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ABSTRACT

The advancement of medical research and healthcare is increasingly dependent on the
analysis of patient-level data, but privacy concerns and legal constraints often hinder data
sharing. Synthetic data mimicking real patient data offers a widely discussed potential
solution. According to the literature, synthetic data may, however, not fully guarantee patient
privacy and can vary greatly in terms of fidelity and utility. In this study, we aim to
systematically investigate the trade-off between privacy, fidelity and utility of synthetic patient
data. We assess synthetic data fidelity in terms of statistical similarity to real data, and utility
via the performance of machine learning models trained on synthetic and tested on real
data. Regarding data privacy we focus on membership inference via shadow model attacks
as well as singling out and attribute inference risks. In this regard, we also consider
differential privacy (DP) as a possible mechanism to probabilistically guarantee a certain
level of data privacy, and we compare against classical anonymization techniques. We
evaluate the fidelity, utility and privacy of synthetic data generated by five different models for
three distinctive patient-level datasets. Our results show that our implementations of DP
have a strongly detrimental effect on the fidelity of synthetic data, specifically its correlation
structure, and therefore emphasize the need to improve techniques that effectively balance
privacy, fidelity and utility in synthetic patient data generation.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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1. Introduction

With recent advances and a growing number of applications of machine learning
(ML) and artificial intelligence (Al), the availability and sharing of health data is of
utmost importance and could potentially generate huge value for medical research
and healthcare In an effort to make health related data available for research, there
exist numerous initiatives such as the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [1] or the Cancer Genome Atlas (TCGA) [2]. These data initiatives have been
shown to have a big impact on research and inspire a large amount of follow up
publications [3], which can in turn significantly advance research in the
corresponding field [4].

Even though data sharing has been shown to elevate research, working with
health-related data and in particular patient-level data is a delicate topic due to its
sensitivity and the resulting privacy concerns. Due to such concerns and the
corresponding legal data protection requirements [5], sharing health data is often a
cumbersome and slow process. This is especially the case when attempting to share
data across different institutions, which typically requires complex legal agreements
between organizations that may not have the same interests. In consequence,
privacy concerns can aggravate the formation of fragmented data silos. While
approaches such as Federated Learning (FL) [6] try to address these challenges by
allowing model training across decentralized data sources without exchanging raw
data, there still persist significant challenges [7]. In addition to organizational, legal
and technical issues, implementation of ML algorithms within a FL environment is
impossible without data scientists having the possibility to see sample data. While
randomly permuted real data or data sampled uniform randomly from the theoretical
ranges of each individual variable can at least provide some insights into the
principle structure of the real data, “fake” data generated in this way does not match
the statistical properties of the real data and can thus yield dangerous
misinterpretations and wrong assumptions about the nature of the real data. This in
turn can result in implementation errors of ML algorithms, which could either lead to
program crashes or statistical biases when the ML algorithm is trained with real data.

A promising way forward is thus the generation of realistic synthetic data. Synthetic
data here refers to artificially generated data that retains at least some of the
statistical properties of the original dataset while containing less information about a
real person’s identity. In the context of healthcare, synthetic data can be created to
mimic patient demographics, clinical characteristics, and other relevant features
without exposing individual identities. Synthetic data can be generated via
rule-based systems [8] or via generative artificial intelligence (Al) techniques [9].
There exist a wide range of applications of synthetic data, such as data
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augmentation [10], [11], [12], predictive modeling [13], [14], and the support of data
scientists in the development of algorithms and tools [15], [16].

Although synthetic data is often considered a method to protect patient privacy,
concerns have been raised in the literature about its effectiveness. Studies have
shown that synthetic data may not always fully preserve privacy, raising questions
about whether generative Al methods can truly fulfill this promise [17], [18], [19]. Due
to problems such as an Al model overfitting of real training data, synthetic data can
be used as an attack vector (e.g. through membership inference [20]) and thus retain
the risk of leaking sensitive personal data [21], [22]. There exist numerous
approaches to address this issue. One prominent approach is Differential Privacy
(DP) [23]. While DP offers strong probabilistic privacy guarantees, it also has a
strong impact on data utility. Utility will fluctuate with different degrees of DP
guarantees [24], [25] and will generally decrease as the loss in privacy decreases
[26].

In this paper we aim to more systematically investigate the trade-off between
synthetic data privacy guarantees and and the realism of synthetic data, i.e. fidelity.
Furthermore, we explore the corresponding data utility implications - particularly in
the domain of medical research and healthcare - where the sharing of patient-level
data is essential to elevate research and patient care. To our knowledge our paper
fills a gap, because studies exploring this trade-off for real-world health data are
largely missing. We demonstrate how different privacy settings and different DP
implementations can impact the fidelity of synthetic data on three different datasets
covering different areas of healthcare, namely hospital discharge, clinical registries
and longitudinal cohort studies. We evaluate the privacy, fidelity and utility of
synthetic data generated by four different published generative Al techniques,
among them VAMBN [27], a method specifically designed to handle multimodal
longitudinal clinical study data. We compare data privacy against k-anonymity as an
established alternative approach for data de-identification. To practically evaluate
synthetic data fidelity and privacy in a visual and easy to understand manner, we
have implemented SYNDAT as an open source framework' for the evaluation and
visualization of synthetic data, which is also available as a dashboard web
application? [28].

2. Methods

We generated synthetic data based on three different patient-level datasets using
different models and privacy settings. We evaluated the resulting datasets in terms of
their efficacy to preserve patient privacy and their data fidelity in terms of how closely

! https://github.com/SCAI-BIO/syndat
2 https://syndat.scai.fraunhofer.de/
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they resemble the original data. Finally, we explored the practical utility of synthetic
data for solving defined downstream tasks.

2.1 Selected datasets

We investigated synthetic data generated based on three different datasets covering
medical research, medical routine as well as health economy:

1. The Texas Hospital Inpatient Discharge Data Public Use Data File [29]
(TEXAS) has been released annually since 2006 by the Texas Department of
State Health Services. It contains 18 economic hospital discharge data
variables of 50000 patients from all state licensed hospitals in Texas, USA.

2. The Center for Cancer Registry Data of the Robert Koch-Institut (RKI) in
Germany provides a dataset of all yearly new instances of new cancer cases
in Germany [30]. The dataset consists of 18 variables for over 40000
individual records of patients with Glioblastoma Multiforme (GBM), a severe
brain tumor. The dataset has previously been used in a statistical analysis
investigating the effect of different treatment options (surgery, radiotherapy,
chemotherapy) on overall survival [31].

3. The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset [1] has been
deployed for medical research purposes. It consists of features of different
categories (clinical data, genetic sequencing data, volumetric imaging data)
based on longitudinal screening data related to Alzheimer’s Disease (AD).
The data was recorded over a period of 48 months at checkup interwalls of 6,
12 and 24 months for a total of 690 patients at different disease stages with a
total of 239 variables.

2.2 Synthetization method

We generated synthetic data for the described datasets using five different
generative Al models:

BayesianNet

PrivBayes

PateGAN

VAMBN

VAMBN using model training with DP (VAMBN-DP)

abkrownN =

BayesianNet is a Bayesian Network implementation based on the implementation of
DataSynthesizer [32], [33], an open source framework for Al-based synthetic data
generation. PrivBayes is a DP version of the Bayesian Network model, which is also
adapted from the same framework. The PateGAN model is based on its original
implementation of Jordon et al [34]. PateGAN enforces privacy guarantees by
adapting the Private Aggregation of Teacher Ensembles (PATE) [35] framework to
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the Generative Adversarial Network (GAN) architecture to generate differential
private data. Variational Autoencoder Modular Bayesian Networks [27] (VAMBN).
VAMBN is a generative modeling approach specifically designed for modeling
longitudinal clinical study data with regular visit intervals [36]. It combines Bayesian
Networks [37] and Heterogeneous Incomplete Variational Autoencoders [38]
(HI-VAEs) to deal with heterogeneous data with potentially missing values without
high risks of overfitting [27]. All models except VAMBN were natively supported by
the framework of Stadler et. al. [17], which was additionally used for the evaluation of
shadow model attacks (c.f. section 3.1). Notably, all methods except VAMBN ignore
time dependencies within the data, i.e. BayesianNet, PrivBayes and PateGAN were
just trained with plain tabular data as input. We provide a list of used
hyperparameters for each method and each dataset in the supplementary material in
Table S4. We also provide supplementary configuration files for result reproduction
of the VAMBN model in a separate Zenodo repository, see supplementary material.

In addition, we compared these data synthesization methods in terms of privacy risks
against anonymization enforcing k-anonymity on demographic data as implemented
in the NHSSanitizer tool by Stadler et al [39]. This was based on the idea that data
synthesization can be seen as an anonymization process. The NHSSanitizer
enforces k-anonymity [40] based on the demographic attributes of the original data.
Sanitization is implemented by the imputation of missing values, outlier reduction for
numerical values and rare categories as well as k=10 anonymization of demographic
variables by record/row deletion. Full details on each model parameterizations are
shown in Table S4 in the supplementary material.

2.3 Differential privacy

We employed the (g, §)-DP framework originally proposed by Dwork et al. [23]: Let A
be a randomized algorithm (here: a data synthetization algorithm) and 0 <¢, 0 <8 <
1. A:D - R is said to respect (¢, d) differential privacy, if for any two datasets
D,D,cD that differ only in one single patient and for any output S ¢ R of the

randomized algorithm, we have
Pr(A(D)€S)<e" Pr(A(D,)ES) + &

The parameter ¢ is oftentimes called the “privacy budget’, and & constitutes a small
relaxation of the guarantee enforced by pure ¢-differential privacy, which corresponds
to & = 0. Abadi et al. [41] showed that it is possible to directly incorporate (e, §)-DP
guarantees into the training of a neural network by clipping the norm of the gradient
and adding a defined amount of noise to it, and this approach is practically followed
in VAMBN-DP. The considered range of values for ¢ was chosen from the minimal
possible € that allowed at least one training epoch for VAMBN (high amount of noise
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added to gradient), up to 5 (low amount of noise added to gradient). This resulted in
assessed ranges of € = 1.27 to 5 (ADNI), € = 0.45 to 5 (TEXAS) and € = 1.02 to 5
(RKI) in step sizes of 0.1.

0 was fixed to 1/N, where N denotes the size of the dataset for each respective
dataset, following a common recommendation by El Emam et al. [42]. While there is
much discussion on the topic of choosing € [43], configurations with values
exceeding our tested ranges are common, specifically in situations where privacy
aspects are not of utmost priority [44], [45].

2.4 Synthetic data fidelity

We measured synthetic data fidelity by assessing how closely synthetic data
resembled the original data in terms of statistical distributions of individual variables,
correlation matrices and lastly the ability to differentiate between the original and
synthetic data via a ML classifier. We computed three main scores for each set of
synthetic and real data. For easier interpretation and better comparability, we
normalized each score in the range of 0 to 100, where a higher score corresponds to
a higher synthetic data fidelity. We included all scores in the SYNDAT tool for
automatic, reproducible and equal assessments across datasets and synthetization
methods.

2.4.1 Marginal Statistical Distribution Similarity

One main goal of synthetic data generation is to produce data that should retain
statistical properties of the original dataset. One of those properties is the statistical
distribution of individual variables, i.e. the probability mass functions (PMFs) for
discrete features and probability density functions (PDFs) for continuous features
should resemble those in the real data. In practice, we estimated PDFs by binning
values according to the Freedman rule [46]. We then calculated for each feature the
Jensen-Shannon divergence (JSD) of real versus synthetic value distributions. The
JSD is bounded by 1; a low value can be interpreted as having a similar statistical
distribution, with a value of zero meaning that two distributions are equal. We
normalized this divergence measure into the range of [0,100] as a score to make it
easier interpretable:

m
_ 1 DP |[IM)+D(Q I M) "
SCOT€ 11 ariTy = a1 - nz=:1 m \/ 2 ) * 100

D is in this formula the Kullback Leibner (KL) divergence and M is the pointwise
mean of the distributions P and Q of the real and synthetic feature n, respectively.
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2.4.2 Correlation Structure

Additionally to having similar marginal distributions of individual variables, synthetic
data should also show a correlation structure similar to real data. Importantly, having
similar marginal distributions does not imply that statistical dependencies between
variables are kept. We thus compared the Frobenius norm of the difference of the
correlation matrices of the real and synthetic datasets, respectively, to the Frobenius
norm of the correlation matrix of the real data. After thresholding at zero, this quantity
may be interpreted as the relative error of the correlation structure of the synthetic
data. We subsequently rescaled the relative error to a score between 0 (low
similarity) and 100 (high similarity):

||p(real) — p(synthetic)HF
llp(read)ll,

T = (1 —
Sco € CORRELATION ( max

. 0) * 100)

While in theory, the correlation quotient can exceed 1, this typically occurs when
there is either minimal or no correlation in the real data compared to a higher
correlation in the synthetic data, or when mostly opposite correlations structures are
present in real and synthetic datasets. As both of these scenarios show distortions in
the synthetic data that imply poor data quality in terms of representation of the real
data, we consider correlation coefficients exceeding 1 with the lowest possible score
of zero.

2.4.3 Discrimination Ability

A common way to assess the similarity of real and synthetic data is to train a
machine learning classifier to differentiate between real and synthetic records. If the
synthetic data closely resembles the original data in terms of marginal statistical
distributions and correlation structure, a trained machine learning classifier should
only achieve a low prediction performance when trying to differentiate between the
real and synthetic data points. We here trained a Random Forest (RF) classifier to
differentiate between the two classes of real and synthetic data points within a 5-fold
stratified cross-validation scheme, ensuring that each training fold maintained the
same proportion of real and synthetic subjects. In case of the longitudinal ADNI data,
we concatenated features from all visits but omitted all with more than 10% missing
values to avoid a trivial differentiation between real and synthetic cases by the rate of
missingness. We calculated the average Receiver Operating Characteristic (ROC)
Area Under Curve (AUC) for all five test splits to evaluate the classifier performance:

5

= — L
SCOTeDISCRIMINATION =@ max(El 5 AUC(RFS)’ 0.5)) * 200
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We scale the inverse of the AUC scores by the factor 200 since the optimal AUC,
which corresponds to a prediction performance at chance level, is in this case 0.5. In
case of an AUC under 0.5 we also report an optimal score of 100.

We deliberately evaluate three different evaluation scores to assess the fidelity of
synthetic data that reflect different statistical aspects. While, for instance, the
average JSD and even the relative error of the correlation matrix may be low, a
single feature that is not well modeled may result in a high prediction performance of
the RF classifier, as the classifier learns to discriminate based on that single feature.
In this case the Discrimination Score would strongly underestimate the synthetic data
fidelity, while the Similarity and Correlation Scores would slightly overestimate since
they are effectively based on an average of over all features. It is therefore important
to inspect different facets of the synthetic data to adequately assess its overall
fidelity.

2.5 Synthetic data utility

In addition to fidelity, practical utility of synthetic data for specific data analysis tasks
is a further important aspect. In this paper we restrict ourselves to synthetic data
generated by VAMBN for this purpose, because VAMBN is applicable to static as
well as longitudinal data and showed superior fidelity of generated data (see Results
section). To explore the utility of synthetic data generated by VAMBN, we considered
the following tasks associated to each of the investigated datasets:

e Task 1 (TEXAS): Prediction of iliness severity and mortality risk. We train a RF
classifier to differentiate between minor/moderate (groups 1-2) and
major/extreme (groups 3-4) iliness severity or mortality risk.

Task 2 (RKI): Prediction of overall survival
Task 3 (ADNI): Prediction of cognitive impairment (cognitively normal (MMSE
> 23) vs cognitively impaired (MMSE < 24)) at study baseline

For tasks 1 and 3 a Random Forest classifier was trained, while for task 2 a Cox
regression model was employed. In all cases models were trained on synthetic data
and tested on real data. The same number of synthetic as real data instances were
produced, and the synthetic data generation and training process was repeated 10
times to account for the randomness in the synthetic data generation. All models
were evaluated on a held-out test set consisting of 20% of the real data. Details on
the variable selections are shown in the supplementary material. Performance
metrics for tasks 1 and 3 models were AUC-ROC, whereas models in task 2 were
evaluated via Harrel's C-index [47].
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2.6 Privacy assessment

2.6.1 Membership Inference

In recent years, it has been repeatedly shown that synthetic data is susceptible to
membership inference attacks, i.e. attacks that try to reveal whether a real patient’s
record is included in a synthetic dataset [39], [48]. The risk of linkability addresses
the ability of an attacker to link published, protected data records to a single record,
or group of records, thus leading to inference of sensitive information or
re-identification of the target [49].

One approach to assess membership inference risk using a privacy game between
an attacker and a data publisher [39], [50]. Stadler et. al. proposed a framework®
based on the idea from Shokri et al. [48], that treats the synthetic data generator as a
black box and performs iterations of membership inference attacks on selected
target records. During such a “game”, the attacker selects multiple sample datasets
from a published, non-protected reference dataset with a similar statistical
distribution as the original, non-published dataset. These samples explicitly include
and exclude a target record. Then, a set of so-called shadow models is trained using
the synthetization approach as black-box. More specifically, we here trained a
Random Forest on the synthetic data to predict whether a given target record was
included in the original real training dataset. The risk of membership inference is
then expressed as privacy gain, holding the assumption that membership inference
is always successful, if a record of the original dataset is provided to the classifier:

PG =1 — Pr(st =1ls=1) — Pr(st = 1|s = 0)

Here Pr(stz 1|s = 1) is the probability of a membership prediction under the

condition of an actual appearance of the target record in the training data. Hence,
the privacy gain is expressed as a relationship between the classifiers true positive
and false positive rate. This allows to show an actual privacy leak as the difference
between these values, i.e. under ideal conditions PG should be 1. The accuracy of
these classifiers is of lower importance.

For the selection of suitable target records, we utilized an outlier score that
calculates the normalized Euclidean distance between records and the dataset
centroid [51]. For this purpose, each categorical variable was encoded by its PMF.
We then selected the 3 strongest outliers as well as 3 records near the centroid for
our assessment of residual risks.

3 https://github.com/spring-epfl/synthetic_data_release
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2.6.2 Singling-Out and Inference Risks

In addition to shadow model attacks inferring membership, we considered the
privacy risk evaluation framework Anonymeter [52] introduced by Giomi et al. [18].
The authors proposed to calculate privacy risks as the percentage of successfully
guessed information on records of the real data using the synthetic data. We
evaluate two risks:

1. Singling-Out Risk: An individual can uniquely be identified from a dataset,
without using direct identifiers.

2. Inference Risk: Information about an individual can be deduced or inferred
from the data, even if the data does not explicitly include that information.

For our experiments, we evaluated these risks using a 80/20 train/test split of the
generated data. The test split was used as a control set, which Anonymeter uses to
evaluate the excess privacy risk. In addition to the main attack executed on the real
data and control attack executed on the control data, Anonymeter will perform a
baseline attack as a sanity check that models an attacker that tries to infer
information by random guessing. The authors implement this as a mechanism to
avoid risk underestimation in case of a weak attacker. We additionally highlighted
computed results where the sanity check of Anonymeter failed.

For the Singling-out Risk, we chose to evaluate multivariate attacks only, as
univariate attacks generally performed poorly in comparison to the baseline model.
We additionally repeated attacks which reported that performed worse or equally bad
as the baseline model while averaging results for valid runs to make our results more
robust.

3. Results

3.1 Fidelity of the synthetic data

We evaluated data fidelity of each dataset for every model based on the three fidelity
scores that we introduce in section 2.4. A summary of all computed scores can be
found in Table 1.

For the ADNI dataset, SanitizerNHS demonstrates consistently high fidelity across all
three metrics (M1: 100, M2: 86, M3: 89), outperforming all synthetic generation
models. Among the synthetic data generation methods, VAMBN achieves the
highest overall performance (M1: 27, M2: 87, M3: 73) especially in terms of
Distribution and Correlation Score. PateGAN and PrivBayes exhibit notably poor
results in Discrimination and Correlation, with PateGAN yielding zeros for both M1
and M3. The inclusion of differential privacy in VAMBN (with DP) notably removes
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the model’s effectiveness in preserving correlation (M3: 3) but has a marginal impact
on the Distribution Score.

The performance patterns observed in the TEXAS dataset are generally consistent
with those in ADNI. SanitizerNHS generally preserves the original data well, with
high scores in all three metrics. Distributions are well preserved for both DP and
non-DP VAMBN, while the preservation of correlations for all synthetic generation
models are generally worse compared to ADNI. Discrimination Scores (M1) are zero
for all synthetic generation methods, which can be attributed to the fact that
correlation preservation was generally low for all models. PateGAN performs poorly
for all computed metrics. All models implementing DP again lose performance in
terms of correlation preservation, while not being as pronounced as in the ADNI
dataset.

In the RKI dataset, SanitizerNHSKk again maintains high fidelity. The BayesianNet
model performs well, particularly in Distribution (M2: 96) and Correlation (M3: 82),
while VAMBN maintains solid performance in Distribution (M2: 94) and Correlation
(M3: 71). The addition of differential privacy in VAMBN (with DP) leads to a similar
trend of reduced performance in Correlation (M3: 58), though its Distribution (M2: 94)
score remains high. PrivBayes shows moderate fidelity with a strong Distribution
score (M2: 70), while its Correlation Score is similarly reduced as in the VAMBN DP
model.

Overall, in terms of DP, two trends can be observed: Across all datasets, the
introduction of DP in the VAMBN model leads to a significant reduction in correlation
preservation (M3). This trend is most evident in the ADNI dataset, where the
Correlation Score drops from 73 in the standard VAMBN to 3 in VAMBN with DP.
Similar reductions are observed in the TEXAS and RKI datasets, where M3 falls from
52 to 36 and from 71 to 58, respectively. The same trend can be observed for the
Bayesian Network based models, where we see an average decrease of the
Correlation Score of 21 points when comparing PrivBayes with BayesianNet.

These findings indicate that the noise introduced by DP mechanisms strongly affects
the model's ability to maintain relationships between variables, which is critical for
some analytical tasks that rely on these correlations.

In contrast, the Distribution Score (M2) is relatively robust to the inclusion of DP. In
the ADNI, TEXAS, and RKI datasets, VAMBN with DP maintains high M2 scores (85,
84, and 94, respectively), only slightly lower than the non-DP version of the model.
This suggests that while DP significantly impacts the model's ability to preserve
variable correlations, it has a minimal effect on preserving the overall distribution of
the data.
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ADNI TEXAS RKI

Bayesian
Net

PateGAN

PrivBayes

Sanitizer
NHS

VAMBN
(with DP)

Table 1: Three calculated fidelity metrics (M1: Discrimination, M2: Distribution, M3: Correlation) for all
techniques and datasets. SanitizerNHSk10 is an anonymization method of demographic features, but
not a synthetic data generation approach. It is only shown for comparison reasons.

While results for correlations and feature distributions appear generally consistent
across the datasets, performance of the synthetic data generation models in terms of
discrimination (M1) shows notable variation. Other than in cases of generally low
preservation of correlations as seen in the TEXAS dataset, low Discrimination
Scores also occur for single outlier features due to modeling artifacts which are then
learned by the classification model.

We illustrate this example for the case of non-DP VAMBN for the ADNI dataset; while
both the M2 and M3 is high due to features are well modeled on average, a SHapley
Additive exPlanations (SHAP) [53] analysis (see Supplementary Figure S2) on a
model trained to discriminate real and synthetic data showed a single feature with
significantly high impact on the model prediction. Further investigation of the feature
(MMSE) showed synthetic values outside of the real data range (Figure S1), which
is by clinical definition limited at a maximum of 30. These constraints cannot be
derived from observed data alone and would require additional post-processing
steps or the design of customized loss functions during model training based on
available background knowledge.
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3.2 Utility of synthetic data
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Figure 1: Utility evaluation results for each dataset. (a) Prediction of (MMSE) using ADNI. (b)
Prediction of illness severity using TEXAS. (c) Prediction of mortality using TEXAS. (d) Prediction of
survival probability using RKI.

For ADNI and RKI datasets, all models trained on synthetic data generated by
VAMBN demonstrated a prediction performance close to that achieved on real data
(ADNI: AUC 0.9 on real vs. 0.86 on synthetic data; RKI: C-index 0.73 on real vs. 0.72
on synthetic data). However, for both models trained on synthetic TEXAS data a
substantial decline in performance was observed. The results of all four prediction
tasks are shown in Figure 1.

To explain the substantial decline in model performance after training on the
synthetic TEXAS data, we computed SHAP values for the model trained to predict
mortality risk (Figure 1c, Figure 2). Based on this analysis, the features “iliness
severity” and “patient age” were found to have the biggest impact on model
predictions. While we found that marginal distributions of synthetic TEXAS data for
these two features align well with the real data (Figure 3), the pairwise correlations
differ substantially (Figure 4). This agrees with the results of our computed fidelity
metrics (Table 1). While VAMBN performed well in terms of its distribution score
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(Table 1, M2) for all three evaluated datasets, we saw a lower Correlation Score of
52 for TEXAS compared to a Correlation Score of >70 for both ADNI and RKI. This
suggests that out of the three evaluated scores, a high Correlation Score is likely to
be a good indicator for data utility. While the Discrimination Score appears useful to
identify single features that are not aligned with the original data, their effect seems
negligible for the overall data utility. We can see that even in cases of a low
Discrimination Score (i.e. VAMBN on RKI), a high utility can be obtained. In fact, we
can observe on the example of ADNI and its deviating single feature (see Figure
S3), that data utility may be mostly unaffected (as evident in the utility results Figure
1 (a)), if the correlation structure (high MMSE, i.e. low incidence of AD) is still
maintained in the synthetic data, even though the actual value ranges do not entirely
match the ranges of the real data.

High
ILLNESS_SEVERITY

PAT_AGE

PAT_STATUS
TOTAL_CHARGES_ACCOMM
TOTAL_CHARGES_ANCIL
TYPE_OF_ADMISSION
TOTAL_CHARGES
LENGTH_OF_STAY

SEX_CODE

Feature value

ADMIT WEEKDAY
DISCHARGE

RACE

ETHNICITY

PAT_STATE

TOTAL NON_COV_CHARGES_ANCIL

TOTAL_NON_COV_CHARGES

T+T+++++++¢$##th

TOTAL_NON_COV_CHARGES_ACCOMM

T T T T T Low
-04 -0.2 0.0 0.2 0.4

SHAP value (impact on model output)

Figure 2: SHAP values for a model trained on real data to predict mortality risk. The two features with
the biggest impact on mortality risk were found to be high iliness severity as well as a high patient
age.
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Figure 3: Real and synthetic marginal distributions for the features of illness severity (a) and patient

age (b) for real and synthetic TEXAS data.
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Figure 4: Pairwise feature correlations between iliness severity, patient age and risk mortality for real

and synthetic TEXAS data .
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3.2 Privacy of the synthetic data

3.2.1 Membership Inference

Privacy evaluation of the ADNI dataset was slightly limited since PateGAN as well as
the NHSSanitizer were unable to generate a sufficient number of records due to the
subsampling of the relatively limited real data (n=580), which is required for
shadow-model attacks. Apart from this aspect the PG score averaged around 1 and
thus indicated no obvious membership inference risks (Figure 5 (c)). However, a
high variance across different runs of the attack game was observed, indicating
potential higher risks for individual targets. No statistically significant differences
across the tested synthetic data generation methods could be found.

For the TEXAS dataset, the PG score averaged around 1 for typical records, with
more significant deviations observed in outlier targets, particularly in synthetic data
generated by BayesianNet, VAMBN and VAMBN with low DP. Compared to the
VAMBN implementation without DP, the higher protection levels in the dataset may
thus improve defenses against membership inference and reduce information
leakage.

Similarly, the RKI dataset showed a consistent PG score around 1, indicating good
average protection. Notably, there was no significant difference between outlier and
average target records, suggesting that the original, unprotected dataset may
already offer robust protection against membership inference. For detailed
visualizations, see Figure 5.
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Figure 5: Risk of membership inference expressed by PrivacyGain for the TEXAS (a), RKI (b) and
ADNI (c) dataset using shadow model attacks. A PrivacyGain of 1 indicates an equal amount of
correct guesses on target and non-target included data samples, hence perfect protection.

3.2.2 Singling Out and Attribute Inference Risks

The Anonymeter framework provides standardized risk scores between 0.0 and 1.0,
where higher values indicate higher residual privacy risks. We used 10 iterations of
Anonymeter to provide stable results (Table 2). Notebly, Anonymeter failed the sanity
checks (c.f. section 2.6.2) for singling out attacks for all models on the RKI and
TEXAS datasets as well as for the PateGAN model on the ADNI dataset. The reason
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might be that attack success rates were lower or equal than pure chance (c.f. section
2.5.2).

Overall, residual privacy risks for singling-out based on multivariate analysis showed
no identifiable risks for the TEXAS and RKI datasets across all tested methods and
only few successful singling out attacks for the ADNI dataset. For the latter case, we
observed comparable results for the BayesianNet, PrivBayes as well as all VAMBN
variants (all risk scores <= 0.12). No specific advantage was observed for DP
techniques. The highest residual risk scores of 0.25 was found for the NHSSanitizer,
which only performs anonymization of demographic features.

Regarding attribute inference risks estimated by the Anonymizer framework, we
found residual risks scores below 0.2 for all synthesization techniques for all
datasets (Figure 6). Again, highest risks were found for the NHSSanitizer on TEXAS
with values of up to 0.8 indicating a high likelihood that the anonymized data could
be used to infer values of some attributes of real patients.

Singling Out Risk ADNI TEXAS RKI
BayesianNet 0.11 (0.02) 0.00 (0.00, 0.00)* 0.00 (0.00, 0.00)*
PateGAN 0.00 (0.00, 0.00)* 0.00 (0.00, 0.00)* 0.00 (0.00, 0.00)*
PrivBayes 0.06 (0.01) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)*
SanetizerNHS 0.25 (0.03) 0.00 (0.00, 0.00)* 0.00 (0.00, 0.00)*
VAMBN 0.11 (0.02) 0.00 (0.00, 0.00)* 0.00 (0.00, 0.00)*
VAMBN-DP high 0.12 (0.02) 0.00 (0.00, 0.00)* 0.00 (0.00, 0.00)*
VAMBN-DP low (e=5) 0.11 (0.02) 0.00 (0.00, 0.00)* 0.00 (0.00, 0.00)*

Table 2: Calculated Risk for Singling Out and 95% confidence interval (brackets) for all 3 datasets
and all evaluated models. In cases annotated with (*), Anonymeter attacks were deemed not
successful because neither baseline nor actual attack resulted in any successes.


https://doi.org/10.1101/2024.12.06.24317239
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2024.12.06.24317239; this version posted December 8, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.6

0.5

04

perpetuity.
It is made available under a CC-BY 4.0 International license .

Attribute Inference Risk for ADNI (10 iterations)

Attribute Inference Risk for Texas (10 iterations) 0.6
: H
.
* 0.5
:
0.4
0.3
N 0.2
s
01 . . : . .
: ' -' : : . s
: . < Y 3 . . : . -
* H $ s 00 & N : - : . -
J o S SRS S o S & ©
> & ) g R Q X g S ) Ny R S
> & R 2 > Q : Q
< < & > @(bé & Q & ,\‘\\\\4’ > @Q’e
2 2
@ A§ N @ 4@ Ns
(a) (b)

Attribute Inference Risk for ADNI (10 itterations)

(c)

Figure 6: Attribute Inference Risk over all features averaged over 10 iterations for TEXAS (a), RKI (b)
and ADNI (c)

4. Discussion

This study aimed to evaluate synthetic data fidelity of each dataset based on the
proposed metrics for both DP and non-DP models and assess the potential trade-off
in terms of privacy preservation and data utility. To perform a broad range evaluation
of data fidelity, we chose to assess three different fidelity scores, focussing on
different aspects of the synthetic data.

Modern generative Al methods, particularly VAMBN, demonstrated the ability to
generate patient-level synthetic data with high fidelity. Synthetic data generated by
this method can be leveraged to train machine learning models that achieve
predictive performance comparable to those trained on real-world data. However, as
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shown by the results from the TEXAS dataset, even minor discrepancies between
synthetic and real data can lead to significant variations in model performance.
Therefore, it is crucial to conduct thorough quality assessments of synthetic data
before utilizing it for downstream analyses or applications.

Based on the results of our utility evaluation, we identified the Correlation Score to
be the most important factor to preserve utility in synthetic data out of the tested
scores. While generative models such as VAMBN were generally able to preserve
feature correlations in a complex and multimodal dataset such as ADNI, the addition
of differential privacy to the model was detrimental to correlation structures and
resulted in a near complete loss of feature correlation, thus making the synthetic
data effectively useless for any down-stream tasks. While we also found a significant
decrease in Correlation Scores in the structurally simpler RKI and TEXAS datasets,
the negative effect was less pronounced, thus potentially preserving a higher degree
of utility in DP settings for less complicated underlying modeled data.

Although our study found that differential privacy (DP) significantly affects feature
correlations for all tested implementations, its impact on the marginal distributions of
individual features is minimal. This indicates that, although certain implementations
of DP may not be optimal for model training, they can still provide valuable insights
at a univariate feature level and yield general summary statistics of the original
dataset.

While we found that our proposed scores - and specifically the Correlation Score -
translate well into actual synthetic data utility, they also have their limitations. While
the proposed scores to evaluate synthetic data fidelity provide a good first
impression, they are still dependent on the structure of the real data. For instance,
the Feature Correlation Score will be less informative for data in which features show
little to no correlation. Variability in data types, such as categorical versus continuous
variables, can further impact the results - especially the Distribution Similarity score -
and depend on the chosen encoding of categorical features. Lastly, we found that
the computed Discrimination Score may in most cases be overly pessimistic, as a
Random Forest classifier was able to predict for all cases rather reliably whether a
data point was a real or synthetically generated one, even if both the statistical
distributions and correlations were relatively well reproduced. Future research should
thus focus on extensions or modifications of the proposed scores to make them
more robust and more generally applicable across different data structures,
including, e.g., unstructured imaging or text data.

In line with our fidelity and utility assessments, we further evaluated the
privacy-preserving capabilities of each model using shadow model attacks,
alongside assessments of Singling Out and Inference Risks through the Anonymeter
framework. Neither approach revealed any significant privacy concerns across the
tested data synthesis techniques. Notably, we observed no substantial differences in
privacy risks between synthetic data generation methods with and without DP,
raising questions about the practical benefits of incorporating DP in Al model
training. At the same time a key limitation we identified is the inability of shadow
model attacks to effectively handle high-dimensional datasets with relatively small
sample sizes, as exemplified by the ADNI dataset (Figure 5c¢). Additionally, the high
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computational costs associated with shadow model attacks further challenge their
practicality in real-world applications.

Our privacy analysis via Anonymeter of k-anonymization using SanitizerNHS
revealed high degrees of privacy leakage in terms of Inference risks for RKI and
TEXAS as well as Singling Out Risks for ADNI. While the method was able to
preserve fidelity to a high degree, the risk analysis using Anonymeter highlighted the
susceptibility of SanitizerNHS against singling out and attribute inference attacks,
indicating that it does not provide a good risk/utility trade-off. Both our experiments
and former research [54] have shown that DP provides better privacy protection
concerning these risks.

Overall, our findings emphasize the delicate balance between data fidelity, utility, and
privacy in synthetic data generation in all evaluated methods, highlighting the
importance of tailoring privacy-preserving methods like VAMBN with differential
privacy to the specific characteristics of the dataset, while ensuring that fidelity
metrics are carefully chosen to reflect both the structure and intended use of the
data.

Conclusion

Synthetic data bears strong potential for facilitating data sharing in healthcare. If
sufficiently realistic, synthetic patient-level data may be used for (pre-)training Al/ML
models [55], for augmenting real data, including oversampling of minority classes,
and for generating synthetic control arms for clinical studies, which could be shared
between organizations. At the same time, the intricate trade-off between fidelity and
privacy of synthetic patient data is a critical area of study and recent work has
highlighted that this is done too seldomly [56]. Our investigation underlines the
complexity and nuances involved in assessing this balance, and presents a practical
approach for doing so.

Our results show that when data fidelity is maintained, synthetic data can be
successfully used for training predictive modeling with a similar model performance
as if one were to train on real data. However, we also found that when data fidelity is
compromised - especially in terms of preservation of correlation structure - it has a
detrimental effect on data utility. This was specifically the case when applying DP
respecting model training. Our findings thus suggest that implementations of DP are
not yet practically useful for generating realistic synthetic patient data in complex
datasets and highlight the need for further research to enhance the practicality and
effectiveness of DP preserving techniques in this domain.

Both tested privacy assessment frameworks revealed no obvious privacy breaches
due to synthetic data generation by any of the tested techniques, even without DP.
Of course, this does not imply that according risks do not exist, but just that neither
Anonymeter nor shadow model attacks were able to identify them. In this regard, our
analysis highlighted obvious shortcomings of shadow model attacks, specifically in
case of high-dimensional longitudinal clinical study data. Future research should just
explore better approaches to assess the privacy of patient-level synthetic medical
data, specifically considering the longitudinal aspect of many of those datasets.
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Altogether, the absence of standardized guidelines and best practices for data
sharing, data protection and synthetic data privacy evaluation in healthcare can lead
to significant inconsistencies. These inconsistencies might result in varying
conclusions by different stakeholders about the fidelity, utility and security of
synthetic data. Without a unified approach, different healthcare institutions may thus
implement different strategies, making it difficult to ensure that patient data is treated
according to the same standards. Hence, there is a need for clear technical guidance
with regard to synthetic patient data fidelity, protection and privacy assessment.
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