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Abstract

Background: Matching each patient to the most effective treatment option(s) remains a challenging problem in
psychiatry. Clinical rating scales often fail to differentiate between treatments because most treatments improve the
scores of all individual items at only slightly varying degrees.
Methods: We introduce a new exploratory analysis technique called Supervised Varimax (SV). The algorithm combines
the individual items that only slightly differ between treatments into a few scores that greatly differ between treatments.
SV further enforces uncorrelatedness between the scores, so that they represent distinctly interpretable biopsychosocial
factors. We applied SV to multi-center, double-blind, randomized and large-scale clinical trials called CATIE and
STAR*D which were long thought to identify few to no differential treatment effects.
Outcomes: SV identified differential treatment effects in Phase I of CATIE (𝑛 = 1444, absolute sum = 1.279, 𝑝 <

0.001). Post-hoc analyses revealed that olanzapine is more effective than quetiapine and ziprasidone for hostility
in chronic schizophrenia (difference = −0.284, 𝑝𝐹𝑊𝐸𝑅 = 0.047; difference = −0.283, 𝑝𝐹𝑊𝐸𝑅 = 0.048), and per-
phenazine is more effective than ziprasidone for emotional dysregulation (difference = −0.313, 𝑝𝐹𝑊𝐸𝑅 = 0.020). SV
also discovered that buproprion augmentation is more effective than buspirone augmentation for treatment-resistant
depression with increased appetite from Level 2 of STAR*D (𝑛 = 520, difference = −0.280, 𝑝𝐹𝑊𝐸𝑅 = 0.003).
Interpretation: SV represents a powerful methodology that enables precision psychiatry from clinical trials by
optimizing the outcome measures to differentiate between treatments.

Introduction

A major goal of precision psychiatry is to match each patient to the most therapeutic treatment options(s) more
precisely than the current standard of care [1]. However, most randomized clinical trials (RCTs) compare treatments
to placebo rather than to other available treatments. Investigators have thus in turn designed large RCTs to compare
the efficacy of existing treatments in major psychiatric illnesses. For example, the CATIE trial compared the effects
of multiple antipsychotic agents in chronic schizophrenia and found evidence of differential treatment effects on total
symptom severity at the omnibus level. Unfortunately, the trial could not pinpoint any differences in specific treatment
pairs [2]. Similarly, the STAR*D trial compared the effects of antidepressants and cognitive therapy in treatment-
resistant depression but found little to no differential treatment effects [3, 4]. Most of the RCTs therefore revealed few
differences between the treatments and did not elucidate patient subtypes that could assist in treatment selection.

Investigators have since re-analyzed datasets from the aforementioned and similar RCTs using progressively more
complicated machine learning algorithms in order to reveal patient-specific differences in treatment effects. Many
existing methods now utilize either a multitude of baseline clinical and/or biological variables to predict treatment
response (e.g, [5, 6, 7, 8, 9, 10, 11]). Most of these studies use the remission status or a total symptom severity score
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as the dependent variable. Later methods achieved finer granularity by decomposing the total score into clusters of
symptoms [12, 13, 14] or considering trajectories of treatment response over time [15, 16, 17]. These approaches
achieve superior accuracy in general by reducing noise or introducing additional dependent variables. On the other
hand, the ever increasing number of variables and complexity of machine learning makes it more difficult to deploy,
generalize, interpret and maintain these algorithms in everyday clinical practice. Increasing data inputs and complexity
can thus also diminish real-world usability [18].

In this paper, we revisit the original problem of identifying differential treatment effects without any independent
variables other than treatment in order to maximize pratical usability. We believe that many of the original RCTs
did not identify differential treatment effects simply because the dependent variables, such as total severity scores,
remission status and even validated sub-scales, were originally designed to quantify measurable symptoms rather than
to differentiate between treatments. As a result, treatments tend to diffusely affect nearly all items in a rating scale with
weak signal and a large amount of noise. Analyzing differential treatment effects for all individual items also yields
equivocal results due to the burden of multiple hypothesis testing. Consequently, most investigators have only identified
marginal treatment differences in network meta-analyses across tens, if not hundreds, of thousands of patients rather
than in any original RCT [19, 20].

We hypothesize that learning a few dependent variables that explicitly differentiate between treatments by
amplifying relevant signals and reducing noise will lead to useful insights about treatments from single RCTs.
These insights can improve the standard of care without requiring additional questionnaires or measurements
beyond the psychiatric interview. We specifically make the following contributions in this paper:

1. We design a new factor analysis technique called Supervised Varimax (SV) that takes the individual items
from clinical rating scales and, unlike traditional approaches, identifies uncorrelated factors that maximally
differentiate between treatments. We then estimate the effects of treatment on these factors, rather than on
the original dependent variables.

2. We apply SV to CATIE and STAR*D in order to identify differential treatment effects on the factors. We
then map the factors back onto the individual items for clinical interpretability.

3. We develop corresponding omnibus and post-hoc permutation tests that account for the learning of the
optimal outcomes. We find that olanzapine is significantly more effective than quetiapine and ziprasidone
for hostility in chronic schizophrenia, and perphenazine is significantly more effective than ziprasidone for
emotional dysregulation in the same illness. Furthermore, buproprion augmentation is superior to buspirone
augmentation in patients with treatment-resistant depression and increased appetite.

4. We finally glean simple, clinically-usable rules from the results that maximize treatment response using
baseline data alone.

SV achieves high statistical power because it effectively models the heterogeneity of mental illnesses. The algorithm
deconvolutes mental illness into a small number of latent factors that optimally combine all items, rather than cluster
items into disjoint categories. The factors likely correspond to complex biopsychosocial processes that can only
be approximately gleaned from existing clinical rating scales. Moreover, SV represents each patient as a weighted
combination of these complex processes, rather than as a single category or biotype.
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Methods

Clinical Trials

We analyzed a large-scale randomized clinical trial of schizophrenia called Clinical Antipsychotic Trials of In-
tervention Effectiveness (CATIE) [2], and another large-scale clinical trial of treatment-resistant depression called
Sequenced Treatment Alternatives to Relieve Depression (STAR*D) [3, 4]. Both of these trials have been described in
detail elsewhere. We included all patients with complete baseline data relevant to our analyses and always performed
an intention-to-treat (last observation carried forward) analysis. We provide a brief summary of the components of the
trials relevant to this paper below:

1. CATIE (ClinicalTrials.gov, NCT00014001, [2]) was a multi-center, double-blind, randomized clinical trial that
compared atypical and typical antipsychotics in adult patients with chronic schizophrenia. We focus on Phase I
of CATIE, where patients randomly received one of five treatment options: quetiapine, perphenazine, olanzapine,
risperidone and ziprasidone.

2. STAR*D (ClinicalTrials.gov, NCT00021528, [3, 4]) was a multi-center, double-blind, randomized clinical trial
that aimed to identify the most effective treatments for adult patients with depression whose symptoms did not
remit after an initial prescription of citalopram. We focus on Level 2 of the STAR*D dataset, where participants
received treatment only if they agreed to at least one of the following four options: medication switch, medication
augmentation, cognitive therapy switch, and cognitive therapy augmentation. Patients then underwent randomization
among the treatment options that they accepted. As a result, patients were strictly randomized only among (a)
the medication switch options including buproprion, sertraline and venlafaxine, as well as (b) the medication
augmentation options including buspirone augmentation and buproprion augmentation.

We downloaded the data of both studies from the National Institute of Mental Health (NIMH) Data Archive
(https://nda.nih.gov/) with a limited access data use certificate.

Original Outcome Measures

The CATIE study tracked antispcyhotic response using the total score of the Positive and Negative Syndrome Scale
(PANSS) [21]. The new algorithm described below takes individual items of a clinical rating scale as input. We thus
input the values of all 30 individual items of the PANSS into the algorithm. On the other hand, the STAR*D trial
tracked antidepressant response using the total score of the 16-item Quick Inventory of Depressive Symptomatology
Self Report (QIDS-SR) score [22]. We thus input all of the individual 16 items of the QIDS-SR into our algorithm.

Algorithm Overview & Empirical Testing

We describe the proposed SV algorithm at an intermediate level here. We offer an even simpler description in
Results and an advanced description in the Supplementary Materials. We consider a principal components or factor
analysis model, where a set of orthonormal factors 𝑭 have causal effect sizes 𝑊 on a set of centered items 𝒀 (Figure
1 (a)). Each factor is a linear combination of the items in 𝒀 rather than a cluster. However, unlike traditional PCA or
factor analysis, we also consider a third layer, where binary treatments have causal effect sizes 𝑀 on the factors (Figure
1 (b)). The matrices 𝑀 and 𝑊 are both very dense in general.

Supervised Varimax (SV) first learns the set of orthonormal factors 𝑭 (i.e., have an identity covariance matrix)
using principal components analysis. SV then rotates the matrix 𝑀 using the rotation matrix 𝑅 found by Varimax
[23] to make each column of 𝑀𝑅 as sparse and as different from the other columns as possible. This ensures that
each treatment then affects a small and distinct set of rotated factors 𝑭∗ = 𝑭𝑅 (Figure 1 (c)). The rotated factors are
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Figure 1: Algorithm overview and synthetic data results. (a) The traditional PCA or factor analysis model where factors 𝑭 have causal effect sizes
𝑊 on the dependent variables 𝒀 . (b) SV augments the model in (a) using treatments 𝑻 with causal effects 𝑀 on 𝑭. The algorithm then applies a
varimax rotation to 𝑀. (c) The rotation makes each column of the rotated causal effects 𝑀𝑅 sparse and different. As a result, only a few distinct
treatments now cause each factor in 𝑭∗, or the optimal outcomes. (d) SV identified the sparsest matrix 𝑀𝑅 across 1000 simulated models. SV also
computed the matrix 𝑀𝑅 and the causal effects 𝑅𝑇𝑊 from factors to 𝒀 with the highest accuracy in (e) and (f), respectively. Error bars denote
95% confidence intervals of the mean. Red arrows in (d) - (f) denote direction of better performance.

still orthonormal and still correspond to linear combinations of the items in 𝒀 , but now the factors also maximally
differentiate between treatments. We thus also call 𝑭∗ the optimal outcomes.

We assessed the performance of SV by comparing it against alternative algorithms, including PCA [24], PCA with
Varimax (PCA+VM) [25], factor analysis with Varimax (FA+VM) [23] and independent component analysis (ICA)
[26]. We generated 1000 random factor models, as described in the Supplementary Materials, and ran the algorithms
on 1000 samples generated from each model. SV identified the sparsest matrix 𝑀𝑅 as assessed by the mean variance of
the columns of (𝑀𝑅) (2) , where we have squared each element of the matrix, and a higher such variance corresponds to
increased sparsity (Figure 1 (d)). SV expectedly identified sparser matrices with more factors, whereas other methods
did not display this improvement. The algorithm also estimated the matrices 𝑀𝑅 and 𝑅𝑇𝑊 with the lowest root
mean square error (RMSE) to their ground truths (Figures 1 (e) and (f)). Each of these three comparisons held at a
Bonferonni corrected threshold of 0.05/4 according to paired t-tests, since we compared SV against a total of four other
algorithms. We conclude that SV outperformed all other algorithms.

Nuisance, Independent and Dependent Variables

We set the independent variables as binary treatment assignment, and the dependent variables as the individual
items of the original clinical rating scales. We also set age and sex as nuisance variables and therefore partialed out
these variables from each rating scale item using ordinary least squares regression before performing downstream
analyses.

Potentially Meaningful Factors

SV learns 𝑚 optimal outcomes, where 𝑚 corresponds to the number of treatment options. However, typically only
a subset of these 𝑚 factors house differential treatment effects large enough to potentially be clinically meaningful. We
identify the potentially meaningful factors by first learning the 𝑚 optimal outcomes using the SV algorithm. We then
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plot the optimal outcomes against the variances of their columns in (𝑀𝑅) (2) , since Varimax maximizes the sum of
these variances (Expression (5)). We plot the variances in decreasing order. We then eliminate all factors at and below
the elbow point of the resultant graph, which we find to be very close to zero in practice. For example, we eliminate
the optimal outcomes associated with the fourth and fifth smallest variances in Figure 2 (c). We usually retain only
a small number of 𝑞 ≤ 𝑚 optimal outcomes after this diagnostic step. We only use potentially meaningful outcomes
to visualize the output of SV. We also maintain a clear distinction between optimal outcomes that are potentially
meaningful and optimal outcomes that are statistically significant, as described below.

Hypothesis Testing

SV learns the optimal outcomes, so we need to account for the inflated Type I error rate that can result from the
estimation process. We thus constructed an omnibus and two post-hoc permutation tests to compute p-values that
account for the estimation of optimal outcomes. The null hypothesis of all three permutation tests corresponds to
treatment exchangeability and therefore no differential treatment effect. The alternative hypothesis for the omnibus
permutation test corresponds to the existence of a differential treatment effect across any of the tested treatments and
factors. The omnibus test uses the absolute sum statistic corresponding to

∑
𝑖 𝑗 | (𝑀𝑅)𝑖 𝑗 |, where 𝑖 indexes the treatments,

and 𝑗 indexes the factors.
If we reject the omnibus null hypothesis, then we subsequently perform post-hoc permutation tests of factors, where

the alternative hypothesis of each test corresponds to a differential treatment effect in a specific optimal outcome 𝐹∗
𝑗
.

This test also uses the absolute sum statistic
∑

𝑖 | (𝑀𝑅)𝑖 𝑗 |, but where we have now fixed the index 𝑗 . Note that we posit
the existence of multiple optimal outcomes and thus seek to detect optimal outcomes with high statistical power at the
expense of a few false positives, rather than guard against even a single false positive. We thus test all 𝑚 factors and
then control the positive false discovery rate (FDR) using the Storey method [27].

If we finally reject the post-hoc null hypothesis for 𝐹∗
𝑗

while controlling the FDR, then we perform post-hoc
permutation tests of treatment pairs. The alternative hypothesis of each test corresponds to a differential treatment
effect between two specific treatments 𝑇𝑖 and 𝑇𝑘 in 𝐹∗

𝑗
. We wish to guard against even a single false positive in this

test because the optimal outcomes may contain a few false positives with only FDR control. We thus mimic Tukey’s
range test [28] with the maxT method [29] in order to control the family-wise error rate (FWER) among all possible
treatment pairs within an optimal outcome. We report the difference statistic corresponding to (𝑀𝑅)𝑖 𝑗 − (𝑀𝑅)𝑘 𝑗 .

We permuted the treatments and reran SV on the permuted dataset 100,000 times for each hypothesis test. We
always performed hypothesis testing using all 𝑚 factors. We provide further details of the omnibus and post-hoc tests
in the Supplementary Materials.

Code Availability

R code for the SV algorithm is available at github.com/ericstrobl/SV.

Role of Funding Source

No funding source provided assistance in the study design, data analysis, results interpretation, writing or submission
of this report.

Results

Main Idea

We describe the SV algorithm in three levels of increasing difficulty: the simplest here, an intermediate description
in the Methods, and an advanced description in the Supplementary Materials. Briefly, the original outcome of most
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clinical trials corresponds to the remission status or the total severity score according to a clinical rating scale. SV
instead considers the model in Figure 1 (b), where treatments 𝑻 affect items on a rating scale 𝒀 by intermediately
affecting a set of latent factors 𝑭 representing unknown biopsychosocial processes. In general, treatments affect
the factors 𝑭 in complicated ways, and the factors 𝑭 affect the items 𝒀 in complicated ways. This complexity
diffusely distributes the treatment effects across many factors and items which makes it difficult to differentiate between
treatments. SV organizes the complexity by learning an optimal set of factors 𝑭∗ from the data such that 𝑀𝑅, or the
causal effects from treatments to 𝑭∗, are maximally different and simple (Figure 1 (c)). For example, treatment 𝑇1

affects all factors 𝑭 in Figure 1 (b) but only affects one optimal factor 𝐹∗1 in Figure 1 (c). The optimized factors 𝑭∗,
which we also call optimal outcomes, thus now differentiate between treatments.

Differentiating Antipsychotics
We first applied SV to Phase I of the CATIE trial, where investigators randomly assigned patients with chronic

schizophrenia to five different antipsychotics including: quetiapine, perphenazine, olanzapine, risperidone and ziprasi-
done. Investigators then tracked the responses of patients using the PANSS score up to 18 months. 1444 patients had
complete treatment assignment, age, sex and PANSS item scores at baseline in Phase I. We plot the original Phase I
results in Figure 2 (a) after partialing out age and sex as nuisance variables. The CATIE trial suggested that olanzapine
is superior to the other antipsychotics by month 18 according to the change in total PANSS score, but this result did not
survive multiple comparisons even against ziprasidone [2]. We thus sought to identify optimal outcomes that could
differentiate treatment response using the 30 individual items of the PANSS at month 18.

We first tested whether SV outperformed existing algorithms in this dataset by testing each algorithm on 1000
bootstrap datasets. We assessed how well the algorithms differentiate between treatments by computing the mean
variance across the columns of (𝑀𝑅) (2) similar to Figure 1 (d), where a higher value corresponds to sparser treatment
effects. We found that SV achieved the largest variance with all learned numbers of factors (Figure 2 (b)). Further, the
performance of SV only continued to improve with an increasing number of learned factors, whereas other algorithms
plateaued. We conclude that SV estimated the sparsest matrix 𝑀𝑅 in the CATIE dataset, and the results of SV
mimicked those seen with the synthetic data.

Having verified the superiority of the SV algorithm, we then learned optimal outcomes that differentiate treatment
response using SV and the full dataset. Diagnostics suggested three potentially meaningful factors based on the
variance of each column of (𝑀𝑅) (2) (Figure 2 (b)). We plot the effect sizes 𝑅𝑇𝑊 from the three factors to individual
PANSS items in Figure 2 (c) for human interpretability. The first factor in red had large positive effects on items
related to hostility, such as hostility itself, uncooperativeness, lack of insight and poor impulse control. The second
factor in blue captured emotional dysregulation with large causal effects on items related to low mood and high anxiety.
Finally, the third factor in green involved negative symptoms. The three factors thus mapped onto interpretable types of
dysfunction seen in schizophrenia. We summarize the learned effect sizes in 𝑀𝑅 for the three potentially meaningful
factors in Figure 2 (e). Note that all treatments had therapeutic effects on all factors. A red cell in Figure 2 (e) does not
mean a detrimental or adverse effect on the factor, but just a worse therapeutic effect than other treatments.

We next permuted the treatments 100,000 times to test for any differential treatment effects. We rejected the omnibus
null hypothesis of no differential treatment effects (absolute sum = 1.279, 𝑝 < 0.001). We ran a post-hoc test on each of
the five columns of 𝑀𝑅 and rejected the null hypothesis for the first two factors corresponding to hostility and emotional
dysregulation (absolute sum = 0.469, 𝑝𝐹𝐷𝑅 = 0.028; absolute sum = 0.427, 𝑝𝐹𝐷𝑅 = 0.037). We finally tested all
treatment pairs within the two significant columns of 𝑀𝑅. Olanzapine had a superior effect on hostility relative to
quetiapine and ziprasidone (difference = −0.284, 𝑝𝐹𝑊𝐸𝑅 = 0.047; difference = −0.283, 𝑝𝐹𝑊𝐸𝑅 = 0.048). Further,
perphenazine had a superior effect on emotional dysregulation relative to ziprasidone (difference = −0.313, 𝑝𝐹𝑊𝐸𝑅 =

0.020). We conclude that SV identified significant differential treatment effects in two of the five factors.
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Figure 2: CATIE trial results. (a) The original analysis did not distinguish any particular pair of antipsychotics using the total PANSS score, including
olanzapine versus ziprasidone. (b) SV outperformed all other algorithms in detecting differential treatment effects in this dataset regardless of the
number of factors learned. (c) Diagnostics suggested the presence of three potentially meaningful factors after learning all five factors. (d) The
potentially meaningful factors encapsulated hostility, emotional dysregulation and negative symptoms in chronic schizophrenia. (e) A heatmap of
𝑀𝑅. Permutation testing revealed that olanzapine is more effective than quetiapine and ziprasidone for hostility. Moreover, perphenazine is more
effective than ziprasidone for emotional dysregulation. Asterisks denote treatment pairs with an FWER of less than 0.05. (f) Treating patients with
high hostility using olanzapine resulted in a greater reduction in hostility than treating them with quetiapine or ziprasidone (red). Similarly, treating
patients with high emotional dysregulation using perphenazine resulted in a greater symptom reduction than ziprasidone (black).
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We further tested whether we could translate the above results to everyday clinical practice. Recall that we learned
the optimal outcomes using month 18 data, but we wanted to test whether we could predict treatment response by
deriving purposefully simple, non-optimized, non-machine learning based rules with the baseline data and insight
gained from SV. SV discovered that olanzapine is effective for hostility, which we coarsely scored by summing items 7,
22, 26 and 28 of the PANSS. When we give olanzapine to patients with such a hostility score above the median value
at baseline, then their hostility score decreases more and faster than patients given quetiapine or ziprasidone (Figure 2
(f) red). Similarly, if we give perphenazine to patients with emotional dysregulation (sum of items 16 and 20) above
the median at baseline, then they also improve more and faster than patients given ziprasidone (black). In contrast,
the change in total PANSS score in patients with high hostility and high emotional dysregulation does not differ by
much from Figure 2 (a) (Supplementary Materials). We conclude that the insights gained from SV on month 18
data predict treatment response in an appropriate baseline subscore. Moreover, we can derive simple rules that match
clinical common sense: giving patients treatments that best target their given constellation of symptoms improves those
symptoms.

Differentiating Antidepressants

We next sought to identify differential effects of antidepressants in treatment-resistant depression using Level 2
STAR*D data, given the success of SV in identifying differential effects of antipsychotics in chronic schizophrenia
using CATIE. 1312 patients had complete treatment assignment, age, sex and QIDS-SR item scores in Level 2. The
STAR*D dataset is known to be exceptionally challenging, and many investigators have resorted to sophisticated
machine learning algorithms in order to accurately match patients better than chance. Visual inspection of the original
treatment response curves reveal why – unlike Figure 2 (a), all curves in Figure 3 (a) are near identical.

Patients in Level 2 unfortunately did not undergo strict randomization because they could accept to switch to a
different medication, augment with another medication, switch to cognitive therapy, or augment with cognitive therapy
(or any combination). We therefore separately analyzed only the switch medications and only the augmentation
medications where strict randomization took place.

We first ran SV on the switch medications. Unfortunately, factor analysis with Varimax estimated a sparser matrix
𝑀𝑅 than SV according to the variance of the columns of (𝑀𝑅) (2) across all numbers of learned factors (Figure 3
(b)). Moreover, diagnostics with SV suggested the presence of two potentially meaningful factors from the three
learned factors (Figure 3 (c)), but omnibus testing failed to reject the null (𝑛 = 659, absolute sum = 0.374, 𝑝 = 0.268).
Post-hoc testing also could not differentiate between the medication switch options at even an uncorrected level with
any of the three factors (𝑝 > 0.05 in all cases). We conclude that SV did not detect differential treatment effects among
the switch medications.

SV, however, outperformed all other algorithms in estimating a sparser 𝑀𝑅 among the augmentation medications,
including factor analysis with Varimax (paired t-test, 𝑡 = 12.11, 𝑝 < 0.001), even with only two learned factors.
Diagnostics suggested the presence of one potentially meaningful factor among the two learned factors (Figure 3
(c)). The estimated causal effects 𝑅𝑇𝑊 corresponded to depression with increased appetite (Figure 3 (d)). We next
performed omnibus and post-hoc by factor hypothesis tests with 100,000 permutations. Both tests yielded identical
results with just one significant factor (𝑛 = 520, absolute sum = 0.280, 𝑝 = 𝑝𝐹𝐷𝑅 = 0.003). Post-hoc testing of
treatment pairs similarly resulted in a significant differential effect between buspirone and buproprion augmentation
with the one factor (difference = −0.280, 𝑝𝐹𝑊𝐸𝑅 = 0.003), Figure 3 (e)). We conclude that buproprion augmentation
is particularly effective for patients with treatment-resistant depression and increased appetite.

We next tested the clinical usefulness of the augmentation result by comparing the outcomes of patients with
increased appetite at baseline who were also randomized to buspirone or buproprion augmentation. We specifically
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Figure 3: Level 2 STAR*D trial results. (a) All treatments had similar response curves across 14 weeks of treatment. (b) SV only outperformed
the other algorithms among the augmentation medications, suggesting no detectable differential treatment effects within the switch options.
(c) Diagnostics suggested the presence of two potentially meaningful factors and one potentially meaningful factor for medication switch and
augmentation, respectively. (d) The one factor for augmentation corresponded to depression with increased appetite. (e) A heatmap of 𝑀𝑅, where
hypothesis testing revealed a significant differential treatment effect between buspirone and buproprion augmentation. (f) A simple clinical rule
identified patients with increased appetite at baseline and recapitulated the superior efficacy of buproprion augmentation on appetite relative to
buspirone augmentation.
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quantified increased appetite by the sum of items 7 and 9 in QIDS-SR. We plot the results in Figure 3 (f). Patients with
increased appetite at baseline who received buproprion augmentation had larger decreases in appetite than patients
who received buspirone augmentation. In contrast, the total QIDS-SR score did not consistently capture the differential
effect similar to Figure 3 (a) (Supplementary Materials). We can thus recapitulate the superior effect of buproprion
augmentation on appetite with a simple subscore that identifies patients with increased appetite at baseline.

Discussion

Total severity scores and remission statuses derived from clinical rating scales are not optimized to differentiate
between treatments. We thus introduced the Supervised Varimax (SV) algorithm to optimize the dependent variables
instead of the independent ones – unlike traditional machine learning approaches. SV transforms the individual items
of a clinical rating scale into optimal outcomes that maximize differential treatment effect. The algorithm thus can
detect subtle differences between the medications, even when the differences are noisily interspersed across multiple
individual items. We identified differences in the treatment effects of olanzapine, perphenazine and quetiapine in
chronic schizophrenia. We also identified buproprion augmentation as particularly effective in patients with treatment-
resistant depression and increased appetite. Importantly, we detected these differential treatment effects within single
RCTs and without any independent variables other than treatment assignment. SV thus does not require deploying,
interpreting, generalizing or maintaining a complex machine learning model in the electronic health record.

Note, however, that we do not discount the importance of multiple independent variables. In fact, future work
should consider learning the optimal transformation of the independent variables and the optimal transformation of
the dependent variables in order to maximize predictive performance. We do, nevertheless, claim that much more
emphasis has been placed on finding transformations of the independent variables rather than on learning the best
outcome variables that maximize differential treatment effects. Most existing works only use fixed rating scale scores
as the outcome [5, 6], or learn factors/clusters from baseline items in an unsupervised fashion [13, 30, 31]. In this
paper, we showed that introducing a supervisory signal from the treatments can substantially improve the learning of
outcome measures that differentiate treatments, even without any predictors other than treatment.

Other methods designed to detect differential treatment effects have mostly been restricted to major depression due
to the greater availability of large clinical trial datasets in this condition [32]. However, we only found differential
treatment effects in the augmentation strategies of STAR*D, in contrast to the results with CATIE. These results
suggest that we may have an easier time identifying differential treatment effects in other illnesses and with advanced
treatment strategies. We thus encourage investigators to explore mental illnesses beyond depression and consider
non-conventional treatment options more frequently despite the smaller sample sizes.

The results of SV are congruent with results from large meta-analyses, secondary analyses of adverse effects and
clinical intuition. For example, SV identified olanzapine as superior to quetiapine and ziprasidone for hostility in
chronic schizophrenia. Two network meta-analyses over tens of thousands of patients have shown that olanzapine
has superior efficacy over several antipsychotics in acute agitation in schizophrenia [20, 33]. SV also discovered that
perphenazine is particularly effective for emotional dysregulation in chronic schizophrenia; perphenazine is one of the
most well-studied first generation antipsychotics in psychotic depression [34]. Furthermore, buproprion augmentation
simultaneously treats depression and reduces appetite [35]. SV identified all of these results from only two clinical
trials and directly from the rating scales used in the primary analyses.

From an algorithmic standpoint, SV does not seek to maximize probabilistic independence between factors like
ICA [26]. Instead, the algorithm only identifies orthogonal factors, or independence up to the second moment. We are
not interested in identifying factors that satisfy all mathematical constraints associated with independence, but only
enough constraints so that the factors correspond to roughly distinct biopsychosocial processes that lead to clinically
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actionable insights. SV thus leverages the additional rotational indeterminancy of orthogonality to identify differential
treatment effects rather than maximize independence.

We must temper the above strengths with some limitations. SV imposes a linear model, even though the effect
from medications to items may depend non-linearly on the dose of each medication. As a result, SV can miss complex
non-linear interactions among factors. We also limited the present study to pre-specified diagnoses and associated
rating scales, even though increased diversity in the dependent variables can introduce more degrees of freedom to
differentiate treatment effects. Third, SV currently requires data from randomized clinical trials, even though the
algorithm may benefit substantially from the diversity and large sample sizes seen in observational data with proper
confounder control. Future work should therefore investigate multiple scales across multiple mental illnesses by
modifying SV to perform well with observational data.

In summary, existing dependent variables are not optimized to differentiate between treatments. Most investigators
have combated this issue by predicting treatment effect using many independent variables in complex machine learning
models. However, we can also differentiate between treatments by simply learning dependent variables that achieve
such differentiation, such as by the SV algorithm.
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Supplementary Materials

Model

We use italicized letters like 𝐴 to denote a single random variable, and bold italicized letters like 𝑨 to denote a set of
random variables. Orthonormal random variables have an identity covariance matrix, while orthonormal parameters
have an identity inner product. We consider a supervised factor analysis model, where 𝑚 treatment assignments 𝑻

causally affect 𝑞 orthonormal factors 𝑭 that in turn cause 𝑝 dependent variables 𝒀 (Figure 1 (b)). We assume that 𝒀 is
centered to expectation zero. We require 𝑞 ≤ 𝑚 and 𝑞 ≤ 𝑝. The treatments causally affect the dependent variables 𝒀
as represented by the following structural equation:

𝒀 = 𝑻𝛽 + 𝑬𝒀 ,

where 𝑬𝒀 denotes a vector of independent and identically distributed (i.i.d.) error terms with mean zero and covariance
Σ. The error terms do not necessarily follow a Gaussian distribution, and Σ may have non-zero off-diagonal elements.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2024. ; https://doi.org/10.1101/2024.12.03.24318424doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318424
http://creativecommons.org/licenses/by-nc-nd/4.0/


The outcome 𝒀 may contain many correlated variables, which we can transform into a set of orthogonal ones by,
for example, principal component analysis of 𝒀:

𝑭 = 𝒀𝑉Λ−1/2 = 𝑻𝛽𝑉Λ−1/2 + 𝑬𝒀𝑉Λ
−1/2, (1)

where 𝑉 is a 𝑝 × 𝑞 matrix of 𝑞 eigenvectors, and Λ denotes a diagonal matrix of 𝑞 non-negative eigenvalues. The set
𝑭 then contains (unrotated) orthonormal factors. If we multiply 𝑭 by Λ1/2𝑉𝑇 , then we obtain:

𝑭Λ1/2𝑉𝑇 =

(
𝒀𝑉Λ−1/2

)
Λ1/2𝑉𝑇 = 𝒀𝑉𝑉𝑇 =

(
𝑈𝑆𝑉𝑇

)
𝑉𝑉𝑇 = 𝑈𝑆𝑉𝑇 = 𝒀 ,

where the third equality follows by the singular value decomposition 𝒀 = 𝑈𝑆𝑉𝑇 . We thus have 𝒀𝑉𝑉𝑇 = 𝒀 . Now let
𝑀 = 𝛽𝑉Λ−1/2 and 𝑊 = Λ1/2𝑉𝑇 , so that we recover the following model depicted in Figure 1 (b):

𝒀 = 𝒀𝑉𝑉𝑇 = 𝑻𝑀𝑊 + 𝑬𝒀 , (2)

since 𝑬𝒀𝑉𝑉
𝑇 has covariance matrix 𝑉𝑉𝑇Σ𝑉𝑉𝑇 = 𝑉𝑉𝑇

(
𝑉Λ𝑉𝑇

)
𝑉𝑉𝑇 = 𝑉Λ𝑉𝑇 = Σ.

Optimal Rotation

The transformation matrix 𝑉Λ−1/2 in Equation (1) is not unique because the columns of 𝑭𝑅 are orthonormal
as well, where 𝑅 corresponds to an orthonormal rotation matrix. We thus also consider any transformation matrix
𝑉Λ−1/2𝑅:

𝑭∗ = 𝑭𝑅 = 𝑻𝑀𝑅 + 𝑬𝒀𝑉Λ
−1/2𝑅, (3)

where 𝑭∗ corresponds to the optimized outcomes, and 𝑬𝒀𝑉Λ
−1/2𝑅 again denotes a vector of i.i.d. error terms with

mean zero but covariance 𝑅𝑇Λ−1/2𝑉𝑇Σ𝑉Λ−1/2𝑅.
We now specify the rotation 𝑅. We let R(𝑞) denote the set of 𝑞 × 𝑞 rotation matrices. We seek a rotation that

maximally differentiates treatment effects on the set of latent factors so that:

arg min
𝑅∈R(𝑞)

∑︁
𝑗<𝑘

[
1
𝑞

∑︁
𝑖

(𝑀𝑅)2𝑖 𝑗 (𝑀𝑅)2𝑖𝑘 −
(
1
𝑞

∑︁
𝑖

(𝑀𝑅)2𝑖 𝑗

) (
1
𝑞

∑︁
𝑖

(𝑀𝑅)2𝑖𝑘

)]
. (4)

In other words, we minimize the covariance of pairs of columns of treatment effects squared, and then sum over all
possible pairs. As a result, each factor tends to be caused by a different set of treatments.

The minimization problem in Expression (4) yields the same solution as the following maximization problem, also
known as the varimax rotation [23]:

arg max
𝑅∈R(𝑞)

∑︁
𝑗


1
𝑞

∑︁
𝑖

(𝑀𝑅)4𝑖 𝑗 −
(
1
𝑞

∑︁
𝑖

(𝑀𝑅)2𝑖 𝑗

)2 , (5)

where we maximize the variance of each column of (𝑀𝑅) (2) (element-wise squared). In other words, we maximize a
quantity similar but not equivalent to the kurtosis of each column of 𝑀𝑅 to induce outliers and sparsity. We combine
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Expressions (4) and (5) to see the equivalence between the maximization and minimization as follows:

2(4) + (5) =
∑︁
𝑗 ,𝑘

[
1
𝑞

∑︁
𝑖

(𝑀𝑅)2𝑖 𝑗 (𝑀𝑅)2𝑖𝑘 −
(
1
𝑞

∑︁
𝑖

(𝑀𝑅)2𝑖 𝑗

) (
1
𝑞

∑︁
𝑖

(𝑀𝑅)2𝑖𝑘

)]
=

1
𝑞

∑︁
𝑖

(∑︁
𝑗

(𝑀𝑅)2𝑖 𝑗
∑︁
𝑘

(𝑀𝑅)2𝑖𝑘

)
−

(
1
𝑞

∑︁
𝑖

∑︁
𝑗

(𝑀𝑅)2𝑖 𝑗

) (
1
𝑞

∑︁
𝑖

∑︁
𝑘

(𝑀𝑅)2𝑖𝑘

)
= 𝐶,

which is equal to a constant 𝐶 because rotations preserve row vector lengths, or the sum of squares of its elements.
Hence, the minimization problem in Expression (4) yields the same solution as the maximization problem in Expression
(5).

Varimax is known to approximately induce part of Thurstone’s simple structure [36] in 𝑀𝑅, which we paraphrase
for the present context below:

1. each factor has no causal effect from most treatments;

2. each factor has large causal effects (in magnitude) from a small number of treatments;

3. few factors have large causal effects from the same treatment.

In particular, the row sums of the squared elements of 𝑀𝑅 remain fixed under rotation because 𝑅 is orthonormal. We
thus maximize the variance depicted in Expression (5), or the mean of squared pairwise distances, so that most squared
elements of 𝑀𝑅 are large or zero; this in turn satisfies the first two items listed above. The third follows by equivalently
minimizing the covariance shown in Expression (4).

Supervised Varimax

We are now ready to describe the proposed algorithm, which we summarize in Algorithm 1. SV first standardizes
𝒀 and then performs an eigendecomposition of the correlation matrix of 𝒀 . The algorithm extracts the eigenvectors
associated with the top 𝑚 largest eigenvalues in Line 2 so that 𝑞 = 𝑚. We now have 𝑭 = 𝒀𝑉Λ−1/2 corresponding to
the unrotated factors. SV then regresses 𝑭 on 𝑻 to obtain the causal effects 𝑀 in Line 3. Next, SV sparsifies 𝑀 with
a varimax rotation in order to compute the optimal outcomes 𝑭∗ in Lines 4 and 5, respectively. Note that Varimax
has permutation and sign indeterminancies [25], which we determine in Line 6 by sorting 𝑭∗ according to variance
explained and non-negatively correlating 𝑭∗ to

∑
𝑘 𝑌𝑘 via sign flips. SV thus ultimately outputs the desired matrices

𝑀𝑅, 𝑅𝑇𝑊 and 𝑭∗ with permutation and sign determinancy. Subsequent diagnostics or significance testing eliminates
optimal outcomes from 𝑭∗ so that 𝑞 ≤ 𝑚.

Algorithm 1 Supervised Varimax
Input: individual items 𝒀 , treatment assignment 𝑻
Output: 𝑀𝑅𝐷, 𝐷𝑇𝑅𝑇𝑊 , 𝑭∗𝐷

1: 𝒀 ← standardize 𝒀 to mean zero unit variance
2: 𝑭, 𝑉,Λ← eigendecomposition of the correlation matrix of 𝒀
3: 𝑀 ← regress 𝑭 on binary treatment assignment 𝑻
4: 𝑅 ← perform a varimax rotation on 𝑀

5: 𝑭∗ ← 𝑭𝑅
6: 𝐷 ← signed diagonal matrix so that (a) 𝑭∗𝐷 is sorted in decreasing order by proportion of variance of

∑
𝑘 𝑌𝑘

explained and (b) each entry of 𝑭∗𝐷 has a non-negative correlation with
∑

𝑘 𝑌𝑘
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Permutation Tests

Omnibus Test
We consider the following omnibus null and alternative hypotheses written in plain English:

• H0 : treatments are exchangeable so that no differential treatment effect exists;

• H1 : a differential treatment effect exists for some factor.

We operationalize the above omnibus hypotheses as follows:

• H0 : 𝒀 ⊥⊥ 𝑇 ,

• H1 :
∑

𝑖 𝑗 | (𝑀𝑅)𝑖 𝑗 | >
(∑

𝑖 𝑗 | (𝑀𝑅)𝑖 𝑗 |
)
𝒀⊥⊥𝑇

.

We call
∑

𝑖 𝑗 | (𝑀𝑅)𝑖 𝑗 | the absolute sum, and the notation
(∑

𝑖 𝑗 | (𝑀𝑅)𝑖 𝑗 |
)
𝒀⊥⊥𝑇

refers to the absolute sum when the null
hypothesis holds. We permute treatment assignment, run SV, and then compute the absolute sum in each permutation.
We finally count the proportion of cases where the statistic falls at or above the same quantity computed on the original
samples after 100,000 permutations.

Post-Hoc Test for Factors
If we reject the omnibus null hypothesis, then we test each factor using the following post-hoc hypotheses:

• H0 : treatments are exchangeable so that no differential treatment effect exists;

• H1 : a differential treatment effect exists for some factor 𝐹∗
𝑗
.

We operationalize these hypotheses as:

• H0 : 𝒀 ⊥⊥ 𝑇 ,

• H1 :
∑

𝑖 | (𝑀𝑅)𝑖 𝑗 | >
(∑

𝑖 | (𝑀𝑅)𝑖 𝑗 |
)
𝒀⊥⊥𝑇 ,

where we now have only summed over the treatments in the absolute sum statistic. We again permute treatment
assignment, run SV, and then compute the absolute sum for 𝐹∗

𝑗
on each permuted sample. We finally count the

proportion of cases where the statistic falls at or above the same quantity computed on the original samples after
100,000 permutations. Repeating the above procedure for each factor leads to a vector of p-values. We then correct
the p-values by controlling the positive false-discovery rate using the Storey method [27].

Post-Hoc Test for Treatment Pairs
If we reject the above post-hoc null hypothesis for a particular factor 𝐹∗

𝑗
after correcting for multiple comparisons,

then we test each pair of treatments 𝑇𝑖 and 𝑇𝑘 within 𝐹∗
𝑗

using the following additional post-hoc hypotheses:

• H0 : all treatments are exchangeable so that no differential treatment effect exists;

• H1 : a differential treatment effect exists between treatments 𝑇𝑖 and 𝑇𝑘 in factor 𝐹∗
𝑗
.

We control for the FWER across all treatment pairs using the range statistic, similar to Tukey’s range test [28] or the
maxT method [29]:

• H0 : 𝒀 ⊥⊥ 𝑇 ,

• H1 : | (𝑀𝑅)𝑖 𝑗 − (𝑀𝑅)𝑘 𝑗 | >
(
max𝑖 (𝑀𝑅)𝑖 𝑗 −min𝑖 (𝑀𝑅)𝑖 𝑗

)
𝒀⊥⊥𝑇 ,
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where max𝑖 (𝑀𝑅)𝑖 𝑗 −min𝑖 (𝑀𝑅)𝑖 𝑗 corresponds to the range. We also call | (𝑀𝑅)𝑖 𝑗 − (𝑀𝑅)𝑘 𝑗 | the absolute difference
statistic, and (𝑀𝑅)𝑖 𝑗 − (𝑀𝑅)𝑘 𝑗 the difference statistic. We permute treatment assignment, run SV, and then compute
the range statistic in each permutation. We finally count the proportion of cases where the range falls at or above the
absolute difference computed on the original samples after 100,000 permutations.

Synthetic Data Generation

We drew 1000 samples from the model shown in Equation (2), where each entry of 𝑬𝒀 followed an independent
t-distribution with three degrees of freedom; we chose this non-Gaussian distribution to ensure identifiability of the
ICA solution. We sampled the matrices 𝑀 and 𝑊 by drawing each entry from Unif( [−1,−0.25] ∪ [0.25, 1]). We
then performed a varimax rotation on the ground truth matrix 𝑀 to yield the rotation matrix 𝑅. We removed sign and
permutation indeterminancies using the same procedure as Line 6 in SV. We repeated the above process 1000 times
for 2, 3 and 4 factors in 𝑭. We thus generated a total of 3 × 1000 = 3000 unique datasets.

Change in Total Scores

Figure 4: Total severity scores do not effectively differentiate between treatments. As a result, changes in the total score of PANSS in (a) and
QIDS-SR in (b) simply mimic those seen in Figures 2 (a) and 3 (a), respectively – even in the identified subpopulations.
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