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Supplemental Text 

S1 – Experimental procedures 

S1.01 – Clinical Protocol and Study Participant 

This study was approved by the ethics committee of Xuanwu Hospital of Capital Medical 
University in April 2023 and registered for international clinical trials of implanted medical 
devices (NCT05920174) to conduct research on the implanted closed-loop brain-computer 
interface system (NEO). The surgery was performed at Xuanwu Hospital, with other related 
studies conducted at Tsinghua University and the patient's home. Our study includes three main 
phases: preoperative functional screening, surgery, an one-month calibration and adjustment 
period, and an eight-month BCI assisted active rehabilitation training period. The rehabilitation 
training involved a total of 100 sessions, each lasting 1-3 hours, tailored according to the patient's 
progress and health condition. In the 9th month, the training load was doubled to maximize the 
patient's recovery outcomes (Table S4). 

The participant is a male in his 50s who sustained a spinal cord injury more than 10 years due to a 
car accident. The participant signed a written informed consent before participation. Moreover, the 
participant gave his consent for the material depicting himself to appear in the contribution and to 
be published in the journal and associated works without limit on the duration of publication, in 
any form or medium.  

Before the surgery, the patient underwent a neurological impairment assessment, currently 
diagnosed as a complete C4 spinal cord injury (ASIA-A, Table S1). The patient's muscle tone was 
rated at level 2-3 on the Modified Ashworth Scale (MAS), indicating an increase in muscle tone 
that affects passive movement within the range of motion. The patient reported taking Baclofen 
(10mg/day) and Pregabalin (75mg/day) to relieve spasms at the sixth month post-surgery. This 
symptom has persisted since the injury and is unrelated to the BCI implant. 

S1.02 – EEG Motor Imagery Test 

The EEG data of the patients were recorded using a 20-channel 10-20 EEG system cap (Pony, 
Neuracle). To eliminate interference from electromyographic (EMG) signals, only 12 electrodes 
located at the center area were selected for the study (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, Oz, 
O2), with CPz and AFz chosen as the reference and ground, respectively. The sampling rate was 
set to 1000 Hz. 

The EEG motor imagery assessment paradigm involves both the left and right hands, with each 
round consisting of 15 trials. Each trial includes 5 seconds of movement, feedback (10 seconds for 
success, 2 seconds for failure), and 10 seconds of rest. Two rounds will be performed for each 



hand. At the beginning of the experiment, a cross will appear in the center of the screen for 10 
seconds, during which the participant is instructed to focus on the cross and remain calm. After 
this period, the actual task begins. When the movement phase starts, an arrow pointing left or right 
will appear in the center of the screen, indicating left-hand or right-hand movement, respectively. 
A text prompt will also appear above the screen saying, "Imagine left-hand/right-hand 
movement." After 5 seconds, feedback is provided based on the system’s evaluation of the 
participant’s motor imagery EEG during that time. If successful, a celebratory animation will play, 
and a pneumatic hand will perform a single grasp and release action, lasting 10 seconds. If 
unsuccessful, a 2-second encouragement animation will be shown. Following this, there will be a 
10-second rest period, during which an image of a teacup will appear on the screen with the text 
"Rest, relax, stay calm," and the participant will be asked to remain relaxed. Throughout the 
experiment, the participant is required to sit quietly in a wheelchair, focus on the screen, and wear 
the pneumatic hand device. When the corresponding prompt appears on the screen, the participant 
begins the associated task. 

S1.03 – Multi-modal MRI-based Motor Localization 

Before the implantation surgery, the subject underwent a head MRI on a 3.0T scanner (Siemens, 
Prisma) to locate brain areas associated with hand sensory and motor functions. Functional MRI 
(fMRI) was acquired using a gradient echo planar imaging (EPI) sequence with the following 
parameters: matrix size 100×100, resolution 2×2×2 mm³, repetition time (TR) 2 s, echo time (TE) 
30 ms. The scan covered the entire brain with 72 slices. T1-weighted MRI structural images were 
acquired using a magnetization-prepared rapid gradient-echo (MPRAGE) sequence with 
parameters: matrix size 256×256, resolution 1×1×1 mm³, and 208 slices. 

The fMRI paradigm was used to locate the subject's sensorimotor areas related to hand movement. 
The paradigm consisted of two parts. The first part involved passive movement, where two 
experimenters assisted the subject with passive fist clenching on the left and right sides at a 
frequency of approximately 0.5 Hz. This was designed to test whether sensory information could 
be transmitted to the cortex, indicating the condition of the subject's ascending pathways. The 
second part involved motor imagery, where the subject was asked to imagine moving their left or 
right hand in a familiar manner. This was used to locate the hand motor areas in the primary motor 
(M1) and primary sensory (S1) cortices. The block design included two alternating conditions: 
movement and rest. At the beginning of the movement condition, an arrow pointing left or right 
appeared on the screen with a text prompt to "start imagining left hand/right hand movement." At 
the beginning of the rest condition, an image of a teacup appeared with a text prompt to "rest, 
relax, stay calm," instructing the subject to remain relaxed during this period. Each condition 
lasted 14 seconds (7 TRs, yielding 7 fMRI frames), repeated for 14 cycles. The left- and right-
hand conditions alternated with a rest condition in between (Fig. S2). 

S1.04 - Surgical Planning 

Based on the results of the functional MRI activations, we developed a surgical implantation plan 
for the subject. Using the fMRI activation heatmaps combined with anatomical localization of the 



hand motor and sensory areas, we performed 3D modeling to select specific sites on the precentral 
and postcentral gyri for the right hand, where epidural cortical electrodes were placed to cover 
regions of significant fMRI activation (Fig. S2). The internal device was implanted into the flat skull 
behind the ear, ensuring sufficient bone thickness, avoiding the temporalis muscle, and facilitating 
wireless powering. 
To effectively integrate the electrode positioning from the surgical plan with the surgical navigation 
system, an image registration method was developed to address compatibility issues between the 
3D model and the navigation system. The cortex was segmented using FreeSurfer1, and an 
individualized cortical model of the patient’s brain was constructed. The electrode placement on the 
cortical surface was designed in Blender to cover the functional areas of the precentral and 
postcentral gyri. To import the positioning results into the surgical navigation system, we wrote the 
electrode locations into the patient’s original T1 DICOM data. This process involved coordinate 
transformation between FreeSurfer's Surface RAS reference frame and the image's original RAS 
reference frame (Equation 1). 

𝑋! = 𝐴𝑋 1 
where 𝑋  represents the homogeneous coordinates of the electrode points in the Surface RAS 
reference frame(𝑥, 𝑦, 𝑧, 1), 𝑋′ represents the new coordinates in the original RAS reference frame 
(𝑥′, 𝑦′, 𝑧′), and 𝐴 is the transformation matrix (3 × 4)	converting from the FreeSurfer’s Surface 
RAS coordinate system to the DICOM image's scanner RAS coordinate system. An optimized KD-
tree nearest neighbor algorithm was used to efficiently map these coordinates to the pixel points in 
the original DICOM images. In this setup, all pixels within a 1mm radius were marked with a value 
significantly higher than the maximum MRI intensity (e.g., 5000). The modified DICOM files were 
then imported into the navigation system, allowing the surgeon to directly determine the electrode 
positions during surgery. The final electrode implantation sites, as shown in Fig. 1d, matched the 
planned locations and the areas of optimal fMRI activation. 

S1.05 - Impedance Measurement 

The NEO system supports impedance measurement using milliampere (mA) stimulation current. 
The system uses a stimulation current of 1 mA with a pulse width of 1ms at a pulse frequency of 
10 Hz for a duration of 5s. It measures the impedance between the epidural electrode contacts. 
Once a month, we record impedance data to track the trend of internal environment change (Fig. 
2g). 

S1.06 - Brain-Computer Interface Training Paradigms 

The calibration task is utilized for personalized model calibration and BCI testing. The task 
consists of 15 trials per session, with each trial including 5 seconds of movement, feedback (10 
seconds for success, 2 seconds for failure), and 5 seconds of resting state. The experiment begins 
with a 10-second period during which a crosshair appears at the center of the screen, and the 
participant needs to focus on the crosshair and remain calm. After 10 seconds, the actual task 
begins. At the start of the motor imagery task, a one second blank screen is firstly given to remind 
the participant to prepare. After that, an arrow pointing left or right appears at the center of the 



screen, indicating left-hand or right-hand movement respectively, accompanied by a text prompt 
"Start imagining left-hand/right-hand movement." Feedback is provided after the motor phase, 
with the model making a judgment every second during the 5-second motor phase. The task has 
three difficulty levels: easy, medium, and hard, requiring correct judgments of 3, 4, and 5 times 
respectively. Only with correct judgments will the participant receive pneumatic hand feedback 
and a "Congratulations" message on the screen; otherwise, the message "Keep trying" will be 
displayed (Fig. S5a). Before fixing the model, random feedback with an 85% accuracy rate is 
given. In the first session of the calibration paradigm, fake feedback is used. In the second 
calibration session, feedback results are calculated using the model calibrated with the first session 
of training data. After the second calibration session, the final model is trained using data from 
both sessions and fixed for the patient. We perform this calibration task monthly to periodically 
assess the model's performance. 

During rehabilitation training, the patient uses the fixed model for free grasping tasks. The model 
makes a judgment every 0.1 seconds to determine the patient's grasping or relaxation state. To 
avoid false triggers caused by the EEG offset response after the patient’s releasing an object, there 
is a 3-second freeze period during which no new judgments are made. The model displays the 
confidence level of the grasp in the form of a progress bar on the screen, providing visual 
feedback to the participant. To quantitatively evaluate the effectiveness of the BCI system, we 
designed a nine-square grid task, requiring the patient to move objects to designated targets 
using the BCI actuated pneumatic glove. A 50.4 cm wide and 35.6 cm long nine-square grid 
board, as well as standard components of height 15 cm, upper cylinder diameter 4.5/6/6.5 cm, and 
lower disc diameter 10 cm were used in this paradigm (Fig. S5b). The patient is instructed by the 
experimenter to use the BCI to drive the pneumatic hand to grasp the standard component from 
the center of the nine-square grid and move it to the designated color block position, then release 
the object by controlling the pneumatic hand. The test is repeated in two rounds, and the total time 
from the start of the instruction to the successful placement of the object is recorded to evaluate 
whether the patient can smoothly control the state switching of the BCI system. We also compared 
the patient's success rate with and without BCI assistance. Success is defined as completing the 
task within 10 seconds without touching the grid boundaries before picking up the object and 
without dropping it midway. Any other result is considered a failure. 

S1.07 – Daily Assessment Task 

To monitor changes in signal quality over time, we designed a daily assessment task that records 
data during each data acquisition session. The test consists of 30 seconds of resting-state eECoG 
activity, followed by 15 elbow lifts (10 with the hand contralateral to the implant site and 5 with the 
ipsilateral hand), 15 imagined grasps (10 with the contralateral hand and 5 with the ipsilateral hand), 
and 15 pneumatic hand-driven passive movements (all with the contralateral hand). Each movement 
consists of 5 seconds of motion and 5 seconds of rest and is performed only once without repetition. 



S1.08 – Deep Learning based Hand Trajectory Tracing 

To accurately capture hand movement trajectories during the free grasping process, a USB 
webcam was positioned directly above the experimental table to record the hand movements from 
a top-down perspective (Fig. S9). A serial port synchronization signal and LED light were used to 
synchronize the video recording with the EEG data. For the video data of both pneumatic hand 
grasping and bare hand grasping, we finetuned a hand keypoint detection model to analyze the 
hand movement trajectories. The main structure of the model utilizes a high-resolution 
convolutional network (HRNet)2 pre-trained on the OneHand10k dataset. The detection algorithm 
employs distribution-aware coordinate representation (DARK)3 based on heatmaps to detect four 
key points of the pneumatic hand or the bare hand: the index fingertip, thumb tip, the base of the 
thumb (thenar), and the wrist. For the patient's grasping data, the coordinates of the thenar key 
point were extracted as the hand movement trajectory. The start time of each trial was defined as 
the moment the hand contacted the central cylindrical object, and the end time was defined as the 
moment of grasping failure or successfully reaching the target position and releasing the object. 
The model was then fine-tuned based on the OneHand10K pre-trained model. The pneumatic 
hand model training data included 1,295 annotated images with a resolution of 960x540, with 
80% of the data used for training and 20% for testing. The keypoint recognition model achieved 
an AUC of 0.89. The bare hand detection model training data included 1,118 annotated images 
with a resolution of 960x540, with 80% of the data used for training and 20% for testing. The 
model achieved an AUC of 0.85. 

S2 – Riemannian Decoder 

S2.01 - Spatio-Spectral Riemannian Geometry Decoding Method 

The spatio-spectral information in epidural ECoG (eECoG) signals can be described using a 
covariance matrix. Typical eECoG responses to motor imagery include ERSP across different 
frequency bands. By constructing a multi-band joint covariance matrix (Equation 3), we can 
effectively extract the spatio-spectral patterns of the EEG: 
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where 𝑍"# , 𝑖 = 1,… , 𝐹 represents the channel signals filtered by different frequency bands, and F 
is the number of selected frequency bands. 

The Affine Invariant Riemannian Metric (AIRM, Equation 4)4 can measure the distance between 
covariance matrices: 
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The AIRM metric has the following property: for any two samples from the source space that 
form covariance matrices 𝑆- and 𝑆., mapping through a propagation matrix 𝐿 (where 𝐿 is 
invertible) results in sensor space covariance matrices 𝑋- = 𝐿𝑆-𝐿# , 𝑋. = 𝐿𝑆.𝐿#. It can be 
proven that: 

𝛿$(𝑋-, 𝑋.) = 𝛿$(𝑆-, 𝑆.) 

This indicates that the separability in the source space and the sensor space is identical. Similarly, 
over long-term use, physiological changes may alter the propagation matrix 𝐿′, but the AIRM 
distance measure ensures that separability remains unchanged. In contrast, BCI decoding 
algorithms using spatial filters may fail due to changes in the propagation matrix, causing spatial 
filter templates to become ineffective. Therefore, BCI decoding algorithms using the AIRM 
metric possess robustness in the sensor space and long-term stability. 

To select the most effective frequency bands for decoding, we evaluated the separability of 
different frequency bands for resting and right-hand motor imagery states using a Riemannian-
based class distinctiveness method. Linear discriminant analysis (LDA) can be extended to 
construct class distinctiveness metrics under the Riemannian metric (Equation 5)5: 
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where 𝐶 represents the mean covariance under the Riemannian metric, and 𝜎/  represents the 

standard deviation of the covariance under the Riemannian metric, 𝜎/ =
%
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superscripts 𝐶(-/.) indicate the corresponding classes. 

Subsequently, a classifier based on AIRM can be constructed by embedding the data into the 
tangent space6. For the manifold 𝑀 constituted by the aforementioned eECoG feature covariance 
matrices, the Fréchet mean point 𝑋$2" of the manifold can be found (Equation 6): 
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Based on this point, the tangent space 𝑇3&'(𝑀 can be constructed, and the data points 𝑋) can be 
embedded into this space to obtain the projected points 𝑆) (Equation 7), where logm denotes the 
matrix logarithm operation. 
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In our study, the epidural intracranial EEG of patients exhibits a typical event related 
synchronization (ERS) effect at high frequencies (e.g., 55-95Hz) and a typical event related 
desynchronization (ERD) effect at low frequencies (15-30Hz and 35-50Hz). Therefore, we 
designed a dual-frequency integrated spatio-spectral Riemannian geometry algorithm. Due to the 
physiological differences between low-frequency and high-frequency oscillatory activities, low-
frequency activities were filtered at 15-30Hz and 35-50Hz, while high-frequency activities were 
band-pass filtered at 55-95Hz and then enveloped (Fig. S3). Subsequently, a large covariance 
matrix of the feature signals was constructed, which was whitened to retain 99% of the variance 
dimension components to reduce the dimensionality. The samples were then embedded into the 
tangent space constituted by the Fréchet mean point, and finally sent to a logistic regression 
classifier to build the decoder for BCI calibration. 

S2.02 - Control Decoding Methods 

We employed two classical BCI decoding methods to evaluate our model. Linear Model: To 
evaluate the decoding method proposed in this paper, we selected a commonly used linear model 
as a baseline for comparison7,8. This linear model first uses a band-pass filter in the 0-150Hz 
frequency range to filter the signal into nine different frequency bands and then downsamples to 
10Hz. The signals from the nine frequency bands and different channels are then concatenated 
into a 315-dimensional feature vector (7 channels * 9 frequency bands * 5 time points). Finally, 
this feature vector is used for decoding with a logistic regression classifier. 10-fold cross-
validation is then used to optimize the regularization parameter of the logistic regression classifier 
to prevent overfitting. Common spatial pattern (CSP) model: Additionally, since there is a close 
relationship between Riemannian methods and spatial filtering methods, we designed a model 
using CSP spatial filters to compare with the Riemannian method9,10. This model constructs the 
covariance matrix using the same frequency bands as the Riemannian method. The CSP method is 
then used to calculate and retain 16 spatial filters. The energy features of the resulting 16-
dimensional spatial patterns are used for decoding with a logistic regression classifier. For each 
model, 10-fold cross-validation is used to optimize the regularization parameter of the logistic 
regression classifier to prevent overfitting. 



S2.03 - Decoding Continuous Grasping States using Hidden Markov 

Model 

Considering that the natural grasping process is inherently continuous, with each state at a given 
time point being dependent on the preceding and following states, leveraging this dependency can 
significantly enhance the reliability of maintaining a grasp. The hidden Markov model (HMM), by 
constructing a multi-order stochastic process, links the probability of the current hidden state with 
the observed data and the probability of the hidden state at the previous time point. This can be 
used to describe the natural grasping process. We define the hidden states as either resting or 
grasping. In our constructed HMM algorithm, the emission probability 𝑝(𝑧5|𝑠6) is derived from 
the Riemannian geometric classification model obtained through supervised training, while the 
transition probability matrix is semi-supervised, estimated using the forward-backward algorithm 
based on data from the patient's free-grasping training sessions. The first-order Hidden Markov 
Model can predict the probability of each hidden state at the current step based on the probability 
of each hidden state at the previous step (Equation 8): 

𝑝O𝑠6,5P = 𝑝(𝑧5|𝑠6)<𝑝
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where 𝑧5 is the observed data at time 𝑡, and 𝑠6 is state 𝑘. We set a threshold 𝑝58, and when the 
likelihood probability of the patient's new state exceeds this threshold, the model switches states. 
This threshold is estimated based on offline validation results and is set to 0.8 for the patient. 

Additionally, we apply an extra step of first-order filtering to smooth the probabilities output by 
the HMM (Equation 9). The parameter 𝜂 is adjusted based on offline validation results and is set 
to 0.7 for the patient. 

�̂�9:$$ = 𝜂𝑝;<=5 + (1 − 𝜂)𝑝9:$$ 9 

where 𝑝;<=5 is the hidden state probability from the previous step, 𝑝9:$$ is the current hidden 
state probability inferred from Equation 6, and �̂�9:$$ is the final estimated hidden state 
probability. 

S2.04 - Model Training and Evaluation 

The model is trained based on two sets of calibration data. Since high gamma (HG) activity 
decays over time during imagined grasping, we use data from the first 1.5 seconds after the onset 
of motor imagery and the entire 5 seconds of resting state as the training data. The data are 
segmented at 0.5-second intervals for model fitting. One set of data is used for model training, 
utilizing 10-fold cross-validation to select the optimal regularization parameters for the classifier. 
After fitting the classification model, we fit the HMM state transition matrix using the patient's 
grasping behavior data to construct a complete decoding model. Validation is conducted using a 



different set of data, evaluating both segment metrics and event metrics. After validation, a final 
model is trained using both sets of calibration data. 

During model calibration, it is necessary to design evaluation criteria to assess the effectiveness of 
the model. Since the goal is to decode natural grasping states, which is a continuous time process, 
evaluation needs to consider both segment metrics (such as sample classification accuracy) and 
event metrics (sensitivity and specificity of event detection). Segment Metrics: The model 
directly classifies data segments and calculates classification accuracy. Additionally, due to the 
uneven distribution of classes in the segmented data samples, the F1 score (the harmonic mean of 
precision and recall) is used, which is insensitive to class imbalance. For segment metrics, the 
random level for the F1 score and AUC is 0.5. Event Metrics: To evaluate grasping accuracy 
over continuous time, we designed event-based metrics. If a grasping event is correctly identified 
within 0.5s before its onset and 2 seconds after it, it is considered a correct decision; otherwise, it 
is a false negative. If more than one grasping event is detected during a single grasping event, it is 
considered a false positive. Precision, recall, and their harmonic mean (F1 score) are calculated 
accordingly. Due to the low frequency of grasping events, the random level for event metrics is 
low. Monte Carlo simulations estimate the random level for the F1 score of event metrics to be 
approximately 0.09 (with the grasping onset time covered about 10% of total time), indicating that 
continuous grasping tasks are relatively difficult, much harder than simple binary classification 
tasks. 

S3 - Offline Analysis of EEG/ECoG data 

S3.01 - Comparison of Three Types of Brain Electrophysiology 

Recordings 

To compare the differences between epidural electrocorticography (eECoG) and subdural 
electrocorticography (sECoG), we utilized data from the publicly available Kai Miller dataset11. 
Since the motor imagery patterns of paralyzed patients are more similar to actual movements in 
healthy individuals12, we selected real hand movement data from 10 patients whose electrodes 
covered the hand area. The cortical electrodes in the Kai Miller dataset had a spacing of 10 mm 
and a contact diameter of 2.3 mm. In our study, we used electrodes with a spacing of 8 mm and a 
contact diameter of 3.2 mm, which are comparable in size. The EEG electrode spacing in the 
patients' EEG caps was approximately 4 cm. To ensure consistent results, all three types of brain 
electrical activity were processed using the common average re-reference method. Additionally, to 
study the spatial resolution differences between different brain recordings, we introduced motor 
imagery data from the BCI2000 dataset for comparison13. 

In terms of frequency, we calculated the event-related spectral perturbation (ERSP) for eECoG, 
sECoG, and EEG during the 0-2.5 seconds of movement relative to the 0-2.5 seconds of resting 
state (Equation 2). This allowed us to compare the modulation depths of different frequency bands 
across the different brain electrical activities. 
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Where 𝑃!"#$  refers to the power of the brain electrical activity in the frequency band during 
movement, and 𝑃%&#! refers to the power in the resting state. Power spectral density (PSD) was 
calculated using resting state data to compare the spectral energy differences of the different brain 
electrical activities (Fig. 2b). 

To qualitatively compare the spatial resolution differences, we calculated the relationship between 
the distance between electrode pairs and the correlation coefficient of the electrode signals (Fig. 
2c). To maintain consistency with the number of subjects and tasks selected in the eECoG dataset, 
we selected all electrode pairs from the first 10 subjects in the BCI2000 dataset for real left- and 
right-hand movements. All eECoG signals were filtered with a 1 Hz high-pass filter, using the 
original reference electrodes (EEGs were referenced to mastoids, sECoGs and eECoGs were 
referenced to the scalp). 

S4 – Electrophysiological and Neuological Assessment of 

Rehabilitation 

S4.01 – SEP Measurement 

The testing of somatosensory evoked potentials (SEP) follows the standards of the international 
federation of clinical neurophysiology (IFCN)14. The stimulation sites are at the wrist 
corresponding to the median, radial and ulnar nerves respectively. A 6×9 cm silver/silver chloride 
adhesive electrode is used. The positive electrode is placed distally on the trunk, the negative 
electrode proximally, with a 2 cm distance between them. The stimulation is a unidirectional 
pulse, with 2 Hz frequency 400 μs pulse width and amplitudes of 16 mA for the median and radial 
nerves, or 12 mA for the ulnar nerve. This setup aims to stably evoke SEP while avoiding pain. 
The stimulation is repeated 160 times in each session. During stimulation, SEPs are recorded with 
epidural electrodes of NEO BCI sysrem at a sampling rate of 1000 Hz. The signals are band-pass 
filtered (20-400 Hz), baselined according to the average of 90 ms data before stimulation onsets, 
and averaged across trials to obtain the SEP waveform. Monthly recordings are repeated at the 
same stimulation site and parameters to observe changes in the SEP waveform. 

In SEP analysis, for early (15-35 ms15) and late (40-80 ms16) SEP components, the average 
absolute amplitude is extracted17. To minimize amplitude increases due to enhanced random phase 
oscillatory activity, the Bootstrap method is used. For each Bootstrap sample set, the average SEP 
response is extracted, and the average waveform amplitudes of early and late components are 
extracted. For the data from 1st and 9th month after implantation, permutation test is used to 
calculate the p-values that 9th month’s amplitude is greater than that of 1st month, and the FDR 
correction is applied to control the false discovery rate in multiple comparisons. 



S4.02 – Neurological Scales Measurement 

This study uses the international standards for neurological classification of spinal cord injury 
(ISNCSCI) scale18 and the action research arm test (ARAT) scale19 to assess patients' neurological 
and upper limb functional status, respectively. The ISNCSCI scale is evaluated by two attending 
physicians, and any discrepancies in their evaluations are discussed to reach a single result. The 
ISNCSCI scale is measured monthly starting from the 2nd to 9th month post-surgery. The ARAT 
scale assessments are conducted by rehabilitation physicians and experimenters, with the process 
being video recorded (Video 2). 

  



Supplemental Figures 

 
Figure S1 MRI Scans of the Patient's Head and Neck.  
a, Cervical spine T1 structural image b, Cervical spine T2 structural image; the red box indicates the 
location of the patient's spinal cord injury. 
  



 
Figure S2 fMRI Localization Task and Surgical Planning.  
a, fMRI functional localization task, including alternating rest and movement states of the left or right 
hand. b-c, Functional activation during motor imagery (b) and passive movement (c), with activation 
values represented as -lg(p). d, Electrode planning. e, Enlarged view of the diagram of the planned 
electrodes. Electrodes 1-4 were located on the precentral gyrus and electrodes 5-8 on the postcentral 
gyrus. f, Sagittal View of postoperative CT, showing the actual implantation positions. CS: Central 
Sulcus. 
  



 

Figure S3 Brain-Computer Interface Decoding Methods.  
a, Band selection using Riemannian class distinctiveness (RCD) across different frequency bands. b, 
Construction of the covariance feature matrix using low-frequency band-pass filter features and high-
frequency envelope features. c, Decoding framework for natural grasping based on the hidden Markov 
model (HMM), utilizing the temporal dependence of grasp states to ensure the reliability of continuous 
grasping. The observation model is based on the trained Riemannian geometry classifier, and the 
transition matrix is fitted based on patient behavior data. TS Classifier: Tangent Space Classifier.  
  



 
Figure S4 Illustration of HMM decoding.  
a, Actual motor imagery cues. b, Continuous grasping decoded by the HMM-Riemann method. c, 
Continuous grasping decoded by the Naïve-Riemann method without HMM. Hand-MI: Hand Motor 
Imagery. 
  



 

Figure S5 Calibration and Training Paradigms.  
a, BCI calibration paradigm. b, Free grasp BCI testing task, where the patient needs to move the standard 
cylinder from the central grid (in white) to one of the eight peripheral grids (in color) designated by the 
experimenter.  
 
  



 
Figure S6  Evolution of epidural ECoG Feature Distribution During Long-term Use.  
a, Scatter plots of PCA-embedded distributions of Riemannian features and linear spatio-temporal-
spectral features across different months. b, Changes in KL divergence between Riemannian features and 
linear spatio-temporal-spectral features compared to training data over different months. The stability of 
Riemannian features consistently surpasses that of linear spatio-temporal-spectral features. Hand-MI: 
Hand Motor Imagery. KL-div: KL Divergence. 
  



 
Figure S7 EMG Noise Pattern.  
a, Average covariance patterns of resting, motor imagery (Hand-MI), and EMG noise. b, Dimensionality-
reduced spatial distribution patterns of Riemannian embedded features (left) and linear spatio-temporal-
spectral features (right). Under Riemannian metrics, chewing EMG noise is positioned between resting 
and hand motor imagery; in linear spatio-temporal-spectral features, chewing noise highly overlaps with 
hand motor imagery distribution. 
 
  



 
Figure S8 Average Somatosensory Evoked Potential (SEP) Waveforms.  
Average SEPs for Each Nerve, Channel, and Month. From top to bottom: Ch1-Ch8. 
  



 
Figure S9 Pneumatic Hand Keypoint Detection Model.  
a, Example of a detection heatmap. b-c, Examples of detection results. 
  



Supplemental Tables 

Table S1: ISNCSCI Scores 
Time Pre-

Operation 

(Day -4) 

Month 3 

(Day 78) 

Month 4 

(Day 129) 

Month 5 

(Day 162) 

Month 6 

(Day 198) 

Month 7 

(Day 234) 

Month 9 

(Day 279) 

American Spinal Injury 

Association Impairment 

Scale (AIS) 

A A A A A A A 

Neurological level of 

injury 

C4 C4 C4 C4 C4 C4 C4 

Upper Extremity Motor Score 

C5, (Left | Right) 4 | 4 4 | 4 4 | 5 4 | 5 4 | 5 4 | 5 5 | 5 

C6, (Left | Right) 3 | 3 3 | 3 3 | 3 3 | 4 3 | 3 3 | 3 3 | 4 

C7, (Left | Right) 2 | 2 2 | 2 2 | 3 2 | 2 2 | 2 2 | 3 2 | 3 

C8, (Left | Right) 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 1 | 0 0 | 1 

T1, (Left | Right) 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 

Total, (Left | Right) 9 | 9 9 | 9 9 | 11 9 | 11 9 | 10 10 | 11 10 | 13 

Light Touch Sensory Score 

Total, (Left | Right) 7 | 8 9 | 7 8 | 9 11 | 9 7 | 7 7|7 7|7 

Pin Prick Sensory Score 

Total, (Left | Right) 6 | 7 10 | 8 10 | 8 11 | 8 10 | 9 11|10 11|11 

Deep Anal Pressure No No No No No No No 

Voluntary Anal 

Contraction 

No No No No No No No 

  



Table S2: p-values for Increases in Average Amplitudes. 
 RN MN UN 

 Early Late Early Late Early Late 

Ch1 0.2461 0.0901 <0.0001 0.0746 0.1579 0.0069 

Ch2 0.2369 0.2654 <0.0001 0.1905 0.3035 0.0007 

Ch3 0.2555 0.0479 0.0235 0.0119 0.2198 <0.0001 

Ch4 0.1068 0.0021 0.0396 0.0381 0.1161 <0.0001 

Ch5 0.0078 0.9957 <0.0001 0.1021 0.2586 0.0013 

Ch6 0.5814 0.9572 <0.0001 <0.0001 0.1724 <0.0001 

Ch7 0.3704 0.184 0.0176 <0.0001 0.3169 0.0001 

Ch8 0.3518 0.9889 <0.0001 0.0001 0.2373 <0.0001 

Compared between SEP data from month 1 and month 9 of Early and Late SEP Components for 
Different Nerves.  
  



Table S3: ARAT Scores 

 

Baseline  

(Day 15) 

Month 3  

(Day 77) 

Month 5  

(Day 147) 

Month 7  

(Day 204) 

Month 9  

(Day 280) 

 L R L R L R L R L R 

Grasp (18) 6 4 5 6 6 10 6 9 12 13 

Grip (12) 6 6 6 6 6 6 6 6 7 10 

Pinch (18) 2 2 2 2 4 4 3 4 5 6 

Gross (9) 7 9 8 9 8 8 8 8 8 8 

Total (57) 21 21 21 23 24 28 23 27 32 37 

  



Table S4: Training Sessions 
Session Post-Implant 

Day 
Time/Hr Calibration Training Assessment 

1 15 1.5  Daily ARAT 

2 21 1.5  Daily  

3 23 1  Daily  

4 25 2  Daily  

5 27 1.5 CA Daily  

6 29 2 CA Daily, FG  

7 31 2 CA Daily, FG  

8 35 2.5 CA Daily, FG  

9 37 2.5 CA Daily, NG SEP 

10 39 1.5 CA Daily, NG  

11 41 1.5 CA Daily, NG  

12 43 1.5 CA Daily, NG  

13 45 1  Daily  

14 49 1  Daily  

15 53 1.5  Daily  

16 55 2  Daily  

17 57 1.5  Daily  

18 63 2  Daily  

19 65 2  Daily SEP 

20 71 1  Daily, NG  



21 73 1  Daily, FG  

22 77 2  Daily ARAT 

23 78 1.5   ASIA 

24 79 1.5  Daily, NG  

25 83 1.5  Daily, FG  

26 87 1.5  Daily, FG, NG  

27 91 2  Daily  

28 93 1.5  Daily, FG SEP 

29 96 1  Daily, FG  

30 97 1  Daily, FG  

31 99 0.5  Daily  

32 119 1.5 CA Daily, FG  

33 121 2  Daily, FG, 

Other 
 

34 126 1.5 CA 
Daily, NG, 

Other 
 

35 127 2.5  Imp, Other  

36 129 1.5  - ASIA 

37 133 2  Daily, NG, FG  

38 135 1  Daily, NG, FG  

39 139 1  Daily, NG, FG  

40 141 1.5  Daily, NG  

41 143 1.5  Daily, NG, FG  

42 147 1.5  Daily, NG  

43 149 1  Daily, NG, FG  



44 153 2 CA Daily, NG, FG  

45 155 2  Daily, NG, FG, 

Other 
 

46 157 2  Daily, NG, FG SEP 

47 161 1.5  Daily, NG, FG  

48 162 1.5   ASIA 

49 167 1.5  Daily, NG, FG  

50 169 2  Daily, NG, FG  

51 171 1.5  Daily, NG  

52 177 1.5  Daily, NG, FG, 

Imp 
 

53 181 1.5 CA Daily, NG, FG  

54 183 1  Daily, NG, FG  

55 185 2  Daily, NG, FG SEP 

56 189 1  Daily, NG, FG  

57 191 1  Daily, NG  

58 195 1.5  Daily, NG, FG  

59 197 1.5  Daily, NG  

60 198 1.5   ASIA 

61 200 1.5  Daily, NG, FG  

62 203 1.5  Daily, NG  

63 205 1.5   ARAT 

64 209 1  Daily, NG, FG  

65 211 1 CA 
Daily, NG, FG, 

Imp 
 



66 213 1  Daily, NG, FG  

67 217 1.5  Daily, NG SEP 

68 220 0.5  Daily, NG, FG  

69 223 1  Daily, NG, FG  

70 225 1  Daily, NG  

71 227 1.5  Daily, NG, FG  

72 231 1.5  Daily, NG  

73 233 2  Daily, NG  

74 234 1.5   ASIA 

75 237 1  Daily, NG, FG  

76 239 1.5  Daily, NG, FG  

77 240 1.5  Daily, NG, FG  

78 241 3  Daily, Other  

79 244 1.5  Daily, Other  

80 245 1.5 CA 
Daily, NG, FG, 

Other 
 

81 246 1.5  Daily, NG, FG, 

Other 
 

82 247 1.5 CA 
Daily, NG, FG, 

Other 
 

83 248 1  Daily, NG, FG  

84 251 2  Daily, NG, FG  

85 252 1  NG, FG  

86 253 1.5  Daily, NG, 

Other, Imp 
 

87 254 1  NG, FG, Other  



88 255 1  Daily, NG, FG, 

Other 
 

89 258 1  Daily, NG, FG, 

Other 
 

90 259 1  NG, FG, Other  

91 260 1.5  Daily, NG, FG, 

Other 
 

92 261 1.5  NG, FG, Other  

93 262 1.5  Daily, NG, FG, 

Other 
 

94 265 1.5  Daily, NG, FG, 

Other 
 

95 266 1  NG, FG, Other  

96 267 1  NG, FG, Other SEP 

97 268 1  Daily, NG, FG, 

Other 
 

98 269 2.5  Daily, NG, FG, 

Other 
 

99 272 1  NG, FG, Other  

100 273 1  Daily, NG, FG, 

Other 
 

101 274 1  NG, FG, Other  

102 275 1.5  Daily, NG, FG, 

Other 
 

103 276 1.5  NG, FG, Other  

104 279   Daily, Other ASIA 

105 280    ARAT 

106 282    SEP 

Abbreviations: 
Daily: Daily assessment test 
CA: Calibration task 
FG: Free grasping task 
NG: Nine-grid grasping task 
Imp: Impedance test 



Other: Other training tasks 
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