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ABSTRACT 

Non-syndromic orofacial clefts (NSOC) are common craniofacial birth defects, 

and result from both genetic and environmental factors. NSOC include three major sub-

phenotypes: non-syndromic cleft lip with palate (NSCLP), non-syndromic cleft lip only 

(NSCLO) and non-syndromic cleft palate only (NSCPO), NSCLP and NSCLO are also 

sometimes grouped as non-syndromic cleft lip with or without cleft palate (NSCL/P) 

based on epidemiology. Currently known loci only explain a limited proportion of the 

heritability of NSOC. Further, differences in genetic susceptibility among the sub-

phenotypes are poorly characterized. We performed a multi-ancestry GWAS meta-

analysis on 44,094 individuals (9,381 cases, 28,510 controls, 2042 case-parent trios and 

18 multiplex pedigrees) of East Asian, European, Latin and South American, and 

African ancestry for both NSOC and subtypes. We identified 50 loci, including 11 novel 

loci: four loci (CALD1, SHH, NRG1 and LINC00320) associated with both NSOC and 

NSCL/P, two loci (NTRK1 and RUNX1) only associated with NSOC, four loci 

(HMGCR, PRICKLE1, SOX9 and MYH9) only associated with NSCL/P and one locus 

(ALX1) specifically associated with NSCLO. Five of the novel loci are located in 

regions containing genes associated with syndromic orofacial clefts (SHH, NTRK1, 

CALD1, ALX1 and SOX9); seven of the novel loci are located in regions containing 

genes implicated in craniofacial development (HMGCR, SHH, PRICKLE1, ALX1, 

SOX9, RUNX1, MYH9). Genetic correlation and colocalization analyses revealed an 

overlap between signals associated with NSCLO, NSCPO and NSCLP, but there were 

also notable differences, emphasizing the complexity of common and distinct genetic 

processes affecting lip and palate development.  

INTRODUCTION 
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Non-syndromic orofacial clefts (NSOC) are the most common disruption of 

normal facial structure, with an average incidence of 1/700 live births worldwide1. 

Prevalence of NSOC varies among different populations, with the highest prevalence 

in Asian or Amerindian populations [1/500], European-derived populations have an 

intermediate prevalence [1/1000], while African-derived populations have the lowest 

prevalence [1/2500]1. 

The treatment of NSOC requires long-term care by teams of doctors in surgery, 

speech, hearing, orthodontics and psychology. In addition to its impact in early life, 

NSOC is associated with a lifetime increase in death from all causes as well as an 

increased risk for mental health conditions and cancer2. It imposes substantial economic 

burdens with expenses of more than $200,000 (US) lifetime per case and has a 

substantial impact on quality of life3. 

NSOC is considered a complex trait and the non-syndromic (NS) refers to an 

absence of other associated structural or major cognitive abnormalities. It can be 

divided into three major sub-phenotypes: non-syndromic cleft lip with palate (NSCLP), 

non-syndromic cleft lip only (NSCLO) and non-syndromic cleft palate only (NSCPO). 

NSCLP and NSCLO are also sometimes grouped as non-syndromic cleft lip with or 

without cleft palate (NSCL/P) based on epidemiology (Supplementary Fig.1). Their 

phenotypic severity may be regulated by multiple genes and/or influenced by 

environmental triggers. Fogh-andersen et al. 1942 first proposed that genetics was a 

leading factor in the occurrence of NSOC4; twin and family studies of orofacial clefts 

consistently show higher concordance rates in monozygotic twins compared to 

dizygotic twins, and monozygotic twins had the concordance rate yielding estimates of 

heritability of 91% for NSOC5, which supports a major genetic component to its 

etiology. 
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Genome wide association studies (GWAS) and meta-analyses of GWASs have 

enabled progress in understanding the etiology of NSOC and its sub-phenotypes 

(NSCL/P, NSCLP, NSCLO and NSCPO) (Supplementary Fig.1), with 81 susceptibility 

loci reported6-20 (Supplementary Table 1). A few additional loci were first identified 

through linkage or candidate gene association studies and replicated independently21,22. 

However, current findings explain only a limited proportion of the heritability23. In 

addition, most previous studies used mixed samples of different subtypes of NSOC 

(NSCPO, NSCLO or NSCLP) to generate more power to detect variants shared across 

phenotypes, but might have missed true association signals for the specific sub-

phenotypes as these could be diluted by other subtypes not at risk for those associated 

variants. 

To uncover more NSOC susceptibility loci, advance current understanding of the 

genetic architecture and identify genetic components of the subphenotypes NSCLP, 

NSCLO and NSCPO, this study assembled 44,094 individuals (9381 cases, 28,510 

controls and 6,203 individuals from 2042 case-parent trios and 18 multiplex pedigrees) 

across Asian, European, Latin and South American, and African populations 

(Supplementary Table 2), grouping cases into one shared (NSOC) and four 

subphenotypic groups (NSCL/P, NSCLP, NSCLO and NSCPO) (Supplementary Fig.1). 

We performed multi-ancestry genome wide association meta-analysis, genetic 

correlation and co-localization analysis, investigated the genetic basis of the phenotypic 

heterogeneity of NSOC, and investigated the potential predictive power of a polygenic 

risk score for NSOC (Fig.1). 

Results 

Multi-Ancestry Genome Wide Meta-analysis 
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We performed genome wide association (GWA) meta-analyses of seven 

independent datasets in three phases (Fig.1): In phase 1, we performed individual 

genome wide association studies in three independent datasets (CHW_Axiom, 

CHE_Axiom&HSA and CHS_ZH) of NSOC, NSCL/P NSCLP, NSCLO and NSCPO 

from a Han Chinese Population (Methods and Supplementary Tables 3 provide cohort 

information, data collection and genotyping details). After data cleaning and imputation, 

8 million SNPs were analyzed. In phase 2, we performed GWA meta-analysis using the 

MR-MEGA software24 combining the case-control summary statistical results from 

Phase 1 with three independent previously published studies from Han Chinese (Huang 

et al. study)14, a mixed ancestry study (POFC1 study)10, and an African ancestry study13. 

In phase 3, we combined the filtered phase 2 results (MAF ≥0.1% and ≥50% of the 

samples contributing) with results from the GENEVA study (case-parent trio)7, in a p-

value based meta-analysis using Metal software25. After quality control (Methods), to 

define independent lead SNPs we performed the clumping procedure implemented in 

the PLINK software26 based on the LD structure of 1000 genome phase 3v5 with default 

parameters. We defined novel loci as those in which the lead SNPs mapped >1 Mb 

away from the 81 loci reported at P<5.0E-08 in previous GWAS. Where loci fell within 

1Mb of previously identified cleft locus which includes causal genes (syndromic 

orofacial cleft), known susceptibility genes (non-syndromic orofacial cleft) or genes 

that play roles during the craniofacial development, locus names were given to the cleft 

locus, otherwise the locus was named by the gene nearest to the lead SNP (Methods). 

We identified 50 independently associated loci (110 distinct lead SNPs; 152 SNP-trait 

associations) at genome-wide significant level (P < 5 × 10−8) (Fig.1, Fig.2, Table 1, 

Supplementary Table 4). 
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We did not observe any substantial evidence of heterogeneity in any of the five 

phenotypic groups of the case-control meta-analysis [all lead SNPs have pHET-RES > 

0.00045 (0.05/110)], However, six loci (five known and one novel locus) showed 

significant heterogeneity between ancestry groups in the case-control meta-analysis 

(pHET-ANC < 0.00045) (Table 1, Supplementary Table 4). Two known loci (two lead 

SNPs) showed significant heterogeneity in the final meta-analysis of the case-control 

and the GENEVA trio studies (pHET < 0.00045) (Supplementary Table 4). 

Functional annotation highlights links between loci identified here and 

known syndromic cleft genes 

Of the 50 loci identified in this analysis, 39 loci were within 1Mb of SNPs 

previously shown to associate with NSOC (including 17 known SNPs and 81 newly 

identified SNPs) (Supplementary Table1, Supplementary Table 4). Eleven loci (12 

SNPs) mapped >1 Mb away from the 81 loci reported at P<5.0E-08 in previous GWAS 

(Supplementary Table1, Table 1). Twelve of the 50 loci were only associated with one 

of the 5 NSOC phenotypes: three loci (NTRK1, RIPK2 and RUNX1) associated with 

NSOC, six loci (HMGCR, HYAL2, PRICKLE1, SOX9, MYH9 and ARHGAP8) with 

NSCL/P, one locus (PTCH1) with NSCLP, one locus (ALX1) with NSCLO, and one 

locus (GRHL3) with NSCPO (Table 1, Fig.1, Supplementary Table 4).  

To explore the potential functions of the lead SNPs, we annotated them by using 

the Variant Effect Predictor (VEP) online tool from the Ensembl browser27, HaploReg 

v4.228, GTEx database29 and 3DSNP30 (Fig.1). The majority of the lead SNPs were 

located in non-coding regions of genes or intergenic regions (Supplementary Table 5, 

Supplementary Table 6). A total of 63 lead SNPs (36 loci) were located in regulatory 

regions, 87 lead SNPs (46 loci) fall within transcription factor binding sites, 59 lead 

SNPs (31 loci) are expression quantitative trait loci (eQTL) and 28 lead SNPs (14 loci) 
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are splicing quantitative trait loci (sQTL) (Supplementary Table 6). Four of the novel 

loci are located in regions containing genes associated with syndromic orofacial clefts 

[NTRK131, CALD132, ALX133 and SOX934 and seven of the novel loci are located in 

regions containing genes implicated in craniofacial development [HMGCR35, SHH36, 

PRICKLE137, ALX138, SOX939, RUNX140, MYH941 (Supplementary Table 7). 

One novel locus is of particular note, CALD1, which is located within the region 

known to cause syndromic orofacial clefts. Individuals with a maternally inherited 

2.08 Mb deletion at chromosomal region 7q33 (chr7:133,176,651–135,252,871, hg19) 

containing 15 genes (including CALD1) have facial dysmorphism, including a narrow 

cleft palate and brachydactyly32. Both of rs4732060 and rs10488465 in the CALD1 

locus are eQTLs associated with expression levels of CALD1, RP11-134L10.1, and 

C7orf49, and are also sQTLs associated with splicing of CALD1, and TMEM140 

(supplementary Table 6). Of note the lead SNP rs4732060 is located within an enhancer 

region whose 3D interacting gene is CALD1 in three cell lines (NHEK, epidermal 

keratinocytes), HepG2 (hepatocellular carcinoma) and HMEC (mammary epithelial 

cells) predicted by 3DSNP online software30(Fig.3a,Fig.3b,Fig.3c), to assess whether 

the rs4732060 affects the activity of its regulatory element, we conducted dual 

luciferase reporter assays, the results confirmed that the fragments containing 

rs4732060 function as enhancers, with the risk allele C significantly reduced enhancer 

function, whereas the non-risk allele T demonstrating strong enhancer activity, (P < 

0.001) (Fig.3d). Expression of CALD1 in several tissues (eg. Skin, Adipose et al.) with 

the C/C genotype of rs4732060 was significantly lower than in those with the T/T 

genotype (Fig.3e, Fig.3f). SNP rs4732060 is located within a region known to be bound 

by 14 transcription factors (e.g. Sox2, Pou2f2) (Supplementary Table 6, Fig.3c). 

Colocalization analyses between NSCLP, NSCLO and NSCPO 
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The IRF6 locus is a known locus for both syndromic and NSOC, and in our 

analysis there were 11 SNPs associated with NSCLP, NSCLO, and/or NSCPO. In an 

attempt to elucidate the genetic architecture of this locus with these phenotypes, we 

performed colocalization analysis to determine the extent of overlap between our 

association signals for each trait (Fig.1). We found strong evidence for a shared 

association between NSCLP and NSCLO (PP.H4.abf=87.3%), and between NSCLP 

and NSCPO (PP.H4.abf=100%), while NSCLO showed evidence for distinct 

association signals from NSCPO (PP.H3.abf=77%) (Table 2, Supplementary Fig.2).  

Correlations between Orofacial Clefts and BMI 

To measure the proportion of phenotypic variance explained by all measured 

SNPs and to understand the degree to which common genetic variation influences these 

phenotypes (Fig.1), we estimated the SNP heritability by using the linkage-

disequilibrium score regression (LDSC) method42 in Han Chinese and Asians 

separately. In Han Chinese, we found substantial heritability estimates in NSOC 

(h2 = 0.14, [95%CI: 0.11-0.18]), NSCL/P (h2 =0.21, [0.16-0.27]), NSCLP (h2 = 0.19, 

[0.14-0.25]), NSCLO (h2 = 0.25, [0.12-0.38]) and NSCPO (h2 = 0.26, [0.19-0.33]). The 

h2 estimates in Asians showed a similar trend (Fig.4a) (Supplementary Table 8). 

We next estimated the genetic correlation between NSOC sub-phenotypes 

(NSCLO, NSCPO, and NSCLP) (Supplementary Fig.1) in the Chinese population to 

investigate how much of the genetic etiology may be shared across these phenotypes 

(Fig.1). NSCLO showed strong positive genetic correlations with NSCLP 

(Rg = 0.71, P = 1.92E-09). NSCLO and NSCPO showed weak positive genetic 

correlations (Rg =0.20, P = 0.38), while NSCLP and NSCPO showed weak inverse 

genetic correlations (Rg = −0.05, P = 0.65) (Fig.4b, Supplementary Table 9). These 

findings are similar to previous candidate gene studies, which found that NSCLP and 
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NSCLO shared more susceptible loci and reflect the impact of shared genetic variants 

that influence both14. 

There is an increased risk of having an offspring with an orofacial cleft in obese 

women43,44; fetuses with oral clefts are at elevated risk of having low and very low birth 

weight, and infants with low birth weight are more likely to have non-syndromic 

orofacial clefts45. To explore the extent to which known phenotypic association 

between maternal BMI and NSOC may be captured through shared genetic etiology, 

we estimated the genetic correlation of NSOC and its subtypes (NSCL/P, NSCLP, 

NSCLO and NSCPO) (Supplementary Fig.1), with BMI, the fetal GWAS of birth 

weight, and the fetal GWAS of birth weight conditional on maternal genotype using 

LDSC in a European ancestry Population (Fig.1). We found positive genetic correlation 

estimates between BMI and NSOC (Rg = 0.079, P = 0.030, 95%CI: 0.0076-0.15), 

NSCL/P (Rg = 0.077, P = 0.033, 95%CI:0.006-0.15) and NSCLP (Rg = 0.072, P = 0.04, 

95%CI:0.0032-0.14). We found no evidence that NSOC or its sub-phenotypes are 

significantly correlated with fetal birth weight (either with or without conditioning on 

maternal genotype) (P>0.05) (Fig.4c, Supplementary Table 9). 

Associations of Lead SNPs with Other Traits 

We performed a phenome-wide association analysis on our 110 lead SNPs using 

the online tool PhenoScanner46 to identify other phenotypes associated with our lead 

SNPs or those in LD (r2>0.8) (Fig.1). We found 34 lead SNPs with associations in 

PhenoScanner. As expected, 12 lead SNPs at 9 known loci had previous associations 

with orofacial clefts; in addition, we found 11 lead SNPs (7 loci) significantly 

associated with anthropometric traits (including BMI, weight, and height), 10 lead 

SNPs (5 loci) associated with blood cell traits, 3 lead SNPs associated with blood 

pressure (2 loci), 3 lead SNPs (3 loci) associated with bone mineral density, and 5 lead 
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SNPs (3 loci) associated with other traits (supplementary Table 10). In addition to those 

mentioned above, several of our novel loci were also associated with normal-range 

human facial shape; e.g. the ALX1 locus was associated with upper lip shape, and 

the SOX9 locus was associated with nose shape 47. 

Mendelian Randomization Analysis 

To test the effect of maternal BMI on risk of fetal orofacial clefts (NSOC, 

NSCL/P, NSCLP and NSCLO) we performed Two-sample Mendelian randomization 

(MR) analyses (Methods) (Supplementary Fig.3a) using 76 BMI-associated variants as 

instrumental variables (NBMI=339,224, Ncleft=2,882). These results show weak but 

directionally consistent evidence that maternal genetic predisposition to a higher BMI 

may raise the risk of fetal orofacial cleft in NSOC (OR=1.59, 95%CI:0.37-6.74), 

NSCL/P group (OR=1.76, 95%CI:0.35-8.79), NSCLP (OR=1.68, 95%CI:0.30-9.23), 

and NSCLO (OR=1.18, 95%CI:0.12-11.93), although confidence intervals were wide 

and included the null. For NSOC and NSCL/P, the Weighted Median method showed 

some evidence of a causal effect, but the confidence intervals for these were very wide. 

Overall, while these results are consistent with the observational association, our results 

are inconclusive and require investigation in better powered analyses (Supplementary 

Table 11 and Supplementary Fig.3b, Supplementary Fig.3c). 

Polygenic Score 

To investigate predictive/discriminative ability explained by the results from the 

present study, we aggregated thousands of SNP effects simultaneously into polygenic 

score (PGS) and assessed its association with NSOC and sub-phenotypes’ risk in two 

steps (Methods) (Supplementary Table 12, Fig.1). The PGS was associated strongly 

with NSOC, NSCL/P, NSCLP, NSCLO, and NSCPO (all P<0.05; Supplementary Table 

13, Fig.5a). To indicate the predictive ability and the proportion of phenotypic variance 
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explained by the polygenic scores (PGSs), we calculated the coefficient of 

determination R2 (pseudo-R2) by building two prediction models (with/without PGS). 

We found a relatively modest increase in R2 values in models including PGS indicating 

that the likely utility of PGS in prediction of NSOC is low with current summary 

statistics (Supplementary Table 13). 

To further measure the discrimination of PGS in disease prediction, we calculated 

the area under the receiver-operator curve (AUC) with or without covariate sex in the 

logistic regression model adjusting for 10 genetic principal components (PCs). PGS 

achieves a best prediction accuracy with an AUC of 0.57 (95%CI:0.56-0.58) for NSOC, 

0.61 (0.58-0.65) for NSCL/P, 0.61 (0.59-0.62) for NSCLP, 0.63 (0.57-0.68) for NSCLO, 

and 0.54 (0.51-0.56) for NSCPO. When adding the sex covariate in the model, the AUC 

value increased in both the CHW_ZH and CHS_ZH datasets, and increased 

substantially in the CHE_Axiom&HSA dataset which is a result of the biased 

distributions of sex in cases (Male: 214, Female:108) and controls (Male: 5, Female: 

717) (Fig.5b, Fig.5c, Fig.5d, Supplementary Table 13). 

Discussion 

In our multi-ancestry meta-analysis of NSOC and its sub-phenotypes we 

identified 110 lead association signals at 50 genetic loci. This includes 12 lead SNPs at 

11 novel loci, and 81 newly identified SNPs overlapping with known NSOC loci (Fig.1, 

Table 1, Supplementary Table 4). Compared with the other phenotypic subgroups, we 

found fewer association signals for NSCLO and NSCPO due to smaller sample sizes 

for these subphenotypes. In addition, the majority of the signals for NSCPO showed 

significant ancestry-based heterogeneity (Supplementary Table 4). 

Among our 11 novel loci, 9 contain genes either implicated in syndromic 

orofacial clefts (NTRK1, CALD1, ALX1, SHH and SOX9), or genes involved in aspects 
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of craniofacial development (HMGCR, SHH, PRICKLE1, ALX1, SOX9, RUNX1, 

MYH9), where abnormal expression can lead to an orofacial cleft (Supplementary Table 

7). 

Functional annotation showed that 102 out of 110 independent SNPs fall within 

transcription factor binding sites, regulatory regions, eQTLs or sQTLs (Supplementary 

Table 5, Supplementary Table 6,); of note among them are two lead SNPs within the 

CALD1 locus. Both are eQTLs, and one (rs4732060) is located within an enhancer 

whose 3D interacting gene is CALD1 in three cell lines (NHEK, epidermal 

keratinocytes), HepG2 (hepatocellular carcinoma) and HMEC (mammary epithelial 

cells) predicted by the 3DSNP software 30. Functional work confirmed that rs4732060 

is located in an enhancer, with the risk allele C significantly reducing enhancer activity, 

whereas the non-risk allele T demonstrates strong enhancer function (P < 0.001) (Fig. 

3d); expression of CALD1 in several tissues (eg. skin, adipose et al.) with the C/C 

genotype of rs4732060 was significantly lower than in those with the T/T genotype 

(Fig.3e, Fig.3f). CALD1 is also located within a region known to be bound by several 

transcription factors including Sox2 and, Pou2f2. Previous studies have demonstrated 

that deletion of SOX2 in oral epithelium disrupts palatal shelf extension48. In addition, 

POU2F2, also known as OCT2, encodes a transcription factor and is differentially 

expressed in early embryogenesis49. It is involved in cellular proliferation and 

differentiation of various cell types50-52, suggesting that it may influence the 

morphogenetic pathways that shape the developing face. CALD1, Caldesmon 1, is a 

protein-coding gene, which encodes calmodulin and actin-binding proteins and plays 

an important role in the regulation of smooth muscle and non-muscle contraction. 

CALD1-related disorders include adenomyomas and cellular leiomyomas, associated 

with pathways including ERK development, angiotensin activation, and cardiac 
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conduction. Additionally, patients with 7q33 CNV are reported to have an abnormal 

palatal phenotype, involving the duplication or deletion of CALD132.  CALD1 

overexpression is a key component in TGF-β-driven epithelial-mesenchymal transition 

(EMT)53; TGF-β signaling and TGF-β induced EMT processes are critical for the palate 

development, and more specifically for completing the process of palatal fusion54,55. In 

addition, EMT is vital in embryonic development, including craniofacial 

morphogenesis, where epithelial cells transform into mesenchymal cells to facilitate 

tissue formation. Abnormalities in EMT can lead to defects such as cleft lip and palate56. 

These results indicate that rs4732060 is a functional SNP, and support a role for it in 

the etiology of orofacial clefts by affecting CALD1 expression. 

Palate and lip originate from different tissues during embryonic development, so 

NSCLO and NSCPO are commonly regarded as two independent disorders supported 

by their different epidemiology.  NSCLO and NSCLP however, are regarded as 

related phenotypes since they both involve lip deformities57 (Supplementary Fig.1). 

However, many studies have showed that there is a more complex relationship among 

NSCLO, NSCPO and NSCLP, with shared etiologies between the three, but also with 

their own unique features58. To further elucidate the extent of shared etiology within 

the largest risk locus, this study performed colocalization on the IRF6 locus. As 

expected, we found high evidence for shared associations between NSCLO and NSCLP, 

with evidence for distinct association signals for NSCLO and NSCPO. There was also 

evidence that NSCLP shared association signals with NSCPO, although due to the muti-

ancestry nature of our meta-analysis we were unable to implement the colocalization 

methods which allow for multiple causal variants at a single locus. Genetic correlations 

based on linkage-disequilibrium score regression further confirmed that NSCLO (in 

Han Chinese samples) has stronger positive genetic correlations with NSCLP (Rg = 0.71) 
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than that with NSCPO (Rg =0.20). These findings further clarify the genetic background 

between NSCLO, NSCPO and NSCLP, reflecting the impact of shared genetic variants 

that influence risk of both NSCLO and NSCLP, but also the presence of distinct 

susceptibility genes for both traits which drive the different genetic heritability between 

the two traits with NSCPO higher (h2 = 0.26) than NSCLP (h2 = 0.19) (Fig.4a, 

Supplementary Table 8). 

Numerous epidemiological studies have reported associations between maternal 

BMI and orofacial clefts with obese mothers having an elevated risk for children with 

orofacial clefts when compared to normal weight mothers43,44. Obese mothers were at 

significantly increased odds of a pregnancy affected by either cleft palate or cleft lip 

and palate compared with mothers with BMI within the normal range; cleft lip showed 

weak evidence for association with maternal obesity59. Our MR analyses found weak 

but directionally consistent evidence for a causal role of higher maternal BMI in risk of 

fetal orofacial cleft consistent with estimates from the literature60,61. The large 

uncertainty in our estimates mean that further evidence is needed to confirm the 

association. 

To investigate the discriminative power of a PGS for NSOC, we trained a PGS 

for NSCL/P using the multi-ancestry cohorts of POFC1 (Methods, Supplementary 

Table 12). We found that this PGS was significantly associated with the risk of NSOC 

sub-phenotypes (NSCL/P, NSCLP, NSCLO and NSCPO) (Supplementary Table 13, 

Fig.5a). AUC values of NSOC, NSCL/P, NSCLP, NSCLO and NSCPO ranges between 

0.54 and 0.63 indicating that while the PGS provides some discriminative power, at 

present it does not reach a level which may be useful for clinical use (Supplementary 

Fig.1) (Fig. 5b, Fig. 5c, Fig. 5d, Supplementary Table 13). 
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There are some limitations to this study. First, the colocalization analysis was 

performed under a single causal variant assumption so was only able to estimate the 

probability of colocalization of the strongest association signal for each trait. Methods 

which can extend the functionality by allowing more than one causal variant exist but 

due to the multi-ancestry nature of our analyses we were not able to fit these with 

reliability due to their reliance on accurate maps of linkage-disequilibrium. Second, the 

sample size is not big enough to test associations between the PGS and sub-phenotypes 

of NSOC. Third, the sample sizes are relatively small to test the relationship between 

maternal BMI and fetal orofacial clefts by performing MR analysis. 

Our study complements large-scale GWA studies of orofacial clefts. While genetic 

correlation and colocalization analyses revealed an overlap between signals associated 

with NSCLO, NSCPO and NSCLP, there were also notable differences emphasizing 

the complexity of common and distinct genetic regulation and physiological processes 

affecting lip and palate development. Overall, our findings provide an improved 

understanding of the role of maternal BMI in orofacial clefts. Future research may focus 

on additional proxies for orofacial clefts and environmental influences, as well as the 

role of orofacial clefts for later-life health outcomes. 
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Table 1. Summary of the lead SNPs in Novel Loci by Cleft Group 

Phenotype  Locus Name Chromosome Position(b37) rsid EA OE 
Meta-analysis of CC&TDT Meta-analysis of CC 

EAF p-value pHET EAF p-value pHET-ANC  pHET-RES 

NSOC NTRK1 1 156809206 rs4661229 A G 0.87 4.31E-09 0.61 0.13 1.59E-07 0.014 0.17 

NSCL/P HMGCR 2 220681758 rs13011262 A G 0.67 3.07E-08 1 0.34 3.07E-08 0.71 0.36 

NSOC CALD1 7 134530381 rs4732060 C T 0.46 8.65E-09 0.52 0.55 2.56E-08 0.87 0.02 

NSCLP CALD1 7 134561819 rs10488465 C T 0.54 6.78E-09 0.55 0.54 1.84E-08 0.02 0.019 

NSCL/P CALD1 7 134561819 rs10488465 C T 0.49 5.17E-11 0.24 0.52 5.32E-11 0.23 0.073 

NSOC SHH 7 155819390 rs4716972 G A 0.69 7.05E-09 1 0.31 7.05E-09 0.008 0.39 

NSCL/P SHH 7 155819390 rs4716972 G A 0.69 8.44E-11 1 0.31 8.44E-11 0.012 0.92 

NSOC NRG1 8 32351333 rs17645417 C T 0.69 3.70E-09 0.02 0.31 4.34E-06 0.14 0.78 

NSCL/P NRG1 8 32351333 rs17645417 C T 0.69 2.85E-10 0.032 0.3 2.66E-07 0.055 0.66 

NSCL/P PRICKLE1 12 42882443 rs12817499 C T 0.83 5.43E-09 0.73 0.18 9.48E-08 0.001 0.63 

NSCLO ALX1 12 85979547 rs565838209 AT A 0.87 2.04E-08 1 0.13 2.04E-08 0.016 0.57 

NSCL/P SOX9 17 70279647 rs62069766 T G 0.69 1.57E-09 0.23 0.31 1.26E-09 0.55 0.56 

NSOC LINC00320 21 22165883 rs13052576 G A 0.92 1.69E-08 1 0.08 1.69E-08 1.52E-08 0.001 

NSCL/P LINC00320 21 22165883 rs13052576 G A 0.92 4.73E-08 1 0.08 4.73E-08 5.49E-07 0.001 

NSOC RUNX1 21 36203846 rs2246738 A G 0.6 2.47E-08 1 0.4 2.47E-08 0.01 0.43 

NSCL/P MYH9 22 36684331 rs5756130 T C 0.9 4.94E-08 0.38 0.1 1.67E-06 0.86 0.39 

Note: The Novel loci is defined as its location is 1Mb away from  previous GWASs reported SNP;NSOC, non-syndromic orofacial cleft cases 
by combining NSCLP,NSCLO and NSCPO together; NSCL/P, non-syndromic cleft lip with or without palate (NSCLP&NSCLO); NSCLP, non-
syndromic cleft lip and palate; NSCLO, non-syndromic cleft lip only; NSCPO, non-syndromic cleft palate only;EA, effect allele; OA, othr 
allele; CC, Case-control design study; TDT, Transmission disequilibrium test; pHET; P-value for heterogeneity;pHET-ANC: P-value for 
heterogeneity correlated with ancestry. pHET-RES: P-value for residual heterogeneity. 
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Table 2. Colocalisation Analysis on IRF6 locus (chr1: 209800000-210670000, hg19) in Chinese 
Traits_pairs PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf PP abf for shared variant 
NSCLO_NSCPO 1.82E-37 0.00% 0.00% 77.00% 23.00% 23.00% 
NSCPO_NSCLP 4.70E-47 0.00% 0.00% 0.05% 100.00% 100.00% 
NSCLO_NSCLP 8.48E-56 0.00% 0.00% 12.70% 87.30% 87.30% 

Note: NSCLO, non-syndromic cleft lip only; NSCPO, non-syndromic cleft palate only; NSCLP, 
non-syndromic cleft lip and palate; PP: posterior probabilities; H0: neither trait has a genetic 
association in the region; H1: only trait 1 has a genetic association in the region; H2: only trait 2 has 
a genetic association in the region; H3: both traits are associated, but with different causal 
variants;H4: both traits are associated and share a single causal variant. 
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Fig. 1 Flow Chart of the Multi-ancestry GWAS Meta-analysis 
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Fig. 2 Manhattan and QQ Plot of the Multi-ancestry GWAS Meta-analysis Results 

NSOC, non-syndromic orofacial cleft cases by combining NSCLP,NSCLO and 

NSCPO together; NSCL/P, non-syndromic cleft lip with or without palate 

(NSCLP&NSCLO); NSCLP, non-syndromic cleft lip and palate; NSCLO, non-

syndromic cleft lip only; NSCPO, non-syndromic cleft palate only. 
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Fig.3 a, Regional LD plot of CALD1 locus; b, CIRCOS plot based on NHEK cell line,  
Circos tracks from outside to inside represent: Chromatin states, RefSeq genes, DHS 
and histone modifications, TFBS, associated SNPs and chromatin loops. Histone 
Modification makers: H3K27ac, H3K27me3, H3k36me, H3K4me1, H3K4me3, 
H3K9me3; Transcription Factor: CTCF,EZH2,POLR2A. c, radar chart showing the 
distribution of the six functionality scores for this SNP, the total score of functionality 
for this SNP is 117.24, 3D interacting genes: This SNP is linked to 2 genes via 
chromatin loops, the corresponding score is 0.31; Enhancer: It locates in Enhancer state 
in 32 cell types, the corresponding score is 18.59.TFBS: It locates in 77 transcription 
factor binding sites, the corresponding score is 97.75; Conservation: Its PhyloP score 
is -1.064, the corresponding score is 0.05; d, Dual-luciferase reporter assay of PGL3 
promoter plasmids containing enhancer fragments with different rs4732060 alleles 
transfected into human GMSM-K cells. Data are normalized to Renilla luciferase 
activity (n = 8); risk allele (OR>1) was determined by performing the meta-analysis of 
the case control based GWASs with Metal software. e, Single-Tissue sQTLs for 
rs4732060; f,Single-Tissue eQTLs for rs4732060. 
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Fig.4 Heritability Estimates and Genetic Correlation 

a, SNP Heritability Estimated by phenotypic group in Asian and Chinese;b, Genetic 

Correlation among sub-phenotypes in Chinese;c, Genetic Correlation between orofacial 

clefts and adiposity phenotypes in European 
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Fig.5 Forest plot of Associations between PGS and Non-syndromic orofacial clefts in 

Han Chinese Cohorts 

a, odds ratio (95%CI); b, AUC  (area under the curve) and 95%CI of PGS; c, AUC  

and 95%CI of PGS &SEX; CHS_ZH in figure c is calculated among the individuals 

with SEX information；d, Receiver Operator Characteristic Curves for Different 

Models. 
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Methods 

Study Cohorts and Ethical Approval 

Our studied enrolled 44,094 individuals (9381 cases, 28,510 controls, and 6,203 

individuals of 2042 trios and 18 multiplex pedigrees multiplex pedigrees) across Asian, 

European, Latin South American, and African populations from 7 studies (Fig.1 and 

Supplementary Table 1): CHW_Axiom study including 846 individuals (427 cases and 

419 Control), CHE_Axiom&HSA study including 1044 individuals (322 cases and 722 

controls), CHS_ZH study including 14758 individuals (3012 cases and 11179 controls) 

and Huang et al. Study including 6943 individuals (1875 cases and 5068 controls) are 

from Han Chinese population14; Butali et al. study included 3178 individuals (1019 

cases and 2159 normal controls) from African population13; the POFC1 study (Leslie 

et al. 2016) included 11122 individuals (2726 cases and 8396 controls)10; the GENEVA 

studies included 6203 individuals from 2042 trios and 18 multiplex pedigrees multiplex 

pedigrees 7. Study protocol was approved at each study center by the local ethics 

committee and written informed consent had been obtained from all participants and/or 

their parent(s) or legal guardians. Study descriptions and phenotype information of 

samples are presented in Supplementary Table 1. 

Individual GWAS analysis 

Genotypes in each study of phase 1 were obtained through high-density SNP 

arrays and up to ∼0.8 million autosomal SNPs were imputed to 1000 genome phase 

3v5. Ancestry principal components for studies except the POFC1 study were 

calculated by flashPCA package61 and were included as covariables where necessary in 

the individual studies. Genome-wide association analyses of CHW_Axiom study and 

CHE_Axiom&HSA study were conducted using SNPTEST software62 adjusted by 

using sex and 10 PCs as covariates, and Genome-wide association analyses of CHS_ZH 

study was performed by regenie software63 using 10 PCs as covariates. SNPs with MAF 

(Minor allele frequency) ≥1% and info ≥ 0.4 of each study were included for the 

following case-control meta-analysis. For the POFC1 study, ancestry principal 

components calculated using the KING software64 were used to create four ancestry-

based sample subsets. African, Asian, European and Central and South American. 

Genome-wide association analysis was conducted separately within each ancestry-
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subset, using the R GENESIS association package, utilizing a genetic relationship 

matrix (GRM) to account for familial relatedness. 

Meta-analysis Methods 

Meta-analyses were performed in two steps based on the study design. Firstly, we 

conducted meta-analysis on case-control design studies by MR-MEGA (Meta-

Regression of Multi-Ethnic Genetic Association) software24. SNPs with MAF ≥0.1% 

and ≥50% of the samples contributing were taken forward to the second stage, where 

we performed p-value based meta-analysis with case-parent trios from the POFC110 

and GENEVA studies7 by Metal software25. SNPs with MAF ≥0.1% and ≥50% of the 

samples contributing were selected to perform clump analysis to extract the 

independent lead SNPs by PLINK software26 based on the LD structure of 1000 genome 

phase 3v5 with default parameters. SNPs mapping >1 Mb away from the previously 

reported GWAS loci were defined as novel loci. Where the loci fell within 1Mb of 

genes known to cause syndromic orofacial cleft, known susceptibility gene for non-

syndromic orofacial cleft, or playing roles during the craniofacial development, these 

genes were used as locus names, otherwise the locus was named by the nearest gene. 

The Manhattan plots and QQ plots by using R software ggplot2 package. Regional LD 

plots were generated by LocusZoom (hg19 Nov 2014 ASN Population)65. 

Dual-luciferase reporter assays 

For the dual luciferase reporter assays, GMSM-K cells were co-transfected with 

PGL3 promoter plasmids containing different rs4732060 allele-specific enhancer 

fragments as transcriptional activators, along with Renilla luciferase as a normalization 

control. Whole-cell lysates were collected 48 hours post-transfection, and luciferase 

activity was measured using the Dual-Luciferase Reporter Assay Kit (Vazyme, DL101) 

following the manufacturer’s protocol. 

Colocalization Analysis 

We performed colocalization analysis on IRF6 locus in Chinese (using summary 

statistics of meta-analysis from Chinese population) to distinguish the genetic structure 

of NSCLP, NSCLO and NSCPO using the R library ‘coloc’ version 5.1.0 with the 

default prior probability for colocalization66. Signals were defined as colocalising if the 

posterior probability of shared association signals (P4) was >0.8, distinct if the posterior 
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probability of independent signals (P3) was >0.8 and undetermined if neither P3 or P4 

was >0.8. 

LD Score Regression  

LD score regression42 was used, to calculate the SNP based heritability adjusted 

by sample prevalence and worldwide population prevalence of 0.1% for NSOC and its 

sub-phenotypes (NSCL/P, NSCLP, NSCLO and NSCPO) in Chinese and Asian 

population (using summary statistics of meta-analysis from Chinese and Asian 

population); to estimate the genetic correlation between NSCLP, NSCLO and NSCPO 

in Chinese; and genetic correlation between BMI67, Fetal birth weight68 and Fetal 

effect68 with orofacial clefts in a European population (POFC1).  

Associations of Lead SNPs with Other Traits 

We looked at associations between our 110 independent NSOC (including its sub-

phenotype groups) associated SNPs and other phenotypes within the phenoscanner46. 

We looked for associations with the SNP itself, and SNPs in LD (r2 ≥ 0.8).  

Mendelian Randomization Analysis 

We performed two-sample mendelian randomization (MR) analyses with 

maternal BMI as the exposure, and risk of offspring orofacial clefts (NSOC, NSCL/P, 

NSCLP and NSCLO) as outcomes. The exposures used maternal BMI using 76 genetic 

variants previously associated with BMI as instruments from previous reported GWA 

study of BMI69 (N= 339,224). The SNP-orofacial clefts associations were taken from 

POFC1 GWASs in European population (N=2,882), and adjusted for fetal genotype 

(N=11,122) using WLM-adjusted analysis to account for confounding due to 

correlation between maternal and fetal genotype70. To obtain SNP estimates for 

offspring orofacial clefts conditional on offspring genotype, we first transformed the 

log ORs of maternal and fetal to the liability scale71, and then applied the WLM-

adjusted analysis. The fetal orofacial cleft-independent maternal BMI effects were then 

transformed to log ORs for analysis. A population prevalence for orofacial clefts of 0.1% 

was used for the transformations. We applied the inverse-variance weighted MR 

method, with MR-Egger72, weighted median and penalized weighted median73 acting 

as sensitivity analysis to test for robustness to MR assumptions. 

Polygenic Scores 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.12.06.24318522doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.06.24318522


Step1, we calculated the base on POFC1 GWAS summary results of European, 

Latin/South American and Asian populations on four phenotypic groups (NSOC, 

NSCL/P, NSCLP and NSCLO)10 by PRScsx software74. Step2, the CHW_Axiom 

dataset (NSOC, NSCL/P, NSCLP and NSCLO) was used as training data to assess the 

most powerful base among the four phenotypic group of POFC1 GWAS, by comparing 

the association results of the training datasets, the NSCL/P of POFC1 derived PGS had 

the strongest association. Step3, we tested the evidence for association between PGS 

and NSOC and its sub-phenotypic groups in three independent datasets (CHW_ZH, 

CHE_Axiom&HSA and CHS_ZH), and evaluated its potential effect and estimated the 

effect size (OR and 95%CI) per unit (normalized of PGS which is calculated by the 

formula [PRS-mean(PRS)]/SD(PRS)). 

To indicate the predictive ability and the proportion of phenotypic variance 

explained by the polygenic scores (PGSs). We calculated the coefficient of 

determination R2 (pseudo-R2) by building two prediction logistic regression models 

(with/without PGS) and calculated by R rms Package. 

To further measure the discrimination of PGS in disease prediction, we calculated 

area under the curve (AUC) and plotted the receiver-operator curve (ROC) with or 

without covariates sex in the logistic regression model adjusting for 10 PCs by R ROCit 

Package. 
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