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1. Antibiotic consumption data in SPARES

Hospital pharmacies report their annual consumption of antiinfectives for systemic use (J01 ATC codes), rifampicin,
antiprotozoals, and fidaxomicin to SPARES. We considered the following antibiotic classes: aminoglycosides,
carbapenems, cephalosporins, fosfomycin, glycopeptides, lipopeptides, macrolides, monobactams, oxazolidinones,
penicillins and their combinations, polymyxins, quinolones, tetracyclines, and trimethoprim and combinations of
sulfonamides. We also investigated consumption changes in specific molecules: imipenem and meropenem,
vancomycin, and azithromycin. We were interested in imipenem and meropenem as they are the two carbapenems
used to treat P. aeruginosa infections and their use is a known risk factor of carbapenem-resistant P. aeruginosa
(CR-PA) infections.1,2 Vancomycin was also shown to be a risk factor of CR-PA infections.1 Finally, we were
interested in azithromycin consumption given that it has been largely used at the start of the pandemic but was later
shown to be ineffective against COVID-19.3 Azithromycin is also known to promote other resistances.4

Among all the molecules or combinations of molecules available in the database (n=90), we excluded antibiotics
whose ATC codes did not correspond to antiinfectives for systemic use (A07AA12 : fidaxomicin, P01AB01 :
metronidazole, P01AB03 : ornidazole, J04AB02 : rifampicin, and P01AB02 : tinidazole), those that did not fall into
the antibiotic classes of interest (fusidic acid, erythromycin + sulfafurazole, metronidazole, nitrofurantoin,
ornidazole, spiramycin + metronidazole, streptomycin, sulfamethizole, tedizolid, and thiamphenicol), and those that
were not reported over the four years of the study period and whose indication is close to anecdotal (cefiderocol,
delafloxacin, erythromycin + sulfafurazole, imipenem + relebactam, lincomycin, meropenem + vaborbactam,
midecamycin, oritavancin, tedizolid, and telithromycin, Supplementary Figure 1). The ATC codes of included
molecules are listed in Supplementary Table 1.

Supplementary Figure 1. Flow chart of antibiotic molecule selection.
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Supplementary Table 1. Molecules included in each antibiotic class for antibiotic consumption analyses.
Antibiotic classification is from the WHO/ATC indexing system for antimicrobials
(https://www.whocc.no/atc_ddd_index/).

Antibiotic class
Corresponding group

in WHO/ATC
indexing system

Molecules

Aminoglycosides J01GB Amikacin, Gentamicin, Tobramycin

Carbapenems J01DH Ertapenem, Imipenem, Meropenem

Cephalosporins

J01DB
J01DC
J01DD
J01DE
J01DI

Cefaclor, Cefadroxil, Cefalexin, Cefamandole, Cefazolin, Cefepime, Cefixime, Ceftolozane
+ Tazobactam, Cefotaxime, Cefotiam, Cefoxitin, Cefpodoxime, Ceftaroline, Ceftazidime,

Ceftazidime + Avibactam, Ceftobiprole, Ceftriaxone, Cefuroxime

Fosfomycin J01XX Fosfomycin

Glycopeptides J01XA Dalbavancin, Teicoplanin, Vancomycin

Lipopeptides J01XX Daptomycin

Macrolides
J01FA
J01FF
J01FG

Azithromycin, Clarithromycin, Clindamycin, Erythromycin, Josamycin, Pristinamycin,
Roxithromycin, Spiramycin

Monobactams J01DF Aztreonam

Oxazolidinones J01XX Linezolid

Penicillins

J01CA
J01CE
J01CF
J01CR

Amoxicillin + Clavulanic acid, Amoxicilline, Ampicillin, Ampicillin + Sulbactam,
Benzathine, Benzylpenicillin, Cloxacillin, Piperacillin, Piperacillin + Tazobactam, Oxacillin,

Penicillin V, Pivmecillinam, Temocillin, Ticarcillin, Ticarcillin + Clavulanic acid

Polymyxins J01XB Colistin

Quinolones J01MA Ciprofloxacin, Levofloxacin, Lomefloxacin, Moxifloxacin, Norfloxacin, Ofloxacin

Tetracyclines J01AA Demeclocycline, Doxycycline, Lymecycline, Metacycline, Minocycline, Tigecycline

Trimethoprim and
combinations of
sulfonamides

J01EA
J01EC
J01EE

Cotrimoxazole, Sulfadiazine, Trimethoprim

2. Hospital cohort selection

Hospitals report every year their antibiotic resistance (ABR) and antibiotic consumption data to the national
surveillance system SPARES on a voluntary basis. Every hospital in France is identified with two FINESS codes:
one code designates the geographical/physical entity, and the other designates the legal entity. Every physical entity
is associated with a unique legal FINESS code, but a legal FINESS code generally encompasses multiple physical
entities.

In SPARES, hospitals report their data using their physical or their legal FINESS code. We did not consider
hospitals reporting their data under their legal FINESS code as we expect practices to differ between physical
entities. However, for university hospitals, we included hospitals reporting their data using their physical or legal
FINESS code (Supplementary Figure 2A) when they met all the other inclusion criteria. This choice was motivated
by the key role that university hospitals play in ABR epidemiology in France. Indeed, they generally handle the
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sickest patients and thereby are central in ABR associated with healthcare. Besides, they were at the frontline during
the COVID-19 pandemic which makes them a good setting to evaluate the impacts of the pandemic on ABR.

From the reporting hospitals, we constituted a cohort of hospitals and a nested cohort of ICUs to investigate the
impacts of the COVID-19 pandemic on ABR and antibiotic consumption. The distribution of hospital type in our
cohort varies a lot across regions (Supplementary Figure 2B).

Supplementary Figure 2. Geographical and hospital type description of our hospital cohort. (A) Physical and
legal entities corresponding to university hospitals and included in our cohort. In total, there are 29 legal university
hospitals in France. We included only 13 of them (in pink), 7 of which reported data using their legal FINESS code
(pink circles). For the remaining included hospitals, only some physical entities reported their data (numbers
indicated below the pink triangles). (B) Distribution of hospital types by region. Bars indicate the proportion of each
hospital type within each region, and numbers correspond to the number of physical entities, except for university
hospitals for which we report the number of legal entities. ARA: Auvergne-Rhône-Alpes; BFC:
Bourgogne-Franche-Comté; BRE: Bretagne; CVL: Centre-Val de Loire; GES: Grand-Est; HDF: Hauts-de-France;
IDF: Île-de-France ; NAQ: Nouvelle-Aquitaine; NOR: Normandie; OCC: Occitanie; PAC: Provence-Alpes-Côte
d’Azur; PDL: Pays de la Loire.

To assess the generalizability of our results, we explored the representativity of our cohort. Multiple dimensions of
representativity can be explored, notably regional distribution and hospital type distribution, two factors that are
expected to shape (i) the burden of ABR, (ii) healthcare workers (HCW) practices related to infection prevention and
control measures and antibiotic prescribing, and (iii) the burden and adaptation to the COVID-19 pandemic.
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National statistics on hospital types are not available; thereby, we could not assess the representativity of our cohort
in terms of hospital type. Other national statistics on hospitals by region are available however, notably the number
of acute-care hospitals, the hospital activity in bed-days, and the prevalence of hospital-acquired infections (HAI,
Supplementary Figure 3). When comparing the number of legal hospitals and hospital activity in terms of bed-days
in 2020 to the national reference, we showed that some regions, notably Île-de-France (IDF) were underrepresented
in our sample. The representativity in terms of prevalence of infections could be assessed by comparing the
prevalence of bacterial isolates in our hospital cohort and the HAI prevalence from the national point prevalence
survey. We could only compare the distributions visually, with a large under estimation in our cohort in
Provence-Alpes-Côte d’Azur (PAC).

Supplementary Figure 3. Hospital cohort representativity. (A) Comparison of the distribution of the number of
legal entities by region. We compared the regional distribution in our cohort to the distribution reported by the
French technical agency on hospitalization information in 2020 (ATIH) using a 𝜒2 test. The p-value of this test is
<0.001 which suggests that our hospital cohort is not representative, notably due to the underrepresentation of
hospitals in Île-de-France (IDF). (B) Comparison of the distribution of the number of bed-days in 2020 by region.
We compared the regional distribution in our cohort to the distribution reported by the French technical agency on
hospitalization information in 2020 (ATIH) using a 𝜒2 test. The p-value of this test is lower than 1e-3 which suggests
that our hospital cohort is not representative of hospital activity across regions. It is presumably due to the
heterogeneous inclusion of university hospitals across regions (Supplementary Figure 2A). For example, only a
minor hospital of the Parisian University Hospital (Assistance publique - Hôpitaux de Paris, AP-HP) is included in
our cohort while AP-HP is the largest hospital group in France in terms of activity. (C) Comparison of the
distribution of the prevalence of healthcare-associated infections (HAIs) at the regional level. We compared the
point prevalence of all bacterial and viral HAIs (except SARS-CoV-2 HAIs) estimated by the French national
agency of Public health (Santé publique France, SpF) to the prevalence of patients with bacterial infections based on
our hospital cohort. The point prevalence estimated by SpF is based on the number of hospitalized patients with a
bacterial or viral HAI in participating hospitals over one day between the 15th of May and the 30th of June 2022. In
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our cohort, we divided the number of patients with a bacterial infection detected between the 15th of May and the
30th of June 2022 and divided it by the number of patients hospitalized in the corresponding hospitals over the same
period that we extracted from the PMSI. We have a relatively good agreement between our cohort and SpF, but with
an overestimation in Centre-Val de Loire (CVL) and underestimation in Provence-Alpes-Côte d’Azur (PAC). ARA:
Auvergne-Rhône-Alpes; BFC: Bourgogne-Franche-Comté; BRE: Bretagne; CVL: Centre-Val de Loire; GES:
Grand-Est; HDF: Hauts-de-France; IDF: Île-de-France ; NAQ: Nouvelle-Aquitaine; NOR: Normandie; OCC:
Occitanie; PAC: Provence-Alpes-Côte d’Azur; PDL: Pays de la Loire.

3. Extraction of bed-days data from the PMSI

We extracted the weekly number of bed-days and the weekly number of intubated COVID-19 patient bed-days for
hospitals of our cohort from the National Hospital Discharge Database (PMSI). Of note, the PMSI has been
designed to describe hospital activity in a standard manner and not to conduct epidemiological studies so its use in
epidemiological studies has inherent limitations.5

For each hospital in our cohort, we used its physical FINESS code to retrieve all patient stays in the PMSI. For each
university hospital that reported its data using its legal FINESS code, we listed the associated physical FINESS
codes corresponding to acute-care facilities that are publicly available in the national register of FINESS codes
(https://www.data.gouv.fr/fr/). We downsampled patient stays to the ones corresponding to the patient population
followed-up by SPARES (inpatients) and our selection criteria (individuals above 15 years old, Supplementary
Figure 4A).

To extract intubated COVID-19 patient bed-days (Supplementary Figure 4B), we selected from the line list of
patient stays above-mentioned COVID-19 patients that were intubated. We identified COVID-19 patients using the
U07 and U10 codes of the International Classification of Diseases 10th revision. Tracheal intubation was identified
using the GELD004, GELD002, GLLD004 and GLLD008 codes of the French medical classification for clinical
procedures (CCAM). The exact date of the diagnosis is not available in the PMSI, thereby we assumed that patients
had COVID-19 during their whole stay. For the procedures, the date of the procedure is available but not its
duration. We assumed that patients were intubated from the start of the procedure until the end of their stay. This
assumption likely overestimates the weekly prevalence of intubated COVID-19 patients as it is very probable that
patients are not desintubated a few days prior to the end of their stay/transfer to another medical ward.
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Supplementary Figure 4. Dynamics of occupied bed-days in hospitals and intensive care units (ICUs) over the
study period. (A) Weekly number of occupied bed-days in hospitals and ICUs of our national cohorts. We can
notice a seasonal pattern with decreased bed-days during summer and Christmas holidays in 2019. This pattern was
largely affected during the pandemic. (B) Weekly number of COVID-19 bed-days in hospitals and ICUs of our
national cohorts. The strips indicate the level of anti-COVID-19 interventions in the community that we adapted
from Paireau and colleagues.6

4. Descriptive analysis of antibiotic resistance data

We extracted the incident number of episodes caused by five bacterial species (P. aeruginosa, E. cloacae complex,
E. coli, K. pneumoniae, and S. aureus) and classified them as resistant or not. We considered bacteria to be resistant
when they had an R phenotype or produced extended-spectrum β-lactamase (BLSE). We obtained the weekly
proportion of resistant episodes by dividing the incident number of resistant episodes by the incident number of all
episodes. Resistance proportion displayed little short-term dynamics over the study period, except for CR-PA
(Supplementary Figure 5).
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Supplementary Figure 5. Weekly resistance proportions of bacterial samples isolated in our hospital cohort,
2019-2022.We calculated the Wilson binomial proportion confidence interval (in grey).
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The incidence of resistant isolates displayed more pronounced variations during the study period (Figure 3D).
Except for ESBL-producing E. cloacae complex (ESBL-ECC) in ICUs, the incidence of the five drug-bacterium
pairs significantly changed during the study period (Supplementary Figure 6A). We observed a clear decrease after
the start of the pandemic for MRSA, while an increase for CR-PA during the first wave followed by a decrease in
the later stages of the pandemic (low to no restrictions). In addition, there is a significant correlation at the hospital
and ICU levels between CR-PA incidence and the prevalence of intubated COVID-19 patients (Supplementary
Figure 6B).

Supplementary Figure 6. Correlation between the weekly incidence of resistant infections and
COVID-19-related variables in hospitals and ICUs at the national level. (A) Variations of the weekly incidence
of resistant infections according to the level of anti-COVID-19 restrictions in hospitals and ICUs. The p-value of the
Kruskal-Wallis test is indicated on each panel. (B) Correlation between the weekly incidence of resistant infections
and the weekly prevalence of COVID-19 patients in hospitals and ICUs for the resistant pathogens of interest.
Kendall’s tau correlation coefficient and the p-value of the correlation test are indicated on each panel.
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5. Statistical modeling
a. Model selection

We tested a baseline model of resistant isolate incidence that did not account for the COVID-19 pandemic and
compared it to six models including either the pandemic periods or the prevalence of intubated COVID-19 patients
for weeks w, w-1 or w-2 (Supplementary Table 2).

Supplementary Table 2. COVID-19-related variables included in the count regression models of infections at
the national level.

Model COVID-19-related variables Additional term in model equation

Baseline None -

1

A categorical variable indicating the COVID-19-related
period of week w: pre-pandemic (reference), first wave,
strong restrictions, intermediate restrictions, low to no
restrictions

β · 𝑃𝑒𝑟𝑖𝑜𝑑
𝑤

2

A categorical variable indicating the COVID-19-related
period of week w-1: pre-pandemic (reference), first wave,
strong restrictions, intermediate restrictions, low to no
restrictions

β · 𝑃𝑒𝑟𝑖𝑜𝑑
𝑤−1

3

A categorical variable indicating the COVID-19-related
period of week w-2: pre-pandemic (reference), first wave,
strong restrictions, intermediate restrictions, low to no
restrictions

β · 𝑃𝑒𝑟𝑖𝑜𝑑
𝑤−2

4 Prevalence of intubated COVID-19 cases (for 1,000
bed-days) of week w

β · 𝑃𝑟𝑒𝑣
𝑖𝑛𝑡𝑢𝑏−𝑐𝑜𝑣𝑖𝑑,𝑤

5 Prevalence of intubated COVID-19 cases (for 1,000
bed-days) of week w-1

β · 𝑃𝑟𝑒𝑣
𝑖𝑛𝑡𝑢𝑏−𝑐𝑜𝑣𝑖𝑑,𝑤−1

6 Prevalence of intubated COVID-19 cases (for 1,000
bed-days) of week w-2

β · 𝑃𝑟𝑒𝑣
𝑖𝑛𝑡𝑢𝑏−𝑐𝑜𝑣𝑖𝑑,𝑤−2

We selected the best model based on the Akaike Information Criterion (AIC, Supplementary Table 3). If no model
with COVID-19 variables had an AIC difference of at least 5 compared to the baseline model (without COVID-19
variables), we considered the baseline model as the best model. If multiple COVID-19 models had similar AIC
values, we kept the model that would facilitate results presentation. For instance, we used the “Pandemic periods w”
model for ESBL-producing K. pneumoniae (ESBL-KP) in ICUs although it had a higher AIC than the “Pandemic
periods w-1” model so that we could present the estimates for ESBL-KP, ESBL-producing E. coli, and MRSA all at
once.
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Supplementary Table 3. Results of the model comparison and AIC values of the regression models tested on
the national infection data. The selected model (AIC in bold) is the one minimizing the AIC.

CR P. aeruginosa ESBL-producing K.
pneumoniae

ESBL-producing
E. cloacae
complex

ESBL-produ
cing E. coli

MRSA

Hospital

No COVID-19 variable 1496 1601 1486 1630 1570
Pandemic periods w 1485 1607 1492 1585 1491
Pandemic periods w-1 1482 1607 1492 1591 1491
Pandemic periods w-2 1482 1608 1492 1591 1492
COVID-19 intubation prevalence w 1484 1603 1487 1632 1571
COVID-19 intubation prevalence w-1 1479 1603 1487 1631 1572
COVID-19 intubation prevalence w-2 1476 1603 1487 1630 1572

ICU

No COVID-19 variable 1291 1187 1051 1162 1043
Pandemic periods w 1293 1181 1055 1147 1027
Pandemic periods w-1 1290 1179 1056 1148 1027
Pandemic periods w-2 1287 1182 1054 1149 1029
COVID-19 intubation prevalence w 1289 1188 1053 1156 1041
COVID-19 intubation prevalence w-1 1283 1188 1052 1156 1040
COVID-19 intubation prevalence w-2 1275 1189 1052 1154 1040

b. Verification of model assumptions

Supplementary Table 4. Dispersion parameter of the negative binomial estimated in regression model
analyses.We report the estimates of the overdispersion parameter with its 95% CI.

Best model Overdispersion (95% CI)

Hospital

CR P. aeruginosa COVID-19 intubation prevalence w-2 214 (29, 400)

ESBL-producing E. cloacae complex No COVID-19 variable 39 (24, 54)

ESBL-producing E. coli Pandemic periods w 708 (-322, 1737)

ESBL-producing K. pneumoniae No COVID-19 variable 106 (58, 154)

MRSA Pandemic periods w 492 (-254, 1238)

ICU

CR P. aeruginosa COVID-19 intubation prevalence w-2 56 (15, 97)

ESBL-producing E. cloacae complex No COVID-19 variable 23 (6, 40)

ESBL-producing E. coli Pandemic periods w 25 (8, 41)

ESBL-producing K. pneumoniae Pandemic periods w 24 (10, 37)

MRSA Pandemic periods w 31 (-2, 65)
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Supplementary Table 5. Multicollinearity between variables of the restriction levels of anti-COVID-19
interventions and COVID-19 prevalence. Here, we report the variance inflation factor (VIF) for all covariables
when we include both the prevalence of intubated COVID-19 patients and pandemic periods. Generally, we consider
that there is little to no correlation between covariables for VIF values ≤ 5. Values greater than 5 (in bold) are
indicative of multicollinearity. We did not explore models with both COVID-19 variables as they often led to VIF
values close to 5 or greater than 5.

CR P. aeruginosa ESBL-producing K.
pneumoniae

ESBL-producing
E. cloacae
complex

ESBL-produ
cing E. coli

MRSA

Hospital

Incidence w-1 1⸱6 1⸱1 1⸱1 1⸱8 2⸱0
COVID-19 intubation prev. w 2⸱5 2⸱5 2⸱6 2⸱5 2⸱8
Pandemic periods 4⸱6 4⸱4 4⸱7 7⸱6 5⸱0
Imipenem + Meropenem 2⸱3 - - - -
3rd generation Cephalosporins - 2⸱3 2⸱3 2⸱2 -
Penicillins - - - - 1⸱3
ICU

Incidence w-1 1⸱2 1⸱1 1⸱0 1⸱2 1⸱3
COVID-19 intubation prev. w 2⸱7 2⸱8 3⸱0 3⸱0 3⸱1
Pandemic periods 6⸱1 5⸱4 5⸱6 6⸱0 4⸱2
Imipenem + Meropenem 3⸱2 - - - -
3rd generation Cephalosporins - 2⸱2 2⸱2 2⸱1 -
Penicillins - - - - 1⸱9

Supplementary Table 6. Residuals autocorrelation of the best count regression models selected in the national
analysis. We performed Box-Ljung tests on 52 lags to evaluate whether residuals of the negative binomial
regression model were autocorrelated. A p-value greater than 0⸱05 indicates that residuals are not autocorrelated. At
the hospital level, the best models fail to account for the autocorrelation over 52 weeks, except for MRSA. At the
ICU level, there is no autocorrelation in the residuals over 52 weeks, except for ESBL-KP and ESBL-EC.

Chi2 df p.value

Hospital

CR P. aeruginosa 74⸱26 51 0⸱018
ESBL-producing E. cloacae
complex

98⸱85 51 <0⸱001

ESBL-producing E. coli 83⸱52 51 0⸱003
ESBL-producing K. pneumoniae 72⸱04 51 0⸱028
MRSA 51⸱51 51 0⸱454
ICU

CR P. aeruginosa 56⸱51 51 0⸱277
ESBL-producing E. cloacae
complex

45⸱20 51 0⸱702

ESBL-producing E. coli 69⸱73 51 0⸱042
ESBL-producing K. pneumoniae 94⸱52 51 <0⸱001
MRSA 59⸱66 51 0⸱190
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c. Unadjusted estimates

Supplementary Table 7. Unadjusted estimates of incidence rate ratios (IRRs) associated to COVID-19-related
variables for CR-PA in French hospitals and intensive care units (ICUs). We depicted in bold the IRRs whose
p-value is lower than 0⸱05.

CR P. aeruginosa IRR p-value

Hospital

Pandemic periods w <0⸱0011

First wave 1⸱39 (1⸱27, 1⸱52) <0⸱001

Strong res 1⸱38 (1⸱26, 1⸱50) <0⸱001

Mild res 1⸱33 (1⸱25, 1⸱41) <0⸱001

Low to no res 1⸱11 (1⸱05, 1⸱17) <0⸱001

Pandemic periods w-1 <0⸱0011

First wave 1⸱38 (1⸱26, 1⸱51) <0⸱001

Strong res 1⸱44 (1⸱32, 1⸱57) <0⸱001

Mild res 1⸱32 (1⸱24, 1⸱40) <0⸱001

Low to no res 1⸱11 (1⸱05, 1⸱17) <0⸱001

Pandemic periods w-2 <0⸱0011

First wave 1⸱37 (1⸱25, 1⸱50) <0⸱001

Strong res 1⸱45 (1⸱33, 1⸱58) <0⸱001

Mild res 1⸱31 (1⸱24, 1⸱39) <0⸱001

Low to no res 1⸱10 (1⸱04, 1⸱16) <0⸱001

COVID-19 intubation prevalence Week w 1⸱11 (1⸱08, 1⸱13) <0⸱001

Week w-1 1⸱12 (1⸱09, 1⸱14) <0⸱001

Week w-2 1⸱12 (1⸱10, 1⸱15) <0⸱001

ICU

Pandemic periods w <0⸱0011

First wave 1⸱38 (1⸱17, 1⸱63) <0⸱001

Strong res 1⸱43 (1⸱22, 1⸱68) <0⸱001

Mild res 1⸱48 (1⸱32, 1⸱66) <0⸱001

Low to no res 1⸱20 (1⸱08, 1⸱34) <0⸱001

Pandemic periods w-1 <0⸱0011

First wave 1⸱36 (1⸱15, 1⸱60) <0⸱001

Strong res 1⸱53 (1⸱31, 1⸱79) <0⸱001

Mild res 1⸱47 (1⸱31, 1⸱64) <0⸱001

Low to no res 1⸱18 (1⸱07, 1⸱32) 0⸱002

Pandemic periods w-2 <0⸱0011

First wave 1⸱43 (1⸱22, 1⸱68) <0⸱001

Strong res 1⸱64 (1⸱41, 1⸱91) <0⸱001

Mild res 1⸱45 (1⸱30, 1⸱62) <0⸱001

Low to no res 1⸱19 (1⸱07, 1⸱31) 0⸱001

COVID-19 intubation prevalence Week w 1⸱12 (1⸱08, 1⸱17) <0⸱001

Week w-1 1⸱15 (1⸱10, 1⸱19) <0⸱001

Week w-2 1⸱17 (1⸱13, 1⸱21) <0⸱001
1Global p-value
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Supplementary Table 8. Unadjusted estimates of incidence rate ratios (IRRs) associated to COVID-19-related
variables for ESBL-producing E. cloacae complex in French hospitals and intensive care units (ICUs). We
depicted in bold the IRRs whose p-value is lower than 0⸱05.

ESBL-producing E. cloacae
complex

IRR p-value

Hospital

Pandemic periods w 0⸱0121

First wave 1⸱18 (1⸱01, 1⸱38) 0⸱034

Strong res 1⸱21 (1⸱05, 1⸱41) 0⸱011

Mild res 1⸱16 (1⸱05, 1⸱28) 0⸱004

Low to no res 1⸱12 (1⸱02, 1⸱22) 0⸱013

Pandemic periods w-1 0⸱0211

First wave 1⸱16 (1⸱00, 1⸱36) 0⸱051

Strong res 1⸱16 (0⸱99, 1⸱34) 0⸱060

Mild res 1⸱17 (1⸱06, 1⸱29) 0⸱002

Low to no res 1⸱12 (1⸱02, 1⸱22) 0⸱014

Pandemic periods w-2 0⸱0131

First wave 1⸱19 (1⸱03, 1⸱39) 0⸱022

Strong res 1⸱12 (0⸱96, 1⸱30) 0⸱150

Mild res 1⸱17 (1⸱06, 1⸱30) 0⸱001

Low to no res 1⸱13 (1⸱03, 1⸱23) 0⸱009

COVID-19 intubation prevalence Week w 1⸱03 (0⸱99, 1⸱06) 0⸱168

Week w-1 1⸱03 (0⸱99, 1⸱07) 0⸱139

Week w-2 1⸱02 (0⸱99, 1⸱06) 0⸱259

ICU

Pandemic periods w 0⸱2081

First wave 1⸱20 (0⸱95, 1⸱52) 0⸱115

Strong res 1⸱28 (1⸱03, 1⸱58) 0⸱027

Mild res 1⸱10 (0⸱93, 1⸱29) 0⸱259

Low to no res 1⸱08 (0⸱93, 1⸱26) 0⸱296

Pandemic periods w-1 0⸱2931

First wave 1⸱21 (0⸱96, 1⸱53) 0⸱100

Strong res 1⸱23 (0⸱99, 1⸱53) 0⸱062

Mild res 1⸱10 (0⸱93, 1⸱29) 0⸱257

Low to no res 1⸱09 (0⸱94, 1⸱27) 0⸱257

Pandemic periods w-2 0⸱1901

First wave 1⸱22 (0⸱97, 1⸱54) 0⸱086

Strong res 1⸱27 (1⸱02, 1⸱58) 0⸱031

Mild res 1⸱07 (0⸱91, 1⸱26) 0⸱401

Low to no res 1⸱10 (0⸱95, 1⸱28) 0⸱207

COVID-19 intubation prevalence Week w 1⸱04 (0⸱98, 1⸱09) 0⸱197

Week w-1 1⸱05 (0⸱99, 1⸱10) 0⸱095

Week w-2 1⸱05 (0⸱99, 1⸱11) 0⸱078
1Global p-value
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Supplementary Table 9. Unadjusted estimates of incidence rate ratios (IRRs) associated to COVID-19-related
variables for ESBL-producing E. coli in French hospitals and intensive care units (ICUs).We depicted in bold
the IRRs whose p-value is lower than 0⸱05.

ESBL-producing E. coli IRR p-value

Hospital

Pandemic periods w <0⸱0011

First wave 1⸱08 (1⸱02, 1⸱15) 0⸱009

Strong res 0⸱91 (0⸱85, 0⸱96) 0⸱002

Mild res 0⸱90 (0⸱87, 0⸱94) <0⸱001

Low to no res 0⸱81 (0⸱79, 0⸱84) <0⸱001

Pandemic periods w-1 <0⸱0011

First wave 1⸱07 (1⸱00, 1⸱13) 0⸱039

Strong res 0⸱89 (0⸱84, 0⸱95) <0⸱001

Mild res 0⸱90 (0⸱87, 0⸱94) <0⸱001

Low to no res 0⸱82 (0⸱79, 0⸱85) <0⸱001

Pandemic periods w-2 <0⸱0011

First wave 1⸱07 (1⸱00, 1⸱14) 0⸱036

Strong res 0⸱88 (0⸱83, 0⸱94) <0⸱001

Mild res 0⸱90 (0⸱87, 0⸱94) <0⸱001

Low to no res 0⸱82 (0⸱79, 0⸱85) <0⸱001

COVID-19 intubation prevalence Week w 1⸱00 (0⸱98, 1⸱02) 0⸱949

Week w-1 1⸱00 (0⸱98, 1⸱02) 0⸱910

Week w-2 0⸱99 (0⸱97, 1⸱01) 0⸱455

ICU

Pandemic periods w <0⸱0011

First wave 0⸱95 (0⸱78, 1⸱16) 0⸱638

Strong res 0⸱65 (0⸱53, 0⸱80) <0⸱001

Mild res 0⸱86 (0⸱75, 0⸱99) 0⸱037

Low to no res 0⸱69 (0⸱61, 0⸱78) <0⸱001

Pandemic periods w-1 <0⸱0011

First wave 1⸱04 (0⸱85, 1⸱26) 0⸱720

Strong res 0⸱65 (0⸱52, 0⸱80) <0⸱001

Mild res 0⸱85 (0⸱74, 0⸱98) 0⸱021

Low to no res 0⸱71 (0⸱62, 0⸱81) <0⸱001

Pandemic periods w-2 <0⸱0011

First wave 1⸱09 (0⸱89, 1⸱32) 0⸱412

Strong res 0⸱67 (0⸱55, 0⸱83) <0⸱001

Mild res 0⸱80 (0⸱69, 0⸱92) 0⸱001

Low to no res 0⸱73 (0⸱64, 0⸱83) <0⸱001

COVID-19 intubation prevalence Week w 0⸱93 (0⸱89, 0⸱98) 0⸱013

Week w-1 0⸱93 (0⸱88, 0⸱98) 0⸱011

Week w-2 0⸱92 (0⸱87, 0⸱97) 0⸱003
1Global p-value
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Supplementary Table 10. Unadjusted estimates of incidence rate ratios (IRRs) associated to
COVID-19-related variables for ESBL-producing K. pneumoniae in French hospitals and intensive care units
(ICUs).We depicted in bold the IRRs whose p-value is lower than 0⸱05.

ESBL-producing K. pneumoniae IRR p-value

Hospital

Pandemic periods w 0⸱0051

First wave 1⸱19 (1⸱08, 1⸱31) <0⸱001

Strong res 1⸱03 (0⸱93, 1⸱13) 0⸱617

Mild res 1⸱07 (1⸱00, 1⸱14) 0⸱044

Low to no res 1⸱02 (0⸱96, 1⸱08) 0⸱560

Pandemic periods w-1 0⸱0051

First wave 1⸱20 (1⸱09, 1⸱32) <0⸱001

Strong res 1⸱02 (0⸱92, 1⸱12) 0⸱728

Mild res 1⸱06 (1⸱00, 1⸱13) 0⸱058

Low to no res 1⸱02 (0⸱96, 1⸱08) 0⸱521

Pandemic periods w-2 0⸱0221

First wave 1⸱17 (1⸱06, 1⸱29) 0⸱001

Strong res 1⸱02 (0⸱92, 1⸱13) 0⸱694

Mild res 1⸱06 (0⸱99, 1⸱13) 0⸱099

Low to no res 1⸱02 (0⸱96, 1⸱08) 0⸱570

COVID-19 intubation prevalence Week w 1⸱02 (1⸱00, 1⸱04) 0⸱116

Week w-1 1⸱02 (1⸱00, 1⸱04) 0⸱120

Week w-2 1⸱01 (0⸱99, 1⸱04) 0⸱261

ICU

Pandemic periods w <0⸱0011

First wave 1⸱33 (1⸱09, 1⸱62) 0⸱005

Strong res 0⸱77 (0⸱62, 0⸱95) 0⸱016

Mild res 1⸱19 (1⸱03, 1⸱36) 0⸱017

Low to no res 0⸱98 (0⸱86, 1⸱12) 0⸱810

Pandemic periods w-1 <0⸱0011

First wave 1⸱38 (1⸱14, 1⸱68) 0⸱001

Strong res 0⸱76 (0⸱61, 0⸱93) 0⸱010

Mild res 1⸱19 (1⸱03, 1⸱36) 0⸱014

Low to no res 0⸱98 (0⸱86, 1⸱11) 0⸱736

Pandemic periods w-2 <0⸱0011

First wave 1⸱44 (1⸱18, 1⸱74) <0⸱001

Strong res 0⸱78 (0⸱63, 0⸱97) 0⸱025

Mild res 1⸱17 (1⸱02, 1⸱34) 0⸱027

Low to no res 1⸱00 (0⸱88, 1⸱13) 0⸱944

COVID-19 intubation prevalence Week w 1⸱00 (0⸱95, 1⸱05) 0⸱909

Week w-1 1⸱01 (0⸱96, 1⸱06) 0⸱837

Week w-2 1⸱01 (0⸱96, 1⸱06) 0⸱727
1Global p-value
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Supplementary Table 11. Unadjusted estimates of incidence rate ratios (IRRs) associated to
COVID-19-related variables for MRSA in French hospitals and intensive care units (ICUs). We depicted in
bold the IRRs whose p-value is lower than 0⸱05.

MRSA IRR p-value

Hospital

Pandemic periods w <0⸱0011

First wave 0⸱94 (0⸱87, 1⸱02) 0⸱120

Strong res 0⸱82 (0⸱76, 0⸱89) <0⸱001

Mild res 0⸱84 (0⸱80, 0⸱88) <0⸱001

Low to no res 0⸱75 (0⸱72, 0⸱79) <0⸱001

Pandemic periods w-1 <0⸱0011

First wave 0⸱95 (0⸱88, 1⸱02) 0⸱164

Strong res 0⸱82 (0⸱76, 0⸱88) <0⸱001

Mild res 0⸱83 (0⸱80, 0⸱88) <0⸱001

Low to no res 0⸱75 (0⸱72, 0⸱79) <0⸱001

Pandemic periods w-2 <0⸱0011

First wave 0⸱96 (0⸱89, 1⸱03) 0⸱284

Strong res 0⸱82 (0⸱76, 0⸱89) <0⸱001

Mild res 0⸱84 (0⸱80, 0⸱88) <0⸱001

Low to no res 0⸱75 (0⸱72, 0⸱79) <0⸱001

COVID-19 intubation prevalence Week w 0⸱97 (0⸱94, 0⸱99) 0⸱008

Week w-1 0⸱97 (0⸱95, 1⸱00) 0⸱027

Week w-2 0⸱98 (0⸱95, 1⸱00) 0⸱050

ICU

Pandemic periods w <0⸱0011

First wave 0⸱64 (0⸱50, 0⸱82) <0⸱001

Strong res 0⸱60 (0⸱47, 0⸱75) <0⸱001

Mild res 0⸱64 (0⸱55, 0⸱75) <0⸱001

Low to no res 0⸱65 (0⸱57, 0⸱75) <0⸱001

Pandemic periods w-1 <0⸱0011

First wave 0⸱63 (0⸱49, 0⸱80) <0⸱001

Strong res 0⸱59 (0⸱47, 0⸱75) <0⸱001

Mild res 0⸱66 (0⸱57, 0⸱78) <0⸱001

Low to no res 0⸱65 (0⸱56, 0⸱75) <0⸱001

Pandemic periods w-2 <0⸱0011

First wave 0⸱64 (0⸱50, 0⸱81) <0⸱001

Strong res 0⸱60 (0⸱47, 0⸱76) <0⸱001

Mild res 0⸱66 (0⸱56, 0⸱78) <0⸱001

Low to no res 0⸱65 (0⸱57, 0⸱76) <0⸱001

COVID-19 intubation prevalence Week w 0⸱88 (0⸱83, 0⸱94) <0⸱001

Week w-1 0⸱88 (0⸱83, 0⸱93) <0⸱001

Week w-2 0⸱88 (0⸱82, 0⸱93) <0⸱001
1Global p-value
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d. Best model fits and estimates

Supplementary Table 12. Estimates of the best count regression models of resistant infections in French
hospitals and ICUs.We depicted in bold the incidence rate ratios (IRRs) whose p-value is lower than 0⸱05.

ESBL-producing E.
cloacae complex

ESBL-producing K.
pneumoniae

ESBL-producing E.
coli

MRSA CR P. aeruginosa

IRR
(95% CI)

p IRR
(95% CI)

p IRR
(95% CI)

p IRR
(95% CI)

p IRR
(95% CI)

p

Hospital

Intercept 0⸱10
(0⸱10, 0⸱11)

<0⸱001 0⸱21
(0⸱21, 0⸱21)

<0⸱00
1

0⸱31
(0⸱30, 0⸱32)

<0⸱001 0⸱22
(0⸱21, 0⸱22)

<0⸱001 0⸱16
(0⸱15, 0⸱16)

<0⸱001

Incidence w-1 1⸱14
(1⸱11, 1⸱18)

<0⸱001 1⸱08
(1⸱06, 1⸱10)

<0⸱00
1

1⸱03
(1⸱01, 1⸱05)

<0⸱001 0⸱99
(0⸱96, 1⸱01)

0⸱306 1⸱07
(1⸱04, 1⸱09)

<0⸱001

Pandemic periods First
wave

- - - - 1⸱04
(0⸱97, 1⸱12)

0⸱294 0⸱94
(0⸱87, 1⸱01)

0⸱099 - -

Strong - - - - 0⸱91
(0⸱85, 0⸱98)

0⸱013 0⸱82
(0⸱76, 0⸱89)

<0⸱001 - -

Mild - - - - 0⸱91
(0⸱86, 0⸱96)

<0⸱001 0⸱84
(0⸱79, 0⸱88)

<0⸱001 - -

Low to
none

- - - - 0⸱85
(0⸱81, 0⸱89)

<0⸱001 0⸱74
(0⸱70, 0⸱78)

<0⸱001 - -

COVID-19
intubation prev. w-2

- - - - - - - - 1⸱06
(1⸱04, 1⸱09)

<0⸱001

Penicillins - - - - - - 1⸱01
(0⸱99, 1⸱03)

0⸱266 - -

3rd generation
Cephalosporins

1⸱03
(1⸱00, 1⸱06)

0⸱076 1⸱03
(1⸱01, 1⸱05)

0⸱007 1⸱01
(0⸱99, 1⸱03)

0⸱325 - - - -

Imipenem +
Meropenem

- - - - - - - - 1⸱04
(1⸱01, 1⸱06)

0⸱003

ICU

Intercept 0⸱75
(0⸱71, 0⸱80)

<0⸱001 1⸱14
(1⸱04, 1⸱25)

0⸱005 1⸱23
(1⸱12, 1⸱36)

<0⸱001 0⸱91
(0⸱81, 1⸱03)

0⸱142 2⸱01
(1⸱94, 2⸱08)

<0⸱001

Incidence w-1 1⸱04
(0⸱99, 1⸱11)

0⸱14 1⸱07
(1⸱02, 1⸱13)

0⸱006 1⸱04
(0⸱98, 1⸱10)

0⸱166 1⸱05
(0⸱98, 1⸱12)

0⸱147 1⸱12
(1⸱08, 1⸱16)

<0⸱001

Pandemic periods First
wave

- - 1⸱18
(0⸱95, 1⸱48)

0⸱129 0⸱92
(0⸱73, 1⸱16)

0⸱486 0⸱67
(0⸱51, 0⸱87)

0⸱003 - -

Strong - - 0⸱76
(0⸱62, 0⸱94)

0⸱013 0⸱67
(0⸱54, 0⸱84)

<0⸱001 0⸱63
(0⸱47, 0⸱82)

<0⸱001 - -

Mild - - 1⸱11
(0⸱96, 1⸱28)

0⸱146 0⸱86
(0⸱75, 1⸱00)

0⸱043 0⸱67
(0⸱54, 0⸱82)

<0⸱001 - -

Low to
none

- - 1⸱03
(0⸱89, 1⸱18)

0⸱708 0⸱73
(0⸱63, 0⸱85)

<0⸱001 0⸱68
(0⸱58, 0⸱80)

<0⸱001 - -

COVID-19
intubation prev. w-2

- - - - - - - - 1⸱09
(1⸱05, 1⸱14)

<0⸱001

Penicillins - - - - - - 1⸱00
(0⸱92, 1⸱08)

0⸱921 - -

3rd generation
Cephalosporins

1⸱05
(1⸱00, 1⸱12)

0⸱064 1⸱05
(0⸱98, 1⸱13)

0⸱141 1⸱02
(0⸱96, 1⸱10)

0⸱491 - - - -

Imipenem +
Meropenem

- - - - - - - - 1⸱04
(0⸱99, 1⸱09)

0⸱092
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Supplementary Figure 7. Fits of the best regression models applied to national incidence data. The red ribbon
indicates the 95% CI of the predicted weekly incidence of resistant bacteria.
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6. Evolution in antibiotic use

Supplementary Figure 8. Annual antibiotic consumption by antibiotic class in (A) hospitals and (B) intensive
care units (ICUs), 2019-2022. Gray lines correspond to antibiotic consumption at the hospital or ICU level and red
circles indicate the median consumption across all facilities. Consumption is expressed in defined daily doses
(DDD) for 1,000 occupied bed-days.
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Supplementary Figure 9. Median absolute change of antibiotic consumption in hospitals across regions
between 2019 and 2020. Positive values indicate an increase in 2020 and negative values a decrease. Each
antibiotic class has its own absolute change gradient scale to ensure readability of absolute changes. We only report
p-values≤0.05. *: p-value≤0.05; **: p-value≤0.01; ***: p-value≤0.001.
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7. Sensitivity analysis exploring the impact of antibiotic use on incidence rate ratios estimates

In the principal multivariate analysis, we integrated the annual antibiotic use as a confusion factor. It has been shown
that antibiotic consumption varied during the pandemic both in hospitals7 and in the community.8,9 This may have
contributed to the modification of selective pressures in hospitals. In our dataset, we aggregated resistance data at
the weekly level, however antibiotic use was only available annually and in hospitals. We evaluated whether not
accounting for antibiotic use in hospitals changed our results.

For ESBL-KP, ESBL-EC, ESBL-ECC, and MRSA, we found the same best model as in the principal analysis
(Supplementary Table 13) and incidence rate ratios (IRRs) barely changed (Supplementary Figure 10). This is
indicative of little impact of target antibiotics used in hospitals for these four drug-bacterium pairs.

For CR-PA, we found the same model as in the principal analysis at the ICU level, but not at the hospital level
(Supplementary Table 13). In the latter case, we tested both the model with pandemic periods w-1 and the model
with COVID-19 intubation prevalence w-2 using a likelihood ratio test. The best model was the model with
pandemic periods w-1 (p<1e-6). Even though there is not a direct association with the prevalence of intubated
COVID-19 patients, the incidence increased after the start of the first wave (Supplementary Figure 10) which is in
agreement with the results of the principal analysis (Figure 4A).

Supplementary Table 13. Results of model comparison when excluding antibiotic use. Selected model is the one
minimizing the AIC. We indicated in bold the AIC of the best selected model.

CR P. aeruginosa ESBL-producing K.
pneumoniae

ESBL-producing
E. cloacae
complex

ESBL-produ
cing E. coli

MRSA

Hospital

No COVID-19 variable 1513 1607 1487 1628 1570
Pandemic periods w 1484 1608 1490 1584 1491
Pandemic periods w-1 1480 1610 1491 1591 1490
Pandemic periods w-2 1481 1612 1490 1591 1491
COVID-19 intubation prevalence w 1490 1608 1487 1630 1570
COVID-19 intubation prevalence w-1 1484 1608 1488 1629 1570
COVID-19 intubation prevalence w-2 1483 1609 1488 1628 1571

ICU

No COVID-19 variable 1303 1190 1053 1164 1047
Pandemic periods w 1293 1181 1056 1146 1025
Pandemic periods w-1 1289 1179 1057 1146 1025
Pandemic periods w-2 1285 1182 1056 1147 1027
COVID-19 intubation prevalence w 1292 1192 1053 1162 1039
COVID-19 intubation prevalence w-1 1285 1192 1052 1162 1039
COVID-19 intubation prevalence w-2 1276 1192 1052 1160 1039
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Supplementary Figure 10. Results from the count regression analysis of resistant infections in French
hospitals and intensive care units (ICUs). (A) Incidence rate ratios (IRRs) of COVID-19-related variables for the
best selected regression models. For ESBL-producing E. cloacae in ICUs and hospitals and K. pneumoniae in
hospitals, the best models did not include COVID-19-related variables, thus they do not appear on the forest plots.
For the other cases, the best models included either COVID-19-related periods at week w, COVID-19-related
periods at week w-1, or the COVID-19 intubation prevalence at week w-2. IRR estimates for the COVID-19-related
periods are relative to the pre-pandemic period. (B) Incidence rate ratios of the best regression models for the
autocorrelation term.
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Supplementary Figure 11. Fits of the best regression models applied to national incidence data in the
sensitivity analysis without antibiotic consumption. The red ribbon indicates the 95% CI of the predicted weekly
incidence of resistant bacteria.
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Supplementary Figure 12. Regional heterogeneity of antibiotic resistance epidemiology during the pandemic
in the sensitivity analysis without antibiotic use. (A) Incidence rate ratios (IRRs) using the best model selected at
the national level (without antibiotic consumption) on carbapenem-resistant P. aeruginosa (CR-PA) isolate incidence
including the prevalence of COVID-19 intubated patients. (B) IRRs using the best model at the national level
(without antibiotic consumption) on ESBL-producing E. coli (ESBL E. coli) and methicillin-resistant S. aureus
(MRSA) isolate incidence including the pandemic periods at week w. Intervals correspond to the 95% CIs of the
point estimates. Transparent IRRs have a p-value > 0⸱05. ARA: Auvergne-Rhône-Alpes; BFC:
Bourgogne-Franche-Comté; BRE: Bretagne; CVL: Centre-Val de Loire; GES: Grand-Est; HDF: Hauts-de-France;
IDF: Île-de-France ; NAQ: Nouvelle-Aquitaine; NOR: Normandie; OCC: Occitanie; PAC: Provence-Alpes-Côte
d’Azur; PDL: Pays de la Loire.
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8. Sensitivity analyses for CR-PA isolates incidence
a. Dynamics of CR-PA isolate incidence in hospitals is driven by intensive care units

The results of the main analysis suggested that intubation of COVID-19 patients was associated with an increase in
the incidence of CR-PA isolates in hospitals and ICUs at the national level. Given that intubation majorly concerns
ICUs, we investigated whether the association between COVID-19 intubated patients and CR-PA isolate incidence
was primarily driven by ICUs. To test this hypothesis, we applied the seven multivariate regression models to the
incidence of CR-PA isolates in hospitals excluding isolates identified in ICUs. The best model did not include the
COVID-19-related variables further suggesting that the increase in incidence was driven by patients hospitalized in
ICUs (Supplementary Table 14).

Supplementary Table 14. Akaike Information Criteria (AIC) of multivariate models applied to the incidence
of CR-PA isolates. The best model (in bold) is the one minimizing the AIC.

CR P. aeruginosa

Hospital (except ICU)

No COVID-19 variable 1356
Pandemic periods w 1358
Pandemic periods w-1 1360
Pandemic periods w-2 1360
COVID-19 intubation prevalence w 1358
COVID-19 intubation prevalence w-1 1358
COVID-19 intubation prevalence w-2 1358

b. Exploration of the causal relationship between COVID-19 related variables and CR-PA
isolate incidence in hospitals and intensive care units

To explore the robustness of our results and evidence for potential causality of the pandemic on CR-PA incidence,
we tested models that integrate the prevalence of intubated COVID-19 patients in the following weeks (w+1, w+2,
and w+3). We could show that the AIC of these models is as good as the AIC of the baseline model, without
COVID-19 variables, and around 20 units higher than the AIC of the best model (Supplementary Figure 13A).
Finally, we showed that the incidence peak during the first wave of the pandemic is better captured by the best
model compared to the alternative models (Supplementary Figure 13C).
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Supplementary Figure 13. Investigations of the temporal associations between CR-PA and COVID-19
intubated patients. (A) AIC of the best model selected in the national analysis that includes the prevalence of
COVID-19 patients at week w-2, and of two alternative models that integrate the prevalence of intubated COVID-19
patients at week w+1 or w+2. At both the hospital and ICU levels, the model with COVID-19 data from the
preceding week best explains the data. (B) Incidence rate ratios and their 95% CI for the models with COVID-19
intubation at weeks w+1 or w+2 at the hospital and ICU levels. (C) Fits of the best model (COVID-19 intubation
w-2) and the alternative models at the hospital and ICU levels. Data in black corresponds to the weekly number of
incident CR-PA. Fits are represented in red with the red ribbon corresponding to the 95% CI.
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