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Supplementary Figure 1: Additional results for null simulations. Additional configurations of null simulation across a number of
variants and heritability show that KGWAS is robust in false discovery control under various genetic architectures. Each configuration
is computed with 100 random runs.
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Supplementary Figure 2: Additional results for causal simulations. Additional configurations of causal simulation across a
number of variants and heritability show that KGWAS is robust in discovering novel loci under various genetic architectures. Each
configuration is computed with 100 random runs.
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Supplementary Figure 3: Replication experiment results for individual diseases/traits. Breakdown of performance on individ-
ual traits from the 21 non-redundant traits subsampling analysis. We observe the consistent improvement of KGWAS over GWAS
across 21 traits and across all sample sizes for a number of replicable top 100 loci (left panel) and the number of replicable loci at
genome-wide significant threshold (right panel).
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Supplementary Figure 4: Comparison of data efficiency. In the 21 independent traits subsampling experiments, for a given
GWAS sample size, we estimate the sample size for KGWAS to achieve the same number of discoveries as GWAS. Notably, to
achieve the same discoveries as GWAS at 5000 sample size, KGWAS only needs 3954 samples, saving more than 1000 samples. The
gain is most prominent in the small cohort.
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Supplementary Figure 5: Additional results for replication experiments with larger sample sizes. For the subsampling analysis,
we increase the size of the subsampled cohort to 50K, 100K, and 200K. We observe consistent improvement over GWAS. For the
top 100 loci, the results also converge at larger sample sizes. This is because, at larger sample sizes, the top 100 independent loci are
easier to detect and consistently form the same set of independent loci, leading to minimal changes in performance.
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Supplementary Figure 6: Additional results for replication experiments using the FinnGen cohort. We replicated the sub-
sampling analysis using the FinnGen cohort. We conduct the same procedure and replicate Figure 2bc. We observe a similar trend
in performance. For the trait selection, we first map 4 of 21 non-redundant UKBB traits to FinnGen (Hypothyroidism, strict au-
toimmune, Dermatitis and eczema, Height, inverse-rank normalized, Body-mass index, inverse-rank normalize) as others do not
have direct mapping. For the additional 11 traits, we select based on diversity across five categories: Blood-immune (Autoimmune
diseases, Varicose veins), Brain (Depression or dysthymia), Lipid (Type 2 diabetes, definitions combined) and Others (Hypertension,
Ischaemic heart disease, wide definition, Asthma/COPD (KELA code 203), Malignant neoplasm of prostate (controls excluding all
cancers), Disorders of the thyroid gland, Leiomyoma of uterus, Glaucoma).
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Supplementary Figure 7: Impact of using a random KG. We randomize the knowledge graph by randomly permuting edges for
every edge type and then performing a subsampling analysis on IGF-1. We observe that by randomizing the KG, the performance
degrades to base GWAS, showing that prior knowledge in the KG drives the most performance improvement and the structure in the
KG is essential.

47



Supplementary Figure 8: Impact of removing part of the KG. We randomly remove a fraction of the KG and conduct the
subsampling analysis on IGF-1. We show that as the percentage of removal goes up, the performance degrades. This shows the
scaling of prior knowledge in the KG and we argue that with more knowledge in the KG, it can potentially further improve the
performance.

48



Supplementary Figure 9: Performance of using alternative node embeddings. We switched out the initialized embedding
of KGWAS from scRNA-seq profiles to ESM embedding and baselineLD features to enformer embedding and then reported the
subsampling analysis across three sample sizes. We observe that it has consistent improvement over base GWAS but underperforms
compared to KGWAS. We suspect that it is because in human genetics discovery, gene co-expression patterns captured by scRNA-
seq is most informative compared to protein structure information in ESM. For the enformer embedding, it is largely capturing
functional genomics information, which overlaps with the functional genomics KG. In contrast, a variant-level baselineLD feature
provides more orthogonal information.
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Supplementary Figure 10: Performance of using alternative pretraining strategies. KGWAS pre-trained using standard graph
self-supervision and a biologically-motivated approach, genome structural pretraining. Pretraining is not seen to improve perfor-
mance, highlighting the advantage of phenotype-specific training. Graph self-supervision is performed by modifying the minibatch
graph at train time either by randomly removing 5% of non-SNP nodes (Node Dropping), removing and adding a random 5% of
edges (Edge Perturbation), replacing 10% of node attributes with noise drawn from N(0.5, 0.5) (Attribute Masking), removing nodes
not within a length 10 random walk starting from the query SNP (Random Walk), or adding 100 edges between the unconnected node
pairs with highest diffusion matrix values (Diffusion). The self-supervision objective is contrastive between the GNN embeddings of
the modified and unmodified minibatch graph using the InfoNCE loss with 0.5 temperature. Genome structural pretraining predicts
the nucleotide position and chromosome membership of each SNP. The loss is the sum of the MSE of the predicted nucleotide posi-
tion and cross-entropy of the one-hot-encoded chromosome membership, weighted 1 and 0.1, respectively. Predictions are produced
by a 3-layer MLP downstream of the GNN. KGWAS is subsequently trained either with the same learning rate (Transfer Learning),
a smaller learning rate of 1e-6 (Fine-Tuning), or fixed GNN embeddings from the pre-trained model (Fixed Embedding).
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Supplementary Figure 11: Distribution of the original GWAS p-values for KGWAS-only discoveries. Original GWAS p-values
of KGWAS novel variants range from 1.44⇥ 10�6 to 5.01⇥ 10�8.
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Supplementary Figure 12: Additional examples of functional evedence for KGWAS-only discoveries. a. KGWAS novel hit
rs2070729 (GWAS P=2.4⇥10�7, KGWAS P=2.0⇥10�8) for Crohn’s disease. Systematic chromatin accessibility analysis suggests
it is located in an open region for fibroblasts and enterocytes, both are directly associated with Crohn’s disease. b. KGWAS novel hit
rs200482 (GWAS P=2.2 ⇥ 10�7, KGWAS P=2.2 ⇥ 10�8) for Sarcoidosis. Systematic chromatin accessibility analysis suggests it
is located in an open region for thymocyte and erythroblast, both are associated with Sarcoidosis.
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Supplementary Figure 13: Additional results for KGWAS network link prioritization in causal simulations. We compute
the relative enrichment of KGWAS network weight of the causal links compared to background non-causal links. We observe a
consistent improvement of enrichments across all three relation types from variant-to-gene, gene-to-gene, and gene-to-program.
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Supplementary Figure 14: Performance of KGWAS network link prioritization at small sample sizes. When the sample size is
limited, the learned network has a slightly decreased prioritization ability.
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Supplementary Figure 15: Evaluating alternative strategies for KGWAS network link prioritization. a. The illustration of
how we compute network importance score. For each node A and B, there are multiple relation types, and for each relation type,
we obtained a background distribution and computed a z-score for each relation type. We then merge them using the max operator
to obtain a score for every pair of nodes. b. Benchmarks of variants of KGWAS network importance scores. RelNorm is our
current method. RelNorm-ctrl first matches 10 control links for every link and uses that as the control distribution. This produces a
more smooth score but it is computationally costly and also similar prioritization performance as the base RelNorm. Thus, we use
RelNorm currently. We also strived to use the network control distribution to compute empirical p-values. We found that it is not
calibrated but has a similar prioritization performance as RelNorm-ctrl. We also have RelRaw which is without using normalization
across relation types. This under-performs the RelNorm, showing the benefit of normalization.
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Interpreting variants for Asthma

Supplementary Figure 16: Example KGWAS network interpretations for asthma. On the left side, the variant rs1837253 has been
linked to TSLP (via PCHi-C and other functional genomic evidence), a gene central to asthma pathophysiology due to its role in
the activation of type 2 innate lymphoid cells and promotion of cytokine-mediated signaling pathways101. This connection also
implicates downstream genes, such as CRLF2 and CCL17, known for their involvement in immune response regulation, including
interleukin production. Furthermore, pathways associated with rs1837253, such as positive regulation of interleukin-6 and -13
production102, underscore its potential contribution to airway inflammation and hyper-responsiveness in asthma. On the right side,
the variant rs2160203 is associated with IL1RL1 and IL18RAP (via PCHi-C and other evidence), both key genes in the immune
response. IL1RL1 plays a crucial role in asthma by mediating type 2 inflammation through its involvement in T-helper 2 (Th2)
cytokine production and signaling pathways103. Additionally, IL18RAP links this variant to the interleukin-18-mediated signaling
pathway, further emphasizing its role in inflammation and airway hyper-responsiveness. Pathways like the positive regulation of
NF-B transcription factor activity and type II interferon production highlight its potential contributions to the chronic inflammatory
environment characteristic of asthma.
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Interpreting variants for CAD

rs629301
P =  1.09e-10

rs1122608
P =  1.7e-10

Supplementary Figure 17: Example KGWAS network interpretations for coronary artery disease. On the left side, the variant
rs629301 is linked to PSRC1 and SORT1 (via PCHi-C and additional genomic evidence), genes implicated in lipid metabolism
and coronary artery disease (CAD). PSRC1 is associated with pathways regulating mitotic spindle organization and progression,
suggesting its role in cell cycle regulation and vascular health104. SORT1, on the other hand, is involved in glucose import and
insulin response, connecting this variant to metabolic pathways critical in CAD development105. Additional associations with genes
like GNAI3, which participates in dopamine receptor signaling and macroautophagy regulation, highlight potential mechanisms by
which this variant could contribute to CAD risk through metabolic and inflammatory dysregulation. On the right side, the variant
rs1122608 is linked to KANK2 and SMARCA4 (via PCHi-C and eQTL evidence), both of which are involved in processes critical
to coronary artery disease (CAD). KANK2 is associated with the regulation of cell population proliferation and the G1/S transition
of the mitotic cell cycle, suggesting its potential role in vascular smooth muscle cell growth and plaque stability106. SMARCA4, a
regulator of chromatin remodeling, is connected to pathways such as transcription regulation and cell growth inhibition, underscoring
its role in maintaining cellular homeostasis and preventing vascular remodeling107. Additionally, connections to CARM1, involved
in histone H3 methylation, highlight potential epigenetic mechanisms influencing CAD susceptibility108. These findings suggest that
rs1122608 impacts CAD risk through a combination of transcriptional regulation, epigenetic modification, and cell cycle control.
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Supplementary Figure 18: Enrichment of DisGeNet scores for KGWAS-prioritized genes. The prioritized network interpretation
has enriched genes that are associated with the disease. For rs2075620, the average GDA score for all 2-hop neighborhoods is
0.018 and for the KGWAS prioritized 2-hop neighborhood is 0.182, a 10.1 fold enrichment. The average GDA score for a 1-hop
neighborhood is 0.128 and for the KGWAS prioritized 1-hop neighborhood is 0.323, a 2.5-fold enrichment. Similarly, for rs6690215,
the average GDA score for all 2-hop neighborhoods is 0.025 and for the KGWAS prioritized 2-hop neighborhood is 0.095, a 3.8-fold
enrichment. The average GDA score for a 1-hop neighborhood is 0.048 and for the KGWAS prioritized 1-hop neighborhood is 0.180,
a 3.75 fold enrichment.

56



Supplementary Figure 19: Additional results for disease gene prioritization. We report the trait-specific performance for gene-
level systematic subsampling replication study on AUPRC and top 1000 genes replication. KGWAS consistently outperforms GWAS
across traits and sample sizes.

57



B Supplementary Tables899

Node types Number of nodes
Variant 784256
Gene 23737
CellularComponent 4184
MolecularFunction 11153
BiologicalProcess 28748

Supplementary Table 1: KG node statistics. We report the type of nodes and the number of nodes for each type. “CellularCom-
ponent”, “MolecularFunction”, and “BiologicalProcess” are gene program nodes in the knowledge graph.

See Supplementary Excel file.

Supplementary Table 2: KG relation statistics. We report the type of edges and the number of edges for each type in the knowledge
graph.

Method # False Pos.
FINDOR 0.018±0.1329
GWAS 0.016±0.1254
KGWAS 0.018±0.1329

Supplementary Table 3: Null simulation results. We report the numerical experimental results for the null simulation.

Method # of significant indep. loci
FINDOR 2.51±1.5715
GWAS 1.85±1.4097
KGWAS 2.75±1.8834

Supplementary Table 4: Causal simulation results. We report the numerical experimental results for the causal simulation.

Trait Name Trait Identifier UKBB Column Codes Additional information on coding Prevalence h2g sd Z
Eczema UKB 460K.disease ALLERGY ECZEMA DIAGNOSED 6152-0.0⇠6152-0.4 Hayfever, allergic rhinitis or eczema diagnosed by doctor 0.2312 0.0847 0.0058 14.60344828
Heel T Score UKB 460K.bmd HEEL TSCOREz 4106-0.0+4125-0.0 - 0.3549 0.0173 20.51445087
Hypothyroidism UKB 460K.disease HYPOTHYROIDISM SELF REP 20002-0.0⇠20002-0.28 1226 0.04824 0.0546 0.0036 15.16666667
Balding Type I UKB 460K.body BALDING1 2395-0.0 balding pattern 1 vs. other 0.32 0.2234 0.0152 14.69736842
Sunburn Occasion UKB 460K.pigment SUNBURN 1737-0.0 any sunburn occasion or not 0.46 0.0731 0.0076 9.618421053
AlkalinePhosphatase UKB 460K.biochemistry AlkalinePhosphatase 30610-0.0+30897-0.0 remove ID with value outside mean +/-4sd 0.2348 0.016 14.675
AspartateAminotransferase UKB 460K.biochemistry AspartateAminotransferase 30650-0.0+30897-0.0 remove ID with value outside mean +/-4sd 0.1135 0.0062 18.30645161
Cholesterol UKB 460K.biochemistry Cholesterol 30690-0.0+30897-0.0 remove ID with value outside mean +/-4sd 0.1307 0.0112 11.66964286
Creatinine UKB 460K.biochemistry Creatinine 30700-0.0+30897-0.0 remove ID with value outside mean +/-4sd 0.2213 0.0101 21.91089109
IGF1 UKB 460K.biochemistry IGF1 30770-0.0+30897-0.0 remove ID with value outside mean +/-4sd 0.2877 0.0154 18.68181818
Phosphate UKB 460K.biochemistry Phosphate 30810-0.0+30897-0.0 remove ID with value outside mean +/-4sd 0.1292 0.0091 14.1978022
TestosteroneMale UKB 460K.biochemistry Testosterone Male 30850-0.0+30897-0.0 remove ID with value outside mean +/-4sd 0.184 0.0111 16.57657658
TotalBilirubin UKB 460K.biochemistry TotalBilirubin 30840-0.0+30897-0.0 remove ID with value outside mean +/-4sd 0.0841 0.0076 11.06578947
TotalProtein UKB 460K.biochemistry TotalProtein 30860-0.0+30897-0.0 remove ID with value outside mean +/-4sd 0.1811 0.0075 24.14666667
VitaminD UKB 460K.biochemistry VitaminD 30890-0.0+30897-0.0 remove ID with value outside mean +/-4sd 0.086 0.0069 12.46376812
BMI (UK Biobank) UKB 460K.body BMIz 21001-0.0 - 0.2779 0.0067 41.47761194
Height (UK Biobank) UKB 460K.body HEIGHTz 50-0.0 - 0.674 0.0261 25.82375479
Platelet Count UKB 460K.blood PLATELET COUNT 30080-0.0 - 0.3505 0.0165 21.24242424
Red Blood Cell Distribution Width UKB 460K.blood RBC DISTRIB WIDTH 30070-0.0 - 0.2172 0.0122 17.80327869
Red Blood Cell Count UKB 460K.blood RED COUNT 30010-0.0 - 0.2613 0.012 21.775
White Blood Cell Count UKB 460K.blood WHITE COUNT 30000-0.0 - 0.2273 0.0083 27.38554217

Supplementary Table 5: 21 non-redundant traits used in subsampling analysis. We report the descriptions, curations, preva-
lence, heritability of the 21 non-redundant traits used in the subsampling replication experiment.
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See Supplementary Excel file.

Supplementary Table 6: Subsampling analysis results at genome-wide significance threshold. We report the numerical exper-
imental results on the number of replicable independent loci that pass the genome-wide significant threshold for the subsampling
replication analysis for each trait.

See Supplementary Excel file.

Supplementary Table 7: Subsampling analysis raw results at top 100 independent loci. We report the numerical experimental
results on the number of replicable independent loci in the top 100 loci for the subsampling replication analysis for each trait.

See Supplementary Excel file.

Supplementary Table 8: Results for 554 uncommon diseases in UK BioBank. We report the list of 554 uncommon diseases, the
number of cases for each disease, and the number of genome-wide significant discoveries for KGWAS and GWAS.

See Supplementary Excel file.

Supplementary Table 9: MG CATLAS cell type enrichment statistics. We report the cell type signal enrichment score around
the KGWAS MG locus for 222 cell types in the CATLAS data.

See Supplementary Excel file.

Supplementary Table 10: Causal network prioritization simulation results. We report the numerical results (precision and
recall) of the causal network prioritization simulation experiment.

See Supplementary Excel file.

Supplementary Table 11: Causal link variant-to-gene with OpenTarget results. We report the numerical results of the variant-
to-gene experiment. We report the percentiles for each ground truth V2G link across the four diseases.

See Supplementary Excel file.

Supplementary Table 12: Causal link gene-to-gene with perturb-seq results. We report the numerical results of the gene-to-
gene validation experiment. We report the raw link weights for the G2G link with perturb-seq evidence and rest of the G2G links
respectively.

See Supplementary Excel file.

Supplementary Table 13: AD annotation result for rs2075620. We report the numerical results for the DisGeNet gene-disease
association scores for rs2075620 at 1 and 2 hops of the neighborhood for baseline and KGWAS prioritized genes and programs.

See Supplementary Excel file.

Supplementary Table 14: AD annotation result for rs6690215. We report the numerical results for the DisGeNet gene-disease
association scores for rs6690215 at 1 and 2 hops of the neighborhood for baseline and KGWAS prioritized genes and programs.
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Trait (medium) GWAS KGWAS Relative Improvement (%)
BMD Heel TScore 13.0 14.0 7.6923076923076900
Vitamin D 13.0 14.0 7.6923076923076900
Phosphate 13.0 15.0 15.384615384615400
Allergy Eczema 12.0 17.0 41.66666666666670
Asp Aminotrans 17.0 17.0 0.0
Balding 19.0 19.0 0.0
Hypothyroidism 7.0 21.0 200.0
White Blood Cell 9.0 21.0 133.33333333333300
Total Bilirubin 24.0 24.0 0.0
Body Mass Index 20.0 26.0 30.0
Sunburn 21.0 26.0 23.809523809523800
Testosterone 28.0 29.0 3.571428571428570
Cholesterol 42.0 48.0 14.285714285714300
IGF-1 46.0 49.0 6.521739130434780
Red Cell Width 43.0 54.0 25.581395348837200
Creatinine 46.0 57.0 23.91304347826090
Alk Phosphatase 54.0 60.0 11.11111111111110
Red Blood Cell 46.0 60.0 30.434782608695700
Platelet Count 68.0 75.0 10.294117647058800
Height 70.0 84.0 20.0
Total Protein 76.0 91.0 19.736842105263200

Supplementary Table 15: Gene replication results. We report the numerical results for the gene prioritization replication experi-
ments across 21 independent traits for both GWAS and KGWAS.

Mapped ICD10 code Top 1000-GWAS Top 1000-KGWAS Trait
K50 8.0 12.0 CD
K90 1.0 1.0 Celiac
K51 10.0 11.0 UC
M32 5.0 6.0 SLE
G35 11.0 12.0 MS
L30 3.0 1.0 Eczema
J45 15.0 12.0 ASM
G30 9.0 17.0 AD
F31 12.0 17.0 BP
G47 5.0 8.0 Insomnia
F32 9.0 10.0 MDD
F20 15.0 18.0 SCZ
I48 14.0 16.0 AF
I25 14.0 16.0 CAD
I10 20.0 20.0 HTN

Supplementary Table 16: Gene drug target results. We report the numerical results for the recall rate between the prioritized
GWAS/KGWAS genes and known external drug targets.
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See Supplementary Excel file.

Supplementary Table 17: List of diseases in the disease-critical cell population detection analysis.

See Supplementary Excel file.

Supplementary Table 18: Disease-critical cell population result. We report the numerical result for the number of detected
disease-critical cells in all cell types in Tabula Muris when integrating GWAS/KGWAS with scDRS.

Task List Rationale

Figure 2b-d, 3d,
Systematic Repli-
cation

21 traits in UK Biobank Well-powered in full sample size, inde-
pendent with each other, z-score > 6 for
nonzero SNP-heritability, r2g < 0.1

Figure 3a-b
KGWAS appli-
cations to small
cohort

554 UK Biobank dis-
eases

KGWAS works the best in small-cohort
GWAS and thus we include all diseases
in UK-Biobank with < 5K cases

Figure 4b-c net-
work interpreter
real traits experi-
ment

5 UK Biobank diseases
& traits

Match available traits in the ground truth
data

Figure 4d-e
network interpre-
tations

3 publicly available
large-cohort diseases

Network interpreter works the best when
well-powered; thus, we solicit large-
cohort GWAS summary statistics file

Figure 5b disease
target prioritiza-
tion

15 UK Biobank dis-
eases

Traits with ground truth disease target set
overlap

Figure 5c cell-
type association
detection

93 UK Biobank dis-
eases

scDRS requires well-powered diseases
and thus we use all diseases in UK
Biobank with 10K cases or nominal heri-
tability (P < 0.05)

Figure 5e KG-
WAS UI interface

726 UK Biobank dis-
eases

Apply to all diseases in UK Biobank for
the user interface

Supplementary
Figure 10
FinnGen system-
atic replication

15 FinnGen traits For replication of the subsampling frame-
work in another cohort

Supplementary Table 19: Summary of traits. We report the list of diseases/traits used for each analysis in the main figures.
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