.88 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.65 (<u>0.59</u>)	0.38 (<u>0.29</u>)	0.88 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	CFSANSMP000119629
Date generated:	2023-02-01, 20:05:19 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (<u>Jasmine.Amirzadegan@fda.hhs.gov</u>)
Executed on:	172.20.44.127 (aka n127.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	3144978
Reads aligned:	1455316 (46%)
Average read quality:	36.6
Average read length:	149
Reads passing filter:	1390136 (44%)
Average read quality passing filter:	36.9
Average read length passing filter:	149
Average coverage passing filter:	6926X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	369nt (1%)	998nt (3%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	46nt (4%)	87nt (9%)

SNPs refer to the polymorphic sites currently in circulation that were detected out of recent GISAID entries. The sites that differ from the SC2 reference sequence are denoted as "common" if [90%, 100%] of the submissions carry this mutation, whereas those that are prevalent in [0%,10%] of the submissions are grouped under the "rare" category. The population is still diverse at the mutation sites that are observed in (10%,90%) of the entries and these coordinates are grouped under the "diverse" category.

Hits to SARS-Cov2 genome (kraken2):	848972 reads (53.99%)
Hits to human genome (kraken2):	1534 reads (0.10%)
Hits to synthetic sequences (kraken2, taxid 28384):	2196 reads (0.14%)
Most abundant organisms (kraken2, family level):	Coronaviridae (53.99%) Hominidae (0.10%) Staphylococcaceae (0.09%)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 58.10% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.61. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

Under the assumption that the presence of a variant requires the detection of all respective mutations of the variant, the characteric mutations which support the presence of the respective variant are indicated in the respective column of the table. Numbers show the number of mutations detected, if any, and the number of mutations expected to be present based on the variant definitions.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(4 of 13) N:D377Y S:G142D S:L452R S:T478K	(10 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C ORF1AB:I3758V ORF1AB:K856R S:G446S S:L981F S:N856K S:Q493R	(23 of 31) N:S413R NUC:A20055G NUC:A9424G NUC:C10198T NUC:C12880T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3201F ORF1AB:L3201F ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(12 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

<u>Jaccard Index</u> is a measure of similarity between two sets A and B, reaching the maximum value of 1 if A=B and minimum value of 0 if $A \cap B = \{\}$. In the c(d) representation below, c represents the Jaccard index of the set of mutations that were experimentally detected for this sample as listed above, whereas d refers to the ideal value of the Jaccard index expected from complete genome coverage without any sequencing errors.

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.10 (<u>0.10</u>)	0.10 (<u>0.21</u>)	0.06 (<u>0.08</u>)	0.07 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.10 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.46 (<u>0.33</u>)	0.62 (<u>0.63</u>)	0.61 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.10 (<u>0.21</u>)	0.46 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.38 (<u>0.30</u>)	0.36 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.06 (<u>0.08</u>)	0.62 (<u>0.63</u>)	0.38 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.07 (<u>0.08</u>)	0.61 (<u>0.59</u>)	0.36 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	Undetermined
Date generated:	2023-02-01, 20:11:09 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (Jasmine.Amirzadegan@fda.hhs.gov)
Executed on:	172.20.44.108 (aka n108.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	4361554
Reads aligned:	2917865 (66%)
Average read quality:	36.1
Average read length:	149
Reads passing filter:	2691770 (61%)
Average read quality passing filter:	36.7
Average read length passing filter:	149
Average coverage passing filter:	13412X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	119nt (0%)	126nt (0%)
Common SNPs:	0nt (0%)	0nt (0%)
Diverse SNPs:	29nt (12%)	29nt (12%)
Rare SNPs:	10nt (1%)	10nt (1%)

SNPs refer to the polymorphic sites currently in circulation that were detected out of recent GISAID entries. The sites that differ from the SC2 reference sequence are denoted as "common" if [90%, 100%] of the submissions carry this mutation, whereas those that are prevalent in [0%,10%] of the submissions are grouped under the "rare" category. The population is still diverse at the mutation sites that are observed in (10%,90%) of the entries and these coordinates are grouped under the "diverse" category.

Hits to SARS-Cov2 genome (kraken2):	1574189 reads (72.18%)
Hits to human genome (kraken2):	33636 reads (1.54%)
Hits to synthetic sequences (kraken2, taxid 28384):	1667 reads (0.08%)
Most abundant organisms (kraken2, family level):	Coronaviridae (72.18%) Hominidae (1.54%) Staphylococcaceae (0.25%)

Based on deconvolution, <u>B.1.1.529</u> is estimated to constitute 62.10% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.63. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>BA.2</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by <u>BA.2</u> lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

Under the assumption that the presence of a variant requires the detection of all respective mutations of the variant, the characteric mutations which support the presence of the respective variant are indicated in the respective column of the table. Numbers show the number of mutations detected, if any, and the number of mutations expected to be present based on the variant definitions.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(4 of 13) N:D377Y S:G142D S:L452R S:T478K	(16 of 26) NUC:C15240T NUC:C25000T NUC:C25584T NUC:T13195C NUC:T5386G ORF1AB:A2710T ORF1AB:I3758V ORF1AB:K856R S:A67V S:G446S S:G496S S:L981F S:N856K S:Q493R S:T547K S:T951	(23 of 31) N:S413R NUC:A20055G NUC:A9424G NUC:C10198T NUC:C12880T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A ORF1AB:G1307S ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3027F ORF1AB:L3201F ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T842I S:D405N S:Q493R S:R408S S:S371F S:T19I S:T376A	(13 of 21) N:S413R NUC:C12880T NUC:C15714T NUC:C26858T NUC:G10447A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I S:A67V S:D405N S:G446S S:Q493R S:S371F	(24 of 31) N:P151S N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A NUC:G27788T ORF1AB:G1307S ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R ORF1AB:S135R S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G	(22 of 28) M:D3N N:S413R NUC:A20055G NUC:C10198T NUC:C12880T NUC:C15714T NUC:C25000T NUC:C25584T NUC:C4321T NUC:G10447A NUC:G12160A ORF1AB:G1307S ORF1AB:S135R ORF1AB:S135R ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I ORF1AB:T3090I S:F486V S:L452R S:S371F S:T19I S:T376A S:V213G

<u>Jaccard Index</u> is a measure of similarity between two sets A and B, reaching the maximum value of 1 if A=B and minimum value of 0 if $A \cap B = \{\}$. In the c(d) representation below, c represents the Jaccard index of the set of mutations that were experimentally detected for this sample as listed above, whereas d refers to the ideal value of the Jaccard index expected from complete genome coverage without any sequencing errors.

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.00 (<u>0.00</u>)	0.04 (<u>0.02</u>)	0.04 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.08 (<u>0.10</u>)	0.12 (<u>0.21</u>)	0.05 (<u>0.08</u>)	0.06 (<u>0.08</u>)
BA.2	0.00 (<u>0.00</u>)	0.08 (<u>0.10</u>)	1.00 (<u>1.00</u>)	0.44 (<u>0.33</u>)	0.62 (<u>0.63</u>)	0.61 (<u>0.59</u>)
BA.3	0.00 (<u>0.00</u>)	0.12 (<u>0.21</u>)	0.44 (<u>0.33</u>)	1.00 (<u>1.00</u>)	0.37 (<u>0.30</u>)	0.35 (<u>0.29</u>)

BA.4	0.04 (<u>0.02</u>)	0.05 (<u>0.08</u>)	0.62 (<u>0.63</u>)	0.37 (<u>0.30</u>)	1.00 (<u>1.00</u>)	0.84 (<u>0.84</u>)
BA.5	0.04 (<u>0.03</u>)	0.06 (<u>0.08</u>)	0.61 (<u>0.59</u>)	0.35 (<u>0.29</u>)	0.84 (<u>0.84</u>)	1.00 (<u>1.00</u>)

WASTEWATER SARS-COV2 ANALYSIS REPORT

Sample name:	Water
Date generated:	2023-02-01, 19:42:14 EST
Timestamp of C-WAP version used:	Tue Jan 31 11:49:22 2023 -0500
Executed by:	Jasmine Amirzadegan (Jasmine.Amirzadegan@fda.hhs.gov)
Executed on:	172.20.44.134 (aka n134.raven.cfsan)

Sequencing summary

Sequencing chemistry:	Missing with Missing
Source site:	Missing (?,?)
Sampling date:	Missing
Collected by:	Missing
Sequenced by:	Missing
Total number of reads:	45196
Reads aligned:	1655 (3%)
Average read quality:	36.5
Average read length:	144
Reads passing filter:	1515 (3%)
Average read quality passing filter:	36.9
Average read length passing filter:	148
Average coverage passing filter:	7X

A read passes filter if the read length after adaptor trimming \geq 30 and minimum read quality \geq 20 within a sliding window of width 4.

NOTE: The red shaded areas marked with a (*) are not covered by the design of the library preparation kit and hence excluded from analyses. Magenta curves represent moving average with a window width of 1kb.

WARNING: The sequence coverage is very low (7X)

	Uncovered coordinates (0X)	Poorly covered coordinates (<10X)
# Inaccessible genomic coordinates by kit design:	121nt (0%)	121nt (0%)
All genomic coordinates:	19387nt (64%)	25466nt (85%)
Common SNPs:	22nt (61%)	27nt (75%)
Diverse SNPs:	194nt (86%)	218nt (96%)
Rare SNPs:	603nt (65%)	862nt (93%)

SNPs refer to the polymorphic sites currently in circulation that were detected out of recent GISAID entries. The sites that differ from the SC2 reference sequence are denoted as "common" if [90%, 100%] of the submissions carry this mutation, whereas those that are prevalent in [0%,10%] of the submissions are grouped under the "rare" category. The population is still diverse at the mutation sites that are observed in (10%,90%) of the entries and these coordinates are grouped under the "diverse" category.

Hits to SARS-Cov2 genome (kraken2):	4973 reads (22.01%)
Hits to human genome (kraken2):	41 reads (0.18%)
Hits to synthetic sequences (kraken2, taxid 28384):	7 reads (0.03%)
	Coronaviridae (22.01%)

Hominidae (0.18%)

Based on deconvolution, <u>wt</u> is estimated to constitute 65.94% of the viral particles and hence is the most abundant variant in the sample. The R^2 for the linear regression was 0.13. Variants that were detected less than 5% were grouped under "Other"

Based on the consensus sequence of the observed reads, the "ensemble-averaged sequence" most closely resembles the <u>B.1</u> lineage. If this is a sample consisting of a single source of pathogens or an overwhelming majority of the different sources are infected with the same variant, the sample is dominated by this variant.

Based on mapping individual reads to the variant consensus sequences in the reference database, kallisto predicts that the sample is dominated by $\underline{BA.1}$ lineage. Accuracy of this measure is expected to improve if the input data consists of long reads as opposed to convolution.

Freyja bootstrapping

Under the assumption that the presence of a variant requires the detection of all respective mutations of the variant, the characteric mutations which support the presence of the respective variant are indicated in the respective column of the table. Numbers show the number of mutations detected, if any, and the number of mutations expected to be present based on the variant definitions.

VOC	<u>B.1.617.2</u>	<u>BA.1</u>	<u>BA.2</u>	<u>BA.3</u>	<u>BA.4</u>	<u>BA.5</u>
Characteristic mutations detected	(0 of 13)	(1 of 26) S:L981F	(0 of 31)	(0 of 21)	(0 of 31)	(0 of 28)

<u>Jaccard Index</u> is a measure of similarity between two sets A and B, reaching the maximum value of 1 if A=B and minimum value of 0 if $A \cap B = \{\}$. In the c(d) representation below, c represents the Jaccard index of the set of mutations that were experimentally detected for this sample as listed above, whereas d refers to the ideal value of the Jaccard index expected from complete genome coverage without any sequencing errors.

	B.1.617.2	BA.1	BA.2	BA.3	BA.4	BA.5
B.1.617.2	-1.00 (<u>1.00</u>)	0.00 (<u>0.00</u>)	-1.00 (<u>0.00</u>)	-1.00 (<u>0.00</u>)	-1.00 (<u>0.02</u>)	-1.00 (<u>0.03</u>)
BA.1	0.00 (<u>0.00</u>)	1.00 (<u>1.00</u>)	0.00 (<u>0.10</u>)	0.00 (<u>0.21</u>)	0.00 (<u>0.08</u>)	0.00 (<u>0.08</u>)
BA.2	-1.00 (<u>0.00</u>)	0.00 (<u>0.10</u>)	-1.00 (<u>1.00</u>)	-1.00 (<u>0.33</u>)	-1.00 (<u>0.63</u>)	-1.00 (<u>0.59</u>)
BA.3	-1.00 (<u>0.00</u>)	0.00 (<u>0.21</u>)	-1.00 (<u>0.33</u>)	-1.00 (<u>1.00</u>)	-1.00 (<u>0.30</u>)	-1.00 (<u>0.29</u>)
BA.4	-1.00 (<u>0.02</u>)	0.00 (<u>0.08</u>)	-1.00 (<u>0.63</u>)	-1.00 (<u>0.30</u>)	-1.00 (<u>1.00</u>)	-1.00 (<u>0.84</u>)
BA.5	-1.00 (<u>0.03</u>)	0.00 (<u>0.08</u>)	-1.00 (<u>0.59</u>)	-1.00 (<u>0.29</u>)	-1.00 (<u>0.84</u>)	-1.00 (<u>1.00</u>)

Detected mutations