Appendix B

Table 1. Characteristics of included studies

	Publication details	Type of Research Paper	Type of Technology	Type of Source
1	Hachimi A et al. A 20-year patent review and innovation trends on hydrogel-based coatings used for medical device biofabrication. 2022[14]	Review	Hydrogel-based coatings on medical devices	Patents
2	Borzova E et al. The Patent Landscape Analysis of Skin Bioinks for 3D Bioprinting. 2022[15]	Original Research	Skin bioinks	Patents
3	Tarasova EV et al. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. 2023[16]	Review	Natural compounds for use in medicine	Various Sources
4	Asif M et al. Advancements, Trends and Future Prospects of Lower Limb Prosthesis. 2021[17]	Review	Prosthetics	Patents
5	Cammarano A et al. Advances in Transdermal Drug Delivery Systems: A Bibliometric and Patent Analysis. 2023[18]	Review	Transdermal drug delivery	Various Sources
6	Mitsumori Y et al. An Analysis of COVID-19 Related IPRs: Should they be Promoted, Waived or Pooled? 2022[19]	Review	Vaccines and pharmaceuticals	Patents
7	Ge J et al. Analysis of patent development status of lipid nanoparticle delivery system for mRNA vaccines. 2022[20]	Original Research	mRNA vaccines	Patents

8	Danylenko YA et al. Analysis of scintillation materials for nuclear medicine on the basis of patent analytics. 2023[21]	Original Research	Component of medical diagnostic devices	Patents
9	Oda T et al, An analysis of the key drivers of the Japanese digital therapeutics patents: A cross- sectional study. 2023[22]	Original Research	Digital therapeutics	Patents
10	Wei F et al. Analysis of trends in patent development for coronavirus detection, prevention, and treatment technologies in key countries. 2021{Wei, 2022 #1844}	Review	Detection, vaccines, and treatment	Patents
11	Lee JH et al. Analysis of trends in patents on insect-derived medicinal materials for skin diseases. 2020[23]	Original Research	Insect-derived medicinal materials	Patents
12	Silva M et al. Antarctic organisms as a source of antimicrobial compounds: a patent review. 2022[24]	Review	Antimicrobial compounds	Patents
13	Wu NJW et al. The Application of Nanotechnology for Quantification of Circulating Tumour DNA in Liquid Biopsies: A Systematic Review. 2022[25]	Review	Nanotechnology	Various Sources
14	Ragno L et al. Application of Social Robots in Healthcare: Review on Characteristics, Requirements, Technical Solutions. 2023[26]	Review	Social robots	Various Sources
15	Borge L et al. Assessing Interdisciplinary Research Within an Emerging Technology Network: A Novel Approach Based on Patents in the Field of Bioplastics. 2022[27]	Original Research	Bioplastics	Patents

16	Sertkaya A et al. Assessing the state of antibacterial drug discovery through patent analysis. 2023[28]	Short communication	Antibacterial drugs	Patents
17	Cañete P et al. Assistive Technology to Improve Collaboration in Children with ASD: State-of-the-Art and Future Challenges in the Smart Products Sector. 2022[29]	Review	Assistive technology	Various Sources
18	Liu XX et al. Bibliometric Study of Adaptogens in Dermatology: Pharmacophylogeny, Phytochemistry, and Pharmacological Mechanisms. 2023[30]	Review	Medicinal Plants	Various Sources
19	Yuan YJ et al. CAR-based cell therapy: evaluation with bibliometrics and patent analysis. 2021[31]	Review	CAR-based cell therapy	Various Sources
20	Speziali M et al. Cellulose technologies applied to biomedical purposes from the patentometric point of view. 2020[32]	Original Research	Cellulose technologies	Patents
21	Tiwari A et al. Cheminformatics: A Patentometric Analysis. 2022[33]	Original Research	Cheminformatics	Patents
22	Chuah LH et al. Chitosan based drug delivery systems for skin atopic dermatitis: recent advancements and patent trends. 2023[34]	Review	Chitosan based drug delivery systems	Patents
23	Altuntas S et al. A clustering-based approach for the evaluation of candidate emerging technologies. 2020[35]	Original Research	Dental implants	Patents
24	Lee S et al. Comparing technology convergence of artificial intelligence on the industrial sectors: two-way	Original Research	Cross-industry	Patents

	approaches on network analysis and clustering analysis. 2021[36]			
24	Fluit R et al. A Comparison of Control Strategies in Commercial and Research Knee Prostheses. 2019[37]	Review	Knee prostheses	Various Sources
26	Melo RL et al. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. 2024[38]	Review	Enzyme based biosensors	Various Sources
27	Sanchez-Campos N, et al. Conotoxin Patenting Trends in Academia and Industry. 2022[39]	Review	Conotoxins	Patents
28	Ailia MJ, et al. Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape. 2022[40]	Review	Digital pathology	Patents
29	Chen Y, et al. Delivery of therapeutic small interfering RNA: The current patent-based landscape. 2022[41]	Original Research	siRNA delivery technologies	Patents
30	Bhatnagar P, et al. Delivery systems for platelet derived growth factors in wound healing: A review of recent developments and global patent landscape. 2022[42]	Review	Delivery systems for platelet derived growth factors	Patents
31	Valadas LAR, et al. Development and innovation on dental products in Argentina: A technological prospecting based on patents. 2020[43]	Original Research	Dental products	Patents
32	Xu CM, et al. The Development of Marine Drugs: A Research Based on Patent Analysis. 2020[44]	Original Research	Marine drugs	Patents

33	Imran M, et al. Development of Therapeutic and Prophylactic Zinc Compositions for Use against COVID-19: A Glimpse of the Trends, Inventions, and Patents. 2022[45]	Review	Prophylactic Zinc Compositions	Patents
34	Chang SH. The development trend and academic patent technology network of laser and optical technologies. 2021[46]	Original Research	Laser and optical technologies	Patents
35	Xin Y, et al. The development trend of artificial intelligence in medical: A patentometric analysis. 2021[47]	Original Research	Medical	Patents
36	Singh M, et al. Diagnostic and therapeutic approaches for endometriosis: a patent landscape. 2023[48]	Review	Diagnostics and therapeutics	Patents
37	Litvinova O, et al. Digital Pills with Ingestible Sensors: Patent Landscape Analysis. 2022[49]	Review	Digital pills with sensors	Various Sources
38	Imran M, et al. Discovery, Development, and Patent Trends on Molnupiravir: A Prospective Oral Treatment for COVID-19. 2021[50]	Review	Molnupiravir	Patents
39	Imran M, et al. Discovery, Development, Inventions, and Patent Trends on Mobocertinib Succinate: The First-in-Class Oral Treatment for NSCLC with EGFR Exon 20 Insertions. 2021[50]	Review	Mobocertinib Succinate	Patents
40	Jeon D, et al. A doc2vec and local outlier factor approach to measuring the novelty of patents. 2021[51]	Original Research	Medical Imaging	Patents
41	Sharma R, et al. Drug Discovery, Diagnostic, and therapeutic trends on Mpox: A patent landscape. 2021[52]	Original Research	Drug Discovery, Diagnostic, and therapeutics	Patents

42	Mohajel N, et al. Ebola as a case study for the patent landscape of medical countermeasures for emerging infectious diseases. 2021[53]	Original research	Diagnostic tests and vaccines	Patents
43	Picanco-Castro V, et al. Emerging CAR T cell therapies: clinical landscape and patent technological routes. 2020[54]	Review	CAR T cell therapies	Various Sources
44	Zhou WY, et al. Emerging Patent Landscape for Gene Therapy as a Potential Cure for COVID-19. 2021[55]	Review	Gene therapy	Various Sources
45	Picanco-Castro V, et al. Emerging patent landscape for non-viral vectors used for gene therapy. 2020{Picanco-Castro, 2020 #1910}	Original research	Gene therapy	Various Sources
46	Abdi S, et al. Emerging technologies and their potential for generating new assistive technologies. 2021[56]	Original research	Assistive technology	Various Sources
47	Wadhawa R, et al. Exploring the landscape of genetics patents in the United States from 2005 to 2020. 2022[57]	Original research	Genetics	Patents
48	Robinson AA, et al. Examining the Role of Actors in an Emerging Technological System: The Case of POC Devices. 2023[58]	Original research	Micro/nanofluidic- based point-of-care (mnPOC) devices	Various Sources
49	Jeon E, et al. Exploring new digital therapeutics technologies for psychiatric disorders using BERTopic and PatentSBERTa. 2021[59]	Original research	Digital therapeutics (DTx)	Patents
50	Gadiya Y, et al. Exploring SureChEMBL from a drug discovery perspective. 2024[60]	Original research	Pharmaceutical drugs	Patents

51	Wang YH. Exploring Technology- Driven Technology Roadmaps (TRM) for Wearable Biosensors in Healthcare. 2024[61]	Original research	Wearable biosensors	Various Sources
52	Singh P, et al. Ficus benghalensis-A comprehensive review on pharmacological research, nanotechnological applications, and patents. 2023[62]	Review	Ficus benghalensis	Various Sources
53	Culmone C, et al. Follow-The-Leader Mechanisms in Medical Devices: A Review on Scientific and Patent Literature. 2021[63]	Review	Medical Devices	Various Sources
54	Zagoya-Lopez Z, et al. Foot/Ankle Prostheses Design Approach Based on Scientometric and Patentometric Analyses. 2021[64]	Review	Foot/Ankle protheses	Various Sources
55	Lyu L, et al. The global chimeric antigen receptor T (CAR-T) cell therapy patent landscape. 2020[65]	Original research	CAR-T cell therapy	Patents
56	Frisio DG, et al. Global Innovation Trends for Plant-Based Vaccines Production: A Patent Analysis. 2021[66]	Original research	Plant-based vaccines	Patents
57	Liu K, et al. Global landscape of patents related to human coronaviruses. 2021[67]	Review	Human Coronaviruses	Patents
58	Li M, et al. The global mRNA vaccine patent landscape. 2022{Li, 2022 #1931}	Original research	RNA vaccines	Patents
59	Braga L, et al. The global patent landscape of artificial intelligence applications for cancer. 2023[68]	Original research	AI cancer applications	Patents

69	Liu K, et al. Global Patent Landscape of Benign Prostatic Hyperplasia Drugs. 2022[69]	Original research	Benign prostatic hyperplasia (BPH) drugs	Patents
61	Cai Y, et al. The global patent landscape of emerging infectious disease monkeypox. 2024[70]	Original research	Monkeypox	Patents
62	Li Q, et al. The global patent landscape of HER2-targeted biologics. 2023[71]	Original research	HER2-targeted therapies	Patents
63	Lyu M, et al. The global patent landscape of mRNA for diagnosis and therapy. 2023[72]	Original research	Messenger RNA (mRNA)	Patents
64	Liu K, et al. Global research on artemisinin and its derivatives: Perspectives from patents. 2020[73]	Review	Artemisinin derivatives	Patents
65	Maresova P, et al. Health–Related ICT Solutions of Smart Environments for Elderly–Systematic Review. 2020[74]	Review	ICT for smart environments	Various Sources
66	Zhou W, et al. Human gene therapy: A patent analysis. 2021[75]	Review	Gene therapy	Patents
67	Machuca-Martinez F, et al. Coronaviruses: A patent dataset report for research and development (R&D) analysis. 2020[76]	Original research	Coronaviruses	Patents
68	Shin HJ, et al. Identifying Areas of Technology Commercialization in the Biomedical Sector: An Integrated Analysis of Patents and Publications. 2022[77]	Original research	Biomedical technologies	Other
69	Raghu Kiran, CVS, et al. Idiom of gastroretentive drug delivery systems: Comprehensive view on innovation technologies, patents and clinical [trails]. 2023[78]	Review	Gastroretentive drug delivery	Various Sources

70	Imran M, et al. Innovations and patent trends in the development of USFDA approved protein Kinase inhibitors in the last two decades. 2021[79]	Review	Protein Kinase Inhibitors	Patents
71	Aboy M, et al. Mapping the European patent landscape for medical uses of known products. 2021[80]	Original Research	N/A	Patents
72	Aboy M, et al. Mapping the patent landscape of medical machine learning. 2023[81]	Original Research	Machine Learning	Patents
73	Burgio V, et al. Mechanical Stapling Devices for Soft Tissue Repair: A Review of Commercially Available Linear, Linear Cutting, and Circular Staplers. 2024[82]	Review	Mechanical Stapling Devices	Various Sources
74	Queiroz AAFLN, et al. mHealth Strategies Related to HIV Postexposure Prophylaxis Knowledge and Access: Systematic Literature Review, Technology Prospecting of Patent Databases, and Systematic Search on App Stores. 2021[83]	Review	Mobile health (mHealth) interventions	Various Sources
75	Lohita S, et al. Myocardial Infarction: Background, Recent Advances, and Interventions Supported by Clinical Trial and Patent Landscape. 2023[84]	Review	Not specified	Various Sources
76	Zhang HL, et al. New Frontier in Antiviral Drugs for Disorders of the Respiratory System. 2022[85]	Original research	Antiviral drugs	Patents
77	Mancilla-de-la-Cruz J, et al. The Next Pharmaceutical Path: Determining Technology Evolution in Drug	Original research	Additive	Various Sources

	Delivery Products Fabricated with Additive Manufacturing. 2020[86]			
78	Riondato M, et al. Oldie but Goodie: Is Technetium-99m Still a Treasure Trove of Innovation for Medicine? A Patents Analysis (2000–2022). 2023[87]	Original research	Technetium-99m	Patents
79	Colonia BSO, et al. Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: A review and patent landscape. 2020[88]	Original research	Omega-3 microbial oils	Various Sources
80	Ma J, et al. Organization oriented technology opportunities analysis based on predicting patent networks: a case of Alzheimer's disease. 2022[89]	Original research	Technologies (not specified)	Patents
81	Litvinova O, et al. Patent analysis of digital sensors for continuous glucose monitoring. 2023[90]	Review	Digital sensors	Various Sources
82	Klongthong W, et al. A Patent Analysis to Identify Emergent Topics and Convergence Fields: A Case Study of Chitosan. 2021[91]	Original research	Chitosan	Patents
83	Hani U, et al. Patent bibliometrics in spinal deformity: the first bibliometric analysis of spinal deformity's technological literature. 2023[92]	Original research	Surgical devices	Patents
84	Devarapalli P, et al. Patent intelligence of RNA viruses: Implications for combating emerging and re-emerging RNA virus based infectious diseases. 2022[93]	Original research	RNA viruses	Patents
85	Hernández-Melchor D, et al. The patent landscape in the field of stem	Original research	Stem cell therapy	Patents

	cell therapy: closing the gap between research and clinic. 2024[94]			
86	Greenberg A, et al. Patent landscape of brain–machine interface technology. 2021[95]	Original research	Brain–machine interface	Patents
87	Cho YD, et al. Patent landscape report on dental implants: A technical analysis. 2021[96]	Original research	Dental implants	Patents
88	Litvinova O, et al. Patent landscape review of non-invasive medical sensors for continuous monitoring of blood pressure and their validation in critical care practice. 2023[97]	Original research	Non-invasive medical sensors for continuous monitoring of blood pressure	Various Sources
89	Francis N, et al. Patent Landscape Review on Ankle Sprain Prevention Method: Technology Updates. 2023[98]	Original research	Ankle Sprain Prevention technology	Patents
90	Juiz PJ, et al. Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis. 2024[99]	Original research	Antioxidant Phytochemicals	Patents
91	Chartoumpekis DV, et al. Patent Review (2017-2020) of the Keap1/Nrf2 Pathway Using PatSeer Pro: Focus on Autoimmune Diseases. 2020[100]	Original research	Nuclear factor erythroid 2-related factor 2 (Nrf2) and cytoplasmic inhibitor Kelch-like ECH-associated protein 1 (Keap1	Patents
92	Parihar K, et al. A patent review on strategies for biological control of mosquito vector. 2020[101]	Original research	Biological control of mosquito	Patents
93	Xiong YH, et al. Patented technologies for schistosomiasis	Original research	Medicines, devices	Patents

	control and prevention filed by Chinese applicants. 2021[102]			
94	Russo Serafini M, et al. The Patenting and Technological Trends in Hernia Mesh Implants. 2020[103]	Review	Prosthetic surgical meshes	Various Sources
95	Mendez CRA, et al. Patentometric analysis of the technological development of Biotechnology for health in higher education institutions in Rio Grande do Sul. 2024[104]	Review	Biotechnology in healthcare	Patents
96	Gkika DA, et al. Patents of nanomaterials related with cancer treatment applications. 2020[105]	Review	Nanomaterials related with cancer treatment applications	Patents
97	Gadiya Y, et al. Pharmaceutical patent landscaping: A novel approach to understand patents from the drug discovery perspective. 2023[106]	Review	Pharmaceuticals and biotechnology	Patents
98	Patel S, et al. Probiotic Formulations: A Patent Landscaping Using the Text Mining Approach. 2022[107]	Review	Probiotics	Patents
99	Shivakumar P, et al. Prospection of chitosan and its derivatives in wound healing: Proof of patent analysis. 2021[108]	Review	Chitosan	Various Sources
100	Kurakula M, et al. Prospection of recent chitosan biomedical trends: Evidence from patent analysis. 2020[109]	Review	Chitosan	Various Sources
101	Islam MM, et al. The Race to Replace PDE5i: Recent Advances and Interventions to Treat or Manage Erectile Dysfunction: Evidence from	Review	Phosphodiesterase type 5 inhibitor	Various Sources

	Patent Landscape (2016–2021). 2022[110]			
102	Durmuşoğlu A, et al. Remembering Medical Ventilators and Masks in the Days of COVID-19: Patenting in the Last Decade in Respiratory Technologies. 2022[111]	Original research	Medical Ventilators and Masks	Patents
103	Zhang T, et al. The research activities and development trends of antineoplastics targeting PD-1/PD- L1 based on scientometrics and patentometrics. 2022[112]	Conference paper	Antineoplastics	Patents
104	DasNandy A, et al. A review of patent literature on the regulation of glucose metabolism by six phytocompounds in the management of diabetes mellitus and its complications. 2023[113]	Review	Phytocompounds	Patents
105	Yeh TF, et al. A review of technological developments in lipid nanoparticle application for mRNA vaccination. 2023[114]	Original research	Lipid nanoparticle	Various Sources
106	Wang Q, et al. A Scientometric Analysis and Visualization of Scientific Research and Technology Innovation in Needle-free Insulin Injection From 1974 to 2022. 2023[115]	Original research	Needle-free insulin injection	Various Sources
107	Jiang J, et al. The state of the art and future trends of root canal files from the perspective of patent analysis: a study design. 2022[116]	Review	Root canal files	Patents
108	Kong X, et al. STING as an emerging therapeutic target for drug discovery:	Review	Stimulator of interferon genes (STING	Patents

	Perspectives from the global patent			
	landscape. 2022[117]			
109	Hazis NUA, et al. Systematic Patent Review of Nanoparticles in Drug Delivery and Cancer Therapy in the Last Decade. 2021[118]	Review	Nanoparticles	Patents
110	Verma R. A Technical Analysis of MIOT in Sensitive Aspect. 2023[119]	paper	Biosensors	Various Sources
111	Barragán-Ocaña A, et al. Technological development and patent analysis: the case of biopharmacy in the world and in Latin America. 2022[120]	Original research	Biopharmaceuticals	Patents
112	Hwang J, et al. Technological Opportunity Analysis: Assistive Technology for Blind and Visually Impaired People. 2020[121]	Original research	Visual assistive device	Patents
113	Liu J, et al. Technology Forecasting based on Topic Analysis and Social Network Analysis: A Case Study Focusing on Gene Editing Patents. 2021[122]	Original research	Gene editing technology	Patents
114	Wadhwa RR, et al. Temporal Trends in the United States Patent Landscape: Innovation in Cardiology Across Industry and Academia. 2023[123]	Original research	Diagnostics and therapeutics in medical care	Patents
115	Erzurumlu SS, et al. Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations. 2020[124]	Original research	Healthcare innovations	Patents
116	Pasek JE, et al. Trends in bioengineering patents granted 2000-2019. 2021[125]	Original research	Bioengineering	Patents

117	Chowdhury AR, et al. The trends in CRISPR research: A patent and literature study with a focus on India. 2021[126]	Review	Clustered regularly interspaced short palindromic repeat (CRISPR)	Various Sources
118	Almeida FLC, et al. Erratum to "Trends in lipase immobilization: Bibliometric review and patent analysis". 2021[127]	Review	Biotechnology	Various Sources
119	Bacigalupo ML, et al. Unveiling patenting strategies of therapeutics and vaccines: evergreening in the context of COVID-19 pandemic. 2023[128]	Original research	Therapeutics and vaccines	Patents
120	Chen TA, et al. Using Big Data Analytics on Health Industry Development: The Empirical Intellectual Property Analysis from Stem Cell Therapy. 2021[129]	Original research	Stem cell therapy	Patents
121	Liu K, et al. What, Where When and How of COVID-19 Patents Landscape: A Bibliometrics Review. 2022[130]	Original research	COVID-19 related technologies	Patents
122	Rincon-Lopez J, et al. When Cyclodextrins Met Data Science: Unveiling Their Pharmaceutical Applications through Network Science and Text-Mining. 2021[131]	Original research	Cyclodextrins	Patents
123	Kim WJ, et al. The worldwide patent landscape of dental implant technology. 2022[132]	Review	Dental implants	Patents
124	Azman AA, et al. Worldwide trend discovery of structural and functional relationship of metallo-β-lactamase for structure-based drug design: A	Review	Metallo-β- lactamase	Various Sources

bibliometric evaluation and patent	
analysis. 2023[133]	