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ABSTRACT  17 

Barrett’s esophagus (BE) is the only known precursor to esophageal adenocarcinoma (EAC), a 18 

malignancy with increasing incidence and unfavorable prognosis. This study endeavors to 19 

identify BE biomarkers capable of diagnosing low-grade dysplasia (LGD) in BE, as well as 20 

biomarkers that can predict the progression from BE to EAC to be subsequently integrated into 21 

diagnostic and prognostic algorithms. 22 

Datasets containing gene expression data from metaplastic and dysplastic BE, as well as EAC 23 

tissue samples, were collected from public databases and used to explore gene expression 24 

patterns that differentiate between non-dysplastic (ND) and LGD BE (for diagnostic purposes) 25 

and between non-progressed and progressed BE (for prognostic purposes). Specifically, for the 26 

diagnostic application, three RNAseq datasets were employed, while for the prognostic 27 

application, nine microarray datasets were identified, and 25 previously described genes were 28 

validated. A Thresholding Function was applied to each gene to determine the optimal gene 29 

expression threshold for group differentiation. All analyzed genes were ranked based on the 30 

F1-score metrics. Following the identification of genes with superior performance, different 31 

classifiers were trained. Subsequently, the best algorithms for diagnostic and prognostic 32 

applications were selected. 33 

In evaluating the value of gene expression for diagnosis and prognosis, the analyzed datasets 34 

allowed for the ranking of biomarkers, resulting in eighteen diagnostic genes and fifteen 35 

prognostic genes that were used for further algorithm development. Ultimately, a linear 36 

support vector machine algorithm incorporating ten genes was identified for diagnostic 37 

application, while a radial basis function support vector machine algorithm, also utilizing ten 38 

genes, was selected for prognostic prediction. Notably, both classifiers achieved recall and 39 

specificity scores exceeding 0.90. 40 
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The identified algorithms, along with their associated biomarkers, hold significant potential to 41 

aid in the early management of malignant progression of BE. Their strengths lie in their 42 

development using multiple independent datasets and their ability to demonstrate recall and 43 

specificity levels superior to those reported in the existing literature. Ongoing experimental 44 

and clinical validation is essential to further substantiate their utility and effectiveness, and to 45 

ensure that these tools can be reliably integrated into clinical practice to improve patient 46 

outcomes.  47 

 48 
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1. INTRODUCTION  52 

Barrett’s esophagus (BE) is characterized by the replacement of the normal squamous 53 

epithelium lining the lower esophagus with specialized columnar cells (intestinal metaplasia) 54 

[1–4]. This transformation occurs because of chronic gastroesophageal reflux disease (GERD) 55 

[1, 2] and exposure to stomach acid [3]. Approximately 10% of patients with GERD are likely to 56 

progress to a diagnosis of BE over 5 years [5]. Individuals with BE have a significantly increased 57 

risk of developing esophageal adenocarcinoma (EAC). Typically, the progression of EAC starts 58 

with GERD, followed by abnormal columnar cells characteristic of BE, which, over time, can 59 

progress to dysplasia and eventually become EAC. Despite BE's role as a precursor to EAC, the 60 

exact risk factors associated with BE are still not fully understood but include age (³ 60-70 61 

years), male gender [6], tobacco use [7, 8], obesity [9], and hiatal hernia [10].  62 

The clinical relevance of BE relies on its role as the sole known precursor lesion for EAC [1, 11]. 63 

This specific type of esophageal cancer constitutes already around two-thirds of all cases of 64 

esophageal cancer in high-income countries [12], with 85,700 new EAC cases estimated 65 

worldwide in 2020. Over the next two decades, a staggering 65% increase (equivalent to 66 

approximately 55,600 additional cases annually) is predicted [13]. EAC is a major problem 67 

because of its association with poor survival rates, one of the lowest in oncology. Post-68 

diagnosis, EAC presents a 23% 5-year survival and a median survival of only 15 months [14], 69 

highlighting the need for efficient methods for EAC management. This low survival is mainly 70 

due to late diagnosis, limited treatment options, poor prognosis, high rate of early metastasis, 71 

and difficulties in early detection [15].  72 

Due to the low progression rate of BE to EAC (estimates 0.1-0.5, reviewed by [16]), most BE 73 

patients never progress to cancer. However, GERD is becoming increasingly prevalent, with a 74 

global estimate of 783 million prevalent cases in 2019 [17]. Factors like population growth, 75 
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aging, lifestyle changes, and improved living standards contribute to the rising incidence of 76 

GERD [18]. As BE is a complication of GERD and a significant risk factor for EAC, the increasing 77 

prevalence of GERD cases represents a menace to future management of EAC. The increased 78 

prevalence of GERD leads to a higher incidence of BE cases and pressures for BE screening and 79 

diagnosis, resulting in a significant economic burden for patients, families, health services, and 80 

society. 81 

Currently, BE serves as a critical warning sign and its surveillance is essential for effective risk 82 

stratification. BE screening and surveillance methods involve endoscopic sampling of biopsies 83 

from four quadrants according to the Seattle biopsy protocol [19, 20] followed by histological 84 

analysis to classify detectable BE lesions as non-dysplastic (NDBE), indefinite for dysplasia 85 

(IND), low-grade dysplasia (LGD), or high-grade dysplasia (HGD) [11]. Limitations to the success 86 

of current strategies include but are not limited to, difficulties with endoscopic identification 87 

of dysplasia, biopsy sampling error, low interobserver reproducibility in histologic assessment 88 

of dysplasia among pathologists, lack of reliable biomarkers, access to specialized care and 89 

patient compliance [21]. Variability in the endoscopic and histologic assessment are commonly 90 

known issues: BE endoscopic/pathological management is time-consuming and depends on 91 

the clinical experience of the physicians involved in the endoscopic examination and/or 92 

histological analysis – who are mostly available in BE reference centers. For example, one meta-93 

analysis reported up to 25% and 24% of EACs were respectively missed during surveillance or 94 

when the analysis was restricted to NDBE patients [22]. Regarding histological analysis, the 95 

inter-observer agreement among pathologists has been reported as only 58% when it comes 96 

to distinguishing normal esophagus from BE and was even lower (less than 50%) when 97 

diagnosing LGD in BE patients [23, 24]. The lack of agreement can become particularly 98 
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problematic when many cases of BE are classified as IND (60% of dysplastic cases in a study by 99 

Alshelleh et al. [25]) and when the interobserver agreement is even poorer than for LGD [26]. 100 

There is emerging evidence that the addition of biomarkers to risk stratification models could 101 

increase BE diagnostic accuracy compared to current surveillance methods [27]. These 102 

biomarkers range from the incorporation of more clinical variables [28, 29] to molecular 103 

features such as genomic instability [30–34], gene expression patterns [35, 36], epigenetics 104 

[37, 38], and proteomics [39]. In addition to biomarkers, the recent emergence of artificial 105 

intelligence (AI) tools opens the prospect of improving the effectiveness of BE diagnosis and 106 

surveillance. A recent meta-analysis revealed that deep learning algorithms applied to 107 

endoscopy images in the surveillance of BE-related neoplasia are highly accurate (pooled 108 

sensitivity and specificity of 90.3% and 84.4%, respectively) in detecting early HGD/EAC [40], 109 

despite the absence of data for LGD. However, most diagnostic and prognostic tools 110 

(biomarkers, AI), still lack substantial validation in large patient cohorts, refraining from their 111 

usage in clinical practice [41]. In addition, the new tools available do not reach yet maximum 112 

performance. For example, when predicting the neoplastic progression to HGD/EAC, both TP53 113 

staining and Tissue Cypher test demonstrate high specificity (86% and 82%, respectively) but 114 

to the detriment of low sensitivity/recall (49% and 55%, respectively) [reviewed by [42]]. 115 

While it is not yet clear whether regular surveillance surely leads to earlier detection of 116 

dysplasia and consequently to a decrease in mortality from EAC [43] surveillance is still the only 117 

recommended strategy for BE and EAC management. There is room for new diagnostic and 118 

prognostic tools to support clinicians when diagnosing BE dysplasia and segmenting patients 119 

based on the risk of BE progression to EAC. 120 

The current study explores the diagnostic and prognostic value of gene expression patterns 121 

from BE tissue samples from public datasets in the context of BE. Envisioning its clinical 122 
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applicability, it aims to identify biomarkers that can accurately identify dysplasia within BE 123 

lesions (diagnostic application) and biomarkers that can predict the progression to EAC 124 

(prognostic application). It is also intended to understand the individual and combined 125 

predictive value of each selected biomarker in both contexts through their implementation 126 

using machine learning algorithms.  127 
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2. MATERIALS AND METHODS  129 

2.1. Dataset Search:  130 

An exhaustive search for public datasets containing gene expression data related to BE, 131 

including normal esophageal epithelium, NDBE, BE with different degrees of dysplasia (LGD 132 

and HGD) and EAC was performed in the following databases: Pubmed 133 

(https://pubmed.ncbi.nlm.nih.gov/), Gene Expression Omnibus (GEO, 134 

https://www.ncbi.nlm.nih.gov/geo/), Sequence Read Archive (SRA, 135 

https://www.ncbi.nlm.nih.gov/sra), and European Genome-Phenome Archive (https://ega-136 

archive.org/). For the diagnostic application, the aim was to distinguish between NDBE and 137 

LGD BE. For the prognostic application, non-progressed BE (nonP-BE) and progressed BE (P-138 

BE) data was studied. P-BE was defined as a BE adjacent to EAC. A summary of the methodology 139 

used is represented in Figure 1 and described in detail below. 140 

 141 

 142 

Figure 1 – Methodology Summary. Datasets of interest were downloaded from public databases, such 143 
as PubMed, GEO (Gene Expression Omnibus), SRA (Sequence Read Archive), and EGPA (European 144 
Genome-Phenome). For the diagnostic application, i.e., the distinction between non-dysplastic (ND) BE 145 
and low-grade dysplasia (LGD) BE, RNAseq datasets were used. Low-expression genes were excluded, 146 
resulting in a pre-selection of 45 genes. For the prognostic application, i.e., the distinction between 147 
non-progressed Barrett’s Esophagus (nonP-BE) and progressed-BE (P-BE), microarray datasets were 148 
identified, and 25 previously described genes were selected [35]**. A Thresholding Function was 149 
applied to each gene to define the best gene expression threshold for group distinction. All analyzed 150 
genes were ranked by F1 score, and additional feature selection methods were applied for diagnostic 151 
genes*, determining the top genes for diagnosis and prognostic application. Due to their biological 152 
functions, two extra genes – TP53 and CDH1 – were added to both diagnostic and prognostic data sets, 153 
summing 18 diagnostic and 15 prognostic genes. Different algorithms – Logistic Regression (LR), Naive 154 
Bayes (NB), K-nearest neighbours (KNN), Linear Support Vector Machines (LSVM), and Radial Basis 155 
Function Support Vector Machines (RBF SVM) – were trained using different numbers of genes. 156 
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Algorithms’ performance was assessed through accuracy, recall (sensitivity), precision (positive 157 
predictive value – PPV), F1 score, Specificity and negative predictive value (NPV). [35] 158 
 159 

2.2. Data Pre-Processing:  160 

In this study, raw RNA-seq data from projects GSE193946, GSE58963, and E-MTAB-4054 were 161 

obtained from the Sequence Read Archive (SRA) and the European Genome-Phenome Archive 162 

(EGA). We processed the data using a Docker environment equipped with Kallisto version 163 

0.46.1 (docker image: jlnetosci/kallisto:v0.46.1), which facilitated the pseudo-alignment of the 164 

reads against the Homo_sapiens.GRCh38.cdna.all.release-107 reference transcriptome from 165 

Ensembl. Post-alignment, the transcript abundance estimates generated by Kallisto were 166 

imported into the R programming environment using the tximport package. This allowed 167 

transcript-level data to be transformed into gene-level counts, which were subsequently 168 

analyzed for differential expression.  The combined data was filtered for low-expressed genes 169 

using the filterByExpr function in EdgeR [44], resulting in a dataset of 20,608 genes for 170 

downstream analysis. Samples were then normalized using the TMM (Trimmed Mean of M-171 

values) normalization method and differential expression analysis was performed using EdgeR 172 

[31]. For downstream analysis, including feature selection and classifier training, log-173 

transformed CPM normalized values were used, which were subsequently corrected for batch 174 

effects using the ComBat function from the sva package [45]. 175 

In this study, microarray data was sourced from the Gene Expression Omnibus (GEO) database 176 

using the GEOquery package available in the R software. The data included accessions 177 

GSE1420, GSE363223, GSE13083, GSE37200, GSE34619, GSE26886, GSE39491, GSE100843, 178 

and an additional dataset from Watts et al. (2007) [46].  Data was loaded and normalized using 179 

both the affy and oligo packages in R, depending on the array platform. The CEL files were read 180 

and processed using the frma function for robust multi-array average (RMA) normalization. 181 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 4, 2024. ; https://doi.org/10.1101/2024.11.26.24317976doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317976


Page 10 of 49 
 

Probe-level data was annotated and collapsed to gene-level data using Bioconductor 182 

annotation packages hugene10sttranscriptcluster.db, hgu133a.db, hgu133plus2.db, and 183 

hgu133a2.db along with the WGCNA package. Finally, the resulting gene expression data was 184 

merged into a single dataset for downstream analysis, with additional annotations indicating 185 

BE progression status [42][43]. For prognostic application, 25 genes selected in previous work 186 

to distinguish nonP-BE from P-BE [35], were used in this study – ACTN1, C1S, CCN1 (alias 187 

CYR61), CDH1, CEBPB, CEBPD, COL4A1, CTSB, DKK3, DUSP1, IER3, JUN, LAMC1, PLPP3, RBPMS, 188 

SNAI1, SNAI2, SPARC, TNS1, TRMT112, TP53, TWIST1, VWF, WWTR1 (alias TAZ) and ZEB1. Box 189 

plots representing normalized expression values were generated using the ggplot2 (v3.4.0) and 190 

ggsignif (v0.6.4) R packages. Statistical analysis was performed using one-way ANOVA, followed 191 

by a post hoc Tukey's ‘Honest Significant Difference’ test, both from the R stats package 192 

(v4.1.1). When ANOVA assumptions were not met, a Kruskal-Wallis Rank Sum Test (R stats 193 

package v4.1.1) was performed, followed by a post hoc Dunn's Kruskal-Wallis Multiple 194 

Comparisons test (FSA R package v0.9.3). The significance threshold was set at p-value < 0.05. 195 

 196 

2.3. Threshold selection and determination of individual predictive power:  197 

For the distinction between NDBE and LGD (diagnostic) or nonP-BE and P-BE (prognostic) a 198 

Thresholding function was applied to the expression levels of each selected gene to determine 199 

an expression threshold. Performance metrics such as accuracy, recall (or sensitivity), precision 200 

(or positive predictive value – PPV), specificity, negative predictive value (NPV), and false 201 

positive rate (FPR) were calculated for each threshold, considering the known class of the 202 

samples. For the diagnostic application, other feature selection methods (Lasso, Mutual 203 

Information (MI) criteria, Recursive Feature Elimination (RFE), SelectKBest) were also applied 204 

to narrow down the most informative features that appeared at least twice in one of the 205 
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methods. The threshold that yielded the highest F1-score was selected. Based on this metric, 206 

genes were ranked and the top 16 (diagnostic) and top 13 (prognostic) were considered for 207 

downstream analysis. Two additional genes – TP53 and CDH1 – were also included in the 208 

downstream analysis of both prognostic and diagnostic gene sets. 209 

 210 

2.4. Algorithmic analysis and evaluation of performance metrics:  211 

Gene expression values were used for algorithm training. Several classes of classifiers, with 212 

shown applicability to microarray and RNAseq data [47–49], such as Logistic Regression (LR), 213 

Naive Bayes (NB), K-nearest neighbours (KNN), and Support Vector Machines (SVM) (with 214 

Linear and Radial Basis Function kernels), were implemented with default hyperparameters in 215 

Python programming language (v3.10.0), using the scikit-learn package (v1.0.1). A leave-one-216 

out cross-validation procedure was used to evaluate the diagnostic or prognostic value of all 217 

possible combinations of genes (from n=2 up to all selected diagnostic or prognostic genes). 218 

This involved leaving out one sample at a time for validation while using the remaining samples 219 

to create a balanced training set. The Synthetic Minority Oversampling Technique (SMOTE) 220 

was employed from the imbalanced-learn (v0.8.1) package. For LR, KNN, and SVM, features 221 

were standardized (scaled and centered) using scikit- learn's standard scaler module by 222 

subtracting the mean and scaling to the unit variance. Performance metrics such as accuracy, 223 

precision (PPV), recall (sensitivity), NPV, and precision and specificity were calculated and 224 

recorded for each full iteration of the validation strategy. The top-performing algorithms were 225 

chosen by maximizing performance metrics (accuracy, specificity, precision, recall, NPV, and 226 

F1-score, Table 2). The most frequent models, with the highest F1-score, were chosen to 227 

further select the best classifiers for both diagnostic and prognostic applications. The most 228 

frequently occurring genes (frequency ³ 50 %) within the selected classifiers were chosen as 229 
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features. Subsequently, the performance metrics were calculated using a decremental number 230 

of features, and the median value and standard deviation of each group of decremental 231 

subsets of genes were computed. 232 

 233 

2.5. In-vivo gene expression analysis: 234 

2.5.1. RNA extraction:  235 

Cell pellets from the cell lines metaplasia (BAR-T and BAR-T10 - from R. Souza, Baylor 236 

University Medical Center, Dallas, TX; Jaiswal et al., 2007; X. Zhang et al., 2010), dysplasia (CP-237 

B, CP-C and CP-D - from P. Rabinovitch, University of Washington, Seattle, WA; Palanca-238 

Wessels et al., 2003), and EAC (OE33, KYAE-1- from W. Dinjens, Erasmus Medical Center 239 

Cancer Institute, Rotterdam, Netherlands, and ESO26 - Boonstra et al., 2010) were used to 240 

extract RNA using the RNeasy Mini Kit (#74104, Qiagen, Hilden, Germany), following the 241 

manufacturer’s instructions.  242 

For formalin-fixed paraffin-embedded (FFPE) tissue samples, RNA was isolated from 2 243 

consecutive sections per sample, each approximately 20 mm2 and 5 μm. Tissue samples 244 

were deparaffinized using the deparaffinization solution (#19093, Qiagen, Hilden, Germany) 245 

prior to RNA extraction with the RNeasy FFPE Kit (#73504, Qiagen, Hilden, Germany), 246 

according to the manufacturer’s instructions (with one modification: proteinase K incubation 247 

was performed overnight). 248 

All procedures involving human tissue samples were approved by the National Ethics 249 

Committee for Clinical Research – Comissão de Ética para a Investigação Clínica (CEIC), under 250 

approval number 2022_EO_24. 251 

 252 
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2.5.2. Reverse Transcription - quantitative real-time Polymerase Chain Reaction (RT-253 

qPCR): 254 

For 1-Step RT-qPCR, reactions were performed in triplicate, using the TaqPath 1-step RT-qPCR 255 

Master Mix (#A15300, Thermo Fisher Scientific) with a final reaction volume of 10 μL. Each 256 

reaction containing 1 μL of template, 0.25 μM of probe and 0.5 μM of each primer. Data 257 

acquisition and analysis were conducted using the QuantStudio Design & Analysis Software 258 

v1.5.1 software, using the cycling program: UNG incubation at 25°C - 2 minutes, Reverse 259 

Transcription at 50°C - 15 minutes, followed by Polymerase activation at 95°C - 2 minutes and 260 

40 cycles of Amplification at 95°C - 3 s and 58°C - 30 s. To normalize gene expression levels, 261 

the geometric mean of the reference genes (PGK1, ELF1, and RPL13A) was subtracted from 262 

cycle threshold (Cq) of the target genes. 263 

  264 
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3. RESULTS: 265 

3.1. Diagnosis and prognosis dataset selection 266 

For the development of the diagnostic application, 13 RNAseq-based datasets were identified, 267 

of which only 3 had publicly available clinical data – GSE58963 [50], E-MTAB-4054 [51], 268 

GSE193946 [52] – and were therefore included in the present study. The BE data contained in 269 

each dataset is represented in Table 1. In total, data from 61 samples – comprising 21 NDBE, 270 

40 LGD BE and 27 HGD – were included in the study. 271 

 272 

Table 1 – Characterization of datasets for the diagnostic and prognostic applications 273 

Dataset Diagnostic  
(RNAseq) 

Prognostic 
(Microarray) 

NDBE LGD HGD nonP-BE P-BE* 
GSE1420 [53] - - - 0 16 

Watts 2007 [46] - - - 18 0 
GSE36223 [54] - - - 23 0 
GSE13083 [55] - - - 7 0 
GSE37200 [56] - - - 0 46 
GSE34619 [57] - - - 10 0 
GSE26886 [58] - - - 20 0 
GSE39491 [59]  - - - 40 0 

GSE100843 [60] - - - 17 3 
GSE58963 [50] 7 7 7 - - 

E_MTAB_4054 [51] 14 8 - - - 
GSE193946 [52] 0 25 20 - - 

TOTAL N. samples 21 40 27 135 65 
nonP-BE – non progressed Barrett’s esophagus, P-BE – progressed Barrett’s esophagus, NDBE – non-274 
dysplastic Barrett’s esophagus,  275 
LGD – low-grade dysplasia, HGD – high-grade dysplasia. 276 
*P-BE was defined when a BE was adjacent to EAC 277 
 278 

For the prognostic application, 16 microarray datasets were identified, but only those 279 

generated on an Affymetrix platform were included in the downstream analysis to facilitate 280 

data merging. A total of 9 microarray datasets were analyzed, including three previously 281 

analyzed by Cardoso, et al [35], – GSE1420 [53], Watts_2007 [46], and GSE13083 [55] and six 282 

new ones, namely GSE36223 [54], GSE37200 [56], GSE34619 [57], GSE26886 [58], GSE39491 283 
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[59], and GSE100843 [60]. In total, data from 200 samples – representing 135 nonP-BE and 65 284 

P-BE – were included in the study as shown in Table 1.  285 

 286 

3.2. Identification of differentially expressed genes in a diagnostic and 287 

prognostic setting 288 

In this study, we aimed to identify diagnostic biomarkers that can distinguish between ND-BE 289 

and LGD-BE. For this purpose, we utilized three RNAseq datasets (as listed in Table 1). Low-290 

expression genes were excluded from each dataset, resulting in the inclusion of 20608 genes 291 

in our analysis. After normalization, we conducted differential expression analysis between 292 

LGDBE and NDBE (Figure S1A), and HGDBE and NDBE (Figure S1B) using EdgeR's quasi-293 

likelihood approach. This approach accounted for disease staging and batch effects from the 294 

three different datasets as factors in the model (Supplementary Table 1, Figure S1C).  295 

Following the differential expression analysis, we identified 30 biomarkers through a 296 

systematic selection process. First, we selected differentially expressed genes (DEGs) with an 297 

absolute log fold change (logFC) of ≥ 1 between LGDBE and NDBE, with a false discovery rate 298 

(FDR) of < 0.05. From these DEGs, we filtered for genes that showed the same direction of 299 

expression change in the HGDBE vs. NDBE comparison (FDR < 0.05), resulting in 14 genes 300 

(Figure S1A). Second, we identified DEGs in the HGDBE vs. NDBE comparison with an absolute 301 

logFC of ≥ 2 (FDR < 0.05). Among these genes, we selected those that also exhibited the same 302 

direction of expression change in the LGDBE vs. NDBE comparison (considering p-value < 0.05 303 

for significance), resulting in 16 genes (Figure S1B). This two-step filtering strategy ensured 304 

that the selected biomarkers not only had significant differential expression but also consistent 305 

expression patterns across different stages of disease progression. Given the strong batch 306 

effect observed (see Figure S1), there was a risk of losing biologically relevant genes in the 307 
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LGDBE vs. NDBE comparison due to this variation. To mitigate this problem, we also performed 308 

separate analyses of the EMTAB_4054 (Supplementary Table 2) and GSE58963 309 

(Supplementary Table 3) datasets. We employed the glmRobust pipeline to independently 310 

identify differentially expressed genes between the LGDBE and NDBE groups within each 311 

dataset. From these separate analyses, we identified an additional 13 genes with an absolute 312 

logFC greater than 1 and an FDR < 0.05. These genes were consistently found in both datasets 313 

and exhibited the same direction of expression change (Figure S2). Moreover, these genes 314 

showed consistent directional changes in the previous HGDBE vs. NDBE comparison. Thus, they 315 

were also included in the biomarker list (Supplementary Table 4). Given their established role 316 

in the biology of BE and EAC, we also included two additional genes – TP53 and CDH1 –in the 317 

downstream analysis, resulting in a total of 45 candidate genes for distinguishing between 318 

NDBE and LGD.  319 

For the prognostic set of biomarkers, we re-analyzed 25 genes that we had previously 320 

identified to have prognostic value [35], namely ACTN1, C1S, CCN1 (alias CYR61), CDH1, CEBPB, 321 

CEBPD, COL4A1, CTSB, DKK3, DUSP1, IER3, JUN, LAMC1, PLPP3, RBPMS, SNAI1, SNAI2, SPARC, 322 

TNS1, TP53, TRMT112, TWIST1, VWF, WWTR1 (alias TAZ) and ZEB1. For validation purposes, 323 

we added six independent datasets to the three datasets we originally analyzed. We observed 324 

significant differential gene expression (adj. p-value < 0.05) between P-BE and nonP-BE 325 

categories for most of the genes of interest, except for CDH1, DKK3, SNAI2, and WWTR1. 326 

 327 

3.3. Application of a Thresholding function for the selecting genes with the 328 

highest predictive value  329 

To each selected gene, we applied a Thresholding function, to determine a gene expression 330 

threshold for distinguishing different levels of gene expression between groups of samples 331 
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with distinct diagnosis (NDBE vs. LGD-BE) or with distinct prognosis (nonP-BE vs. P-BE). We 332 

defined the best individual threshold of gene expression for each selected gene, 45 for 333 

diagnosis and 25 for prognosis, reflecting the individual predictive value of each gene. Genes 334 

were then ranked by the harmonic mean of recall and precision (F1-score) to ensure accurate 335 

selection.  This procedure identified the top 15 genes for predicting the malignant progression 336 

of BE lesions with F1-score above 0.67 (Supplementary Table 5).  From the top 45 diagnostic 337 

genes, including CDH1 and TP53, genes with higher expression values (log2CPM above 1) were 338 

filtered. To further refine a list of candidates, we used several feature selection methods: Lasso, 339 

Mutual Information (MI) criteria, Recursive Feature Elimination (RFE), and SelectKBest. 340 

Additionally, feature correlation analysis was conducted to identify and eliminate highly 341 

correlated features (Pearson’s correlation coefficient > 0.9). Hence, for diagnostic purposes, 342 

we further narrowed down the selection to genes that were chosen at least twice in one of the 343 

feature selection methods and F1-score above 0.7, which identified the top 16 genes for 344 

diagnosing dysplasia in the context of BE (Supplementary Table 6). 345 

Building on our identification of the top diagnostic and top prognostic genes using the 346 

Thresholding function and various feature selection methods, the ROC curve results (Figure 2) 347 

further validate their predictive power using a logistic regression classifier. In both diagnostic 348 

(Figure 2A) and prognostic (Figure 2B) contexts, most of the genes have AUC (Area Under the 349 

Curve) values above 0.50 (random chance line), with some reaching individual values of 0.90, 350 

demonstrating a substantial predictive value of the selected genes in both diagnostic and 351 

prognostic applications.  352 

 353 
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 354 

Figure 2 – Gene-Specific ROC Curves for Diagnostic and Prognostic Predictions. Receiver Operating 355 
Characteristic (ROC) curves for individual genes depicting their predictive value in two contexts: (A) 356 
Diagnostic (dysplasia) and (B) Prognostic (progression) using a logistic regression classifier. The Area 357 
Under the Curve (AUC) values for each gene are indicated in the legends. Notably, the predictive values 358 
of TP53 and CDH1 genes are also included, although they were manually added to the sets. 359 
 360 
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3.4. SVM algorithms were the best for both diagnostic and prognostic applications 361 

The diagnostic and prognostic gene groups were utilized to train the most effective diagnostic and 362 

prognostic algorithms. Various classifiers – LR, NB, KNN, LSVM, and RBF SVM – were examined using 363 

increasing combinations of genes, ranging from n = 2 up to the total number, for diagnostic and 364 

prognostic applications.  365 

The algorithms were ranked based on their performance metrics for each application (see Table 2). 366 

However, no algorithms optimized all performance metrics for both applications. Nevertheless, the 367 

LSVM algorithms emerged as the best for diagnostic purposes, maximizing the F1-score and accuracy 368 

(refer to Figure 3A and Table 2).  369 

For the prognostic application, a similar trend was observed, where the RBF SVM type performed best 370 

according to the F1-score and accuracy metrics (refer to Figure 3B and Table 2). 371 

 372 

Table 2 – Best algorithm performance by metric maximization 373 

Application Rank by 
N. 

algorithms 
Type of 

algorithm 
Recall Precision 

F1 - 
score 

Specificity NPV Accuracy 

Diagnostic 

Recall 4871 

KNN 
(n=196) 
LSVM 

(n=2426) 
LR (n=124 
RBF SVM 
(n=2125) 

0.99 0.78-
0.98 

0.88-
0.99 0.48-0.95 1.00 0.82-

0.98 

Precision 3050 

KNN 
(n=2290) 

LSVM 
(n=472) 

LR 
(n=259) 

NB (n=21) 
RBF SVM 

(n=8) 

0.65-
1.00 

0.97 0.79-
0.99 0.95-1.00 0.60-

1.00 
0.77-
0.98 

F1-score 1881 

KNN 
(n=288) 
LSVM 

(n=1115) 
LR 

(n=444) 
RBF SVM 

(n=34) 

0.92-
1.00 

0.93-
1.00 

0.96 0.86-1.00 0.88-
1.00 

0.95-
0.98 
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Application Rank by 
N. 

algorithms 
Type of 

algorithm 
Recall Precision 

F1 - 
score 

Specificity NPV Accuracy 

Specificity 231 

KNN 
(n=223) 
LSVM 
(n=8) 

0.65-
0.95 1.00 0.79-

0.97 
0.99 0.60-

0.91 
0.77-
0.97 

NPV 4871 

KNN 
(n=196) 
LSVM 

(n=2426) 
LR 

(n=124) 
RBF SVM 
(n=2125) 

1.00 0.78-
0.98 

0.88-
0.99 0.48-0.95 0.99 0.82-

0.98 

Accuracy 212 

KNN 
(n=38) 
LSVM 

(n=157) 
LR (n=16) 
RBF SVM 

(n=1) 

0.95-
1.00 

0.95-
1.00 

0.97-
0.99 0.90-1.00 0.91-

1.00 
0.96 

Prognostic 

Recall 13 

LR (n=7), 
LSVM 
(n=5), 

RBF SVM 
(n=1) 

0.97 0.69-
0.70 0.81 0.79-0.80 0.98 0.85-

0.86 

Precision 582 

RBF SVM 
(n=449) 

KNN 
(n=24) 
LSVM 
(n=17) 

NB (n=92) 
LR 

(n=348) 

0.88-
0.95 

0.99 0.93-
0.98 1.00 0.94-

0.98 
0.96-
0.98 

F1-score 12971 

RBF SVM 
(n=5794) 

KNN 
(n=2465) 

LSVM 
(n=2230) 

NB 
(n=2134) 

LR 
(n=348) 

0.92-
0.95 

0.97-
1.00 0.96 0.99-1.00 0.96-

0.98 0.98 

Specificity 8430 

KNN 
(n=586) 
LSVM 

(n=569) 
LR (n=38) 

0.83- 
0.95 

0.98-
1.00 

0.9-
0.98 

0.99 0.92-
0.98 

0.94-
0.98 
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Application Rank by 
N. 

algorithms 
Type of 

algorithm 
Recall Precision 

F1 - 
score 

Specificity NPV Accuracy 

NB 
(n=1953) 
RBF SVM 
(n=5284) 

NPV 13 

LR (n=7), 
LSVM 
(n=5), 
RBF 

SVM(n=1) 

0.97 0.69-
0.70 0.81 0.79-0.80 0.98 0.85-

0.86 

Accuracy 2404 

KNN 
(n=264) 
LSVM 

(n=370) 
LR (n=28) 

NB 
(n=415) 

RBF SVM 
(n=1327) 

0.94-
0.95 0.98-1 0.97-

0.98 0.99-1 0.98 0.98 

LR – logistic regression, LSVM – linear support vector machine, RBF SVM – radial basis function support vector 374 

machine, KNN – K-nearest neighbors, NB – Naïve Bayes. Selected algorithms are highlighted in grey. 375 

 376 

 377 
Figure 3 - Precision and Recall for the selected classifier type with increasing combinations of genes of 378 
interest to predict BE dysplasia (diagnostic) and BE malignant progression (prognostic). This illustrates 379 
the performance of the chosen classifier types in the predicting dysplasia (A) and progression (B) when 380 
different numbers of genes of interest are combined (colored dots). The individual predictive value for the 381 
best threshold of each previously selected gene is also represented (black dots) for diagnostic (see Figure 382 
3A) and prognostic (see Figure 3B). Colors represent different numbers of combined genes. LSVM – Linear 383 
Support Vector Machine (A), and RBF SVM – Radial Basis Function Support Vector Machine (B). Red dots 384 
represent manually added CDH1 and TP53 genes.  385 
 386 
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The study found that among the selected types of algorithms, those with an F1-score above 387 

0.96 included 1115 LSVM for diagnostic and 5794 RBF SVM for prognostic. The analysis 388 

identified the most frequent genes (over 50 %) across the best-performing algorithm class 389 

(Supplementary Table 7 and Supplementary Table 8). Ultimately, ten genes were selected for 390 

identifying LGD BE using a LSVM algorithm: IGHV3-43, SLC38A4, PLLP, CELA3A, IGHV4-31, 391 

TMPRSS5, TP53, NR4A1, ATF3, IFI27. For identifying P-BE, ten genes were selected using an 392 

RBF SVM algorithm: SNAI1, C1S, DUSP1, CEBPB, COL4A1, ZEB1, CEBPD, CCN1, LAMC1 and 393 

TWIST1. 394 

 395 

The performance of each selected algorithm (LSVM for diagnosis and RBF SVM for prognosis) 396 

was evaluated using the most frequent genes (10 for diagnosis and 10 for prognosis) as 397 

features. To test different random states while avoiding algorithm bias, 100 runs were 398 

performed for each algorithm with the same features. Table 3 presents the mean values and 399 

respective standard deviations (SD) for each performance metric. All performance metrics 400 

were above 0.90, except for specificity for the LSVM diagnostic algorithm. The low standard 401 

deviations (below 0.05) indicated an increase in the predictive value of each algorithm when 402 

the selected genes were combined. 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 
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Table 3 – Performance of the selected algorithms with the selected genes as features after 100 runs 411 

A. Diagnostic   B. Prognostic 
  Mean Standard deviation    Mean Standard deviation 

Accuracy 0,946 0,014  Accuracy 0,977 0,003 
Precision 0,932 0,012  Precision 0,977 0,008 
Recall 0,991 0,017  Recall 0,952 0,005 
F1 score 0,960 0,010  F1 score 0,965 0,004 
TP 39,630 0,677  TP 61,900 0,302 
FP 2,900 0,541  FP 1,430 0,498 
TN 18,100 0,541  TN 133,570 0,498 
FN 0,370 0,677  FN 3,100 0,302 
NPV 0,981 0,033  NPV 0,977 0,002 
Specificity 0,862 0,026  Specificity 0,989 0,004 
FPR 0,138 0,026  FPR 0,011 0,004 

TP- True Positive, FP- False Positive, TN- True Negative, FN- False Negative, NPV- Negative Predictive Value, FPR- 412 

False Positive Rate. 413 

 414 

Finally, the performance of the two algorithms was evaluated by gradually decreasing the 415 

number of selected genes (Figure 4). The diagnostic algorithm showed a decrease in 416 

performance after the removal of just one gene (Figure 4A). In contrast, the prognostic 417 

algorithm showed noticeable changes only after the removal of four genes (Figure 4B).  418 

 419 

Figure 4 – Metrics performance of the best algorithm in distinguishing ND-BE and LGD BE 420 
(diagnostic) and nonP-BE from P-BE (prognostic) when decreasing the number of genes included in 421 

Prognostic (progression)Diagnostic (dysplasia)A B
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the training. Mean of each performance metric (solid lines) and its respective standard deviation 422 
(ribbons) for the diagnostic algorithm, Linear Support Vector Machine (LSVM) (A) and for the prognostic 423 
algorithm, Radial Basis Function Support Vector Machine (RBF SVM) algorithm (B) NPV – negative 424 
predictive value. 425 
 426 
 427 
 428 
 429 

3.5. In-vivo validation of key diagnostic and prognostic biomarkers 430 

We conducted a validation study of the panel of biomarkers to distinguish between different 431 

stages of BE progression. Specifically, we performed RT-qPCR analysis to compare the 432 

expression levels of these biomarkers in differente cell lines: metaplasia (BAR-T and BAR-T10), 433 

dysplasia (CP-B, CP-C and CP-D), and EAC (OE33, KYAE-1 and ESO26). Each biomarker was 434 

tested with three technical replicates in each cell line.  435 

For dysplasia diagnosis, we analyzed the expression of biomarkers in both metaplasia and 436 

dysplasia cell lines (Figure S6). In evaluating EAC prognosis, we compared the expression levels 437 

between metaplasia and EAC cell lines (Figure S7). Normalized expression values against 438 

reference genes (PGK1, ELF1 and RPL13A) highlighted significant differences in key markers. 439 

For instance, biomarkers such as IFI27 and ATF3 differentiated metaplasia from dysplasia with 440 

statistically significant p-values (p = 0.009 and p = 0.003, respectively), revealing their potential 441 

utility in dysplasia diagnosis. Similarly, CEBPB, SNAI1 and CCN1 (alias CYR61) genes showed 442 

significant expression changes between metaplasia and EAC (p-values of 0,031, 0.022 and 443 

0.038, respectively). This supports their relevance for EAC prediction. The observed differential 444 

expression patterns suggest that these biomarkers serve as valuable molecular tools for early 445 

detection of dysplasia and the risk of progression to EAC, facilitating timely clinical intervention. 446 

Interestingly, some of the top-performing genes, namely IGHV3-43, IGHV4-31, IGHV3-53, and 447 

PGC, showed no detectable expression in cell lines. Since these genes ranked high according 448 
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to the diagnostic algorithm, we hypothesized that their expression originates from immune 449 

cells, typically absent in cell lines. To investigate this further, we specifically tested these genes 450 

in tissue samples from BE patients with and without dysplasia. Contrary to cell lines, the 451 

expression of these genes was detectable in patient samples, supporting the notion that 452 

immune cells- may play a critical role in BE progression (Figure S6). 453 

 454 
  455 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted December 4, 2024. ; https://doi.org/10.1101/2024.11.26.24317976doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.26.24317976


Page 26 of 49 
 

4. DISCUSSION: 456 

BE is the only known precursor to EAC, a malignancy with rising incidence and poor prognosis. 457 

This underscores the need for more effective management methods, including assertive early 458 

diagnosis of dysplasia and prognostic prediction within BE surveillance programs. While tools 459 

incorporating biomarkers are continuously emerging, few have reached clinical validation and 460 

implementation. Even fewer combine biomarkers with AI and those under clinical validation or 461 

use, do not provide simultaneous detection of dysplasia and prognostic assessment. Moreover, 462 

none can simultaneously achieve high sensitivity (recall) and high specificity. 463 

In this study, we developed two algorithms to assist with the diagnosis of dysplasia, the 464 

prognosis of BE, and ultimately the management of EAC. The genes of interest for dysplasia 465 

detection (diagnostic algorithm) were newly identified from the raw data of three different 466 

RNAseq datasets. Conversely, the algorithm developed for prognosis was based on a gene set 467 

identified in a previous study [35]. For both applications, genes were ranked based on their F1 468 

score, sensitivity (aka recall or true positive rate) and precision (aka positive predictive values) 469 

in predicting conditions such as LGD BE and P-BE. 470 

In high-risk disease detection cases such as dysplasia, recall is a more important evaluation 471 

metric than precision because it can correctly identify all relevant positive cases (i.e., samples 472 

containing dysplasia or at high risk of progressing to EAC). However, precision, which is the 473 

fraction of positive cases among all cases classified as positives by the model, is also crucial 474 

because it emphasizes the correctness of positive predictions made by the model (i.e., 475 

measures how many cases are incorrectly classified as positive). In a situation where false 476 

positives have significant implications, such as subjecting BE patients without dysplasia or with 477 

a low risk of progression to unnecessary treatments or screening intervention, precision 478 

matters. Since both high precision and high recall were desirable for the present study, the 479 
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ranking was based on the F1 score, which combines precision and recall using their harmonic 480 

mean. Maximizing the F1 score implies maximizing both precision and recall simultaneously.  481 

Performance metrics for each gene at its best threshold were high (see Supplementary Tables 482 

5 and 6). However, specificity and NPV were higher for the prognostic genes, showing their 483 

great potential to exclude patients who are not at risk for malignant progression. 484 

To better explore the potential predictive value of the selected biomarkers, we trained 485 

machine learning algorithms testing all possible combinations of biomarkers in each gene set. 486 

The average metrics of the newly trained algorithms with combinations of biomarkers showed 487 

increased predictive power (Table 2) compared to the predictive power of individual genes 488 

(Supplementary Tables 5 and 6), which is expected in the context of complex gene interactions. 489 

Finally, envisioning the clinical applicability of both algorithms, we evaluated the minimal 490 

number of biomarkers necessary to maintain high-performance metrics (LSVM for diagnosis 491 

and RBF SVM for prognosis) in each gene set. Both algorithms were tested with a decreasing 492 

number of genes, and as depicted in Figure 4, a reduction in performance metrics was 493 

observed when removing one gene from the diagnostic set and four genes from the 494 

prognostic’s gene set.  495 

For diagnostic application, ten genes- IGHV3-43, SLC38A4, PLLP, CELA3A, IGHV4-31, TMPRSS5, 496 

TP53, NR4A1, ATF3, IFI27- were identified as the top candidates for dysplasia detection, 497 

particularly for distinguishing between NDBE and LGD BE. These genes are associated with 498 

different aspects of cancer biology, such as metabolism, cell invasion, and oncogenic 499 

processes, suggesting their potential as biomarkers in the context of BE dysplasia [61–64]. 500 

Moreover, transcription factors such as NR4A1 and ATF3, have been previously associated with 501 

BE with LGD [65]. 502 
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For the prognostic application, an RBF SVM algorithm was selected, which uses the expression 503 

pattern of ten genes (SNAI1, C1S, DUSP1, CEBPB, COL4A1, ZEB1, CEBPD, CCN1, LAMC1 and 504 

TWIST1). Four of these genes – SNAI1, COL4A1, ZEB1, and TWIST – have been associated with 505 

epithelial-to-mesenchymal transition [66]. COL4A1, ZEB1, and TWIST1 have also been 506 

described as potential screening biomarkers of BE malignant progression. COL4A1 is 507 

upregulated in EAC versus BE [67–69] and is associated with poor EAC prognosis [68], and it 508 

predicts the response to immune checkpoint inhibitors in EAC [67].  Increased expression of 509 

ZEB1 has been associated with the repression of CDH1 [70], which is associated with BE 510 

progression to EAC [71–75]. TWIST1 up-regulation was observed in at-risk BE samples years 511 

before the emergence of any microscopic signs of malignancy (dysplasia/EAC) [35].  512 

The genes TP53 and CDH1 were included in both gene sets to train the classifiers. TP53 is 513 

known for its role in BE malignant progression [76, 77], improved prediction of BE neoplastic 514 

progression [78], increased risk of dysplasia when abnormally expressed, and improved intra-515 

observer agreement in dysplastic diagnosis [79]. CDH1 has severely reduced or disorganized 516 

expression during BE dysplastic progression [reviewed by [80] and an almost undetectable 517 

expression in poorly differentiated EAC [71–75]. While TP53 alone is insufficient for diagnostic 518 

and for prognostic applications, it has been shown to have predictive value in combination with 519 

other biomarkers in the diagnostic setting. These findings confirm the previously studied role 520 

of TP53 in the pathogenesis of BE dysplasia [81, 82]. Because TP53 mutations are often 521 

associated with a higher risk of progression in BE patients [83], further validation of this 522 

biomarker at the molecular level, including its mutational status and RNA expression levels, is 523 

warranted. 524 

All metrics of both algorithms are higher when compared to currently available tools for risk 525 

stratification, such as TP53 immunohistochemistry (0.49 recall/sensitivity, 0.86 specificity [81]) 526 
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and TissueCypher (0.55 recall/sensitivity, 0.82 specificity for high-intermediate risk class 527 

55%/82%) [63]. Tools for dysplasia detection, such as Wats3D and Cytosponge-TFF3. are still 528 

under prospective evaluation. Wats3D provides an incremental yield of 7% for any dysplasia 529 

subtype but is negative for dysplasia in 62.5% of cases where an endoscopic biopsy 530 

confirmation to compare with the gold standard revealed dysplasia [86]. The Cytosponge-TFF3 531 

test when combined with a multidimensional biomarker panel and fitted into a regression 532 

model was shown to be able to predict patients with dysplasia with good accuracy but further 533 

validation is still needed [87]. Interestingly, in our top 45 genes for diagnostic application 534 

(Supplementary Table 4), we have identified another trefoil factor, the TFF2, which is BE 535 

related gene. 536 

A preliminary in vivo validation of the selected diagnostic and prognostic biomarkers was 537 

conducted by examining their expression in metaplasia, dysplasia and EAC-derived cell lines. 538 

This validation confirmed their differential expression, highlighting their potential in 539 

distinguishing BE progression stages. Exceptionally, IGHV3-43, IGHV4-31, IGHV3-53, and PGC 540 

top-ranked genes were validated in FFPE samples from patients diagnosed with BE with and 541 

without dysplasia due to their lack of expression in the cell lines. The absence of immune cells 542 

in cell line cultures, which focus on epithelial cells, likely contributes to these findings. While 543 

we cannot exclude that the used cell lines may exhibit genetic differences from the original 544 

tissue, which potentially influences their molecular profiles [88], further clinical validation with 545 

a selected cohort of patient samples is warranted and is currently underway. 546 

No molecular tools are currently implemented in clinical practice for identifying LGD/HGD BE. 547 

Dysplasia is a major biomarker in BE risk stratification, but it is often focal, making accurate 548 

characterization of collected BE biopsy challenging [89], and leading to many cases of BE 549 

classified as INDBE. INDBE is a management limbo for dysplasia, posing problems for clinicians. 550 
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Most clinical tools developed for BE focus on risk stratification (prognosis) [28, 37–39, 84, 85, 551 

90] and have a high specificity (identify and correctly exclude BE patients not at risk of 552 

progression). Simultaneously, these tools have a lower recall/sensitivity indicating their 553 

performance drops in detecting BE patients at true risk of progression. 554 

New tests that aim for high recall and sensitivity are vital to avoid missing unacceptable true 555 

positive cases of LGD or HGD, as well as patients at risk of progression. However, these tests 556 

must also maintain high precision and high sensitivity to avoid incorrectly including patients 557 

not having dysplasia or having a low risk of progression. This balance can improve surveillance 558 

of high-risk patients while reducing unnecessary procedures for low-risk patients, ultimately 559 

lowering patient management costs. Our approach, which combines machine learning 560 

algorithms with gene expression signatures, represents a promising breakthrough in 561 

healthcare. It has the potential to significantly enhance both the diagnosis and prognosis of 562 

dysplasia by delivering high recall and precision into clinical practice. 563 

  564 
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5. CONCLUSIONS: 565 

This study not only identified biomarkers and developed algorithms to detect LGD in BE 566 

biopsies and predict the progression of BE to EAC, but also paved the way for creating new in-567 

vitro laboratory tests for the diagnosis and prognosis of BE. Both algorithms were developed 568 

using datasets from public databases analyzing tissue samples obtained during routine 569 

endoscopy.  570 

For the prediction of BE malignant progression, an LSVM algorithm featuring the identification 571 

of LGD was trained while an RBF SVM algorithm was trained for the prediction of BE malignant 572 

progression. Both algorithms reached high-performance metrics. To our knowledge, no 573 

existing tools can simultaneously detect dysplasia and assess the risk of progression with such 574 

high precision and recall.  575 

Validation of the biomarkers and algorithms presented in this study in an independent test and 576 

validation patient cohort is currently under consideration. Additionally, while no other known 577 

risk factors (epidemiologic, clinical, histologic) have been combined with the presented 578 

biomarkers, incorporating patient demographic and clinical information could further enhance 579 

the predictive value of the gene expression algorithms. Future algorithm developments will 580 

address this issue, demonstrating how such combinations can significantly boost their 581 

predictive power. 582 

 583 

 584 

 585 

 586 

 587 

 588 
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Supplementary Material: 
 
 

Supplementary Table 1 – List of genes used for differential expression analysis across multiple datasets 

Supplementary Table 2 – List of differentially expressed genes between NDBE and LGDBE groups, E_MTAB_4054 dataset.  

Supplementary Table 3 – List of differentially expressed genes between NDBE and LGDBE groups, GSE58963dataset. 

Supplementary Table 4 – Top 45 candidate genes. 
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Supplementary Table 5 – Top 15 genes for prognostic: individual genes’ predictive metrics. 
 

N Gene Threshold F1-score Recall Precision Specificity NPV Accuracy FPR TP FP TN FN 

1 COL4A1 9.34 0.84 0.75 0.94 0.98 0.89 0.91 0.02 49 3 132 16 
2 LAMC1 9.19 0.84 0.88 0.81 0.90 0.94 0.90 0.10 57 13 122 8 
3 CEBPB 9.75 0.84 0.80 0.88 0.95 0.91 0.90 0.05 52 7 128 3 
4 CCN1 7.68 0.84 0.88 0.80 0.90 0.94 0.89 0.10 57 14 121 8 
5 SNAI1 6.61 0.82 0.97 0.71 0.81 0.98 0.86 0.19 63 26 109 2 
6 C1S 9.65 0.83 0.83 0.83 0.92 0.92 0.89 0.08 54 11 124 11 
7 ZEB1 7.66 0.80 0.91 0.72 0.83 0.95 0.86 0.17 59 23 112 6 
8 CEBPD 9.32 0.81 0.83 0.79 0.90 0.92 0.88 0.10 54 14 121 11 
9 DUSP1 10.46 0.81 0.82 0.80 0.90 0.91 0.88 0.10 53 13 122 12 

10 VWF 8.88 0.77 0.80 0.74 0.87 0.90 0.85 0.13 52 18 117 13 
11 TWIST 5.15 0.67 1.00 0.51 0.53 1.00 0.69 0.47 65 63 72 0 
12 PLPP3 8.68 0.68 0.94 0.53 0.60 0.95 0.71 0.40 61 54 81 4 
13 ACTN1 9.82 0.73 0.74 0.72 0.86 0.87 0.82 0.14 48 19 116 17 
14 CDH1 5.70 0.50 1.00 0.33   0.33 1.00 65 135 0 0 
15 TP53 7.12 0.62 0.89 0.48 0.53 0.91 0.65 0.47 58 64 71 7 
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Supplementary Table 6 – Top 18 genes for diagnostic: individual genes’ predictive metrics. 
 

N Gene Threshold F1-score Recall Precision Specificity NPV Accuracy FPR TP FP TN FN 

1 SLC38A4 -0.21 0.84 0.90 0.78 0.52 0.73 0.77 0.48 36 10 11 4 
2 TMPRSS5 -1.14 0.82 0.98 0.71 0.24 0.83 0.72 0.76 39 16 5 1 
3 EGR3 0.04 0.82 0.98 0.71 0.24 0.83 0.72 0.76 39 16 5 1 
4 TP53 5.05 0.82 0.95 0.72 0.29 0.75 0.72 0.71 38 15 6 2 
5 FOSB 1.15 0.82 1.00 0.69 0.14 1.00 0.70 0.86 40 18 3 0 
6 NR4A1 3.22 0.81 1.00 0.68 0.10 1.00 0.69 0.90 40 19 2 0 
7 SFTPB -0.10 0.80 0.95 0.69 0.19 0.67 0.69 0.81 38 17 4 2 
8 IFI27 3.87 0.79 0.98 0.66 0.05 0.50 0.66 0.95 39 20 1 1 
9 PLLP 5.66 0.78 0.95 0.66 0.05 0.33 0.64 0.95 38 20 1 2 

10 CELA3A -3.84 0.78 0.95 0.66 0.05 0.33 0.64 0.95 38 20 1 2 
11 ATF3 2.94 0.78 0.95 0.66 0.05 0.33 0.64 0.95 38 20 1 2 
12 IGHV3-43 -1.38 0.78 0.95 0.66 0.05 0.33 0.64 0.95 38 20 1 2 
13 CDH1 8.61 0.78 0.95 0.66 0.05 0.33 0.64 0.95 38 20 1 2 
14 PGC 2.48 0.74 0.88 0.64 0.05 0.17 0.59 0.95 35 20 1 5 
15 GKN2 -0.11 0.74 0.88 0.64 0.05 0.17 0.59 0.95 35 20 1 5 
16 IGHV4-31 -0.91 0.74 0.88 0.64 0.05 0.17 0.59 0.95 35 20 1 5 
17 IGHV3-53 -0.92 0.74 0.88 0.64 0.05 0.17 0.59 0.95 35 20 1 5 
18 PNLIPRP1 -2.73 0.72 0.83 0.63 0.10 0.22 0.57 0.90 33 19 2 7 
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Supplementary Table 7 – Gene frequency in the best-performing algorithms for diagnostic 
(LSVM = 1115) 

Gene Count Frequency (%) 
IGHV3-43 1115 100.00 
SLC38A4 1097 98.39 

PLLP 1072 96.14 
CELA3A 923 82.78 

IGHV4-31 850 76.23 
TMPRSS5 646 57.94 

TP53 645 57.85 
NR4A1 633 56.77 
ATF3 625 56.05 
IFI27 581 52.11 
PGC 530 47.53 

GKN2 490 43.95 
PNLIPRP1 470 42.15 

SFTPB 460 41.26 
CDH1 379 34.00 
FOSB 369 33.10 
EGR3 355 31.84 

IGV3-53 330 29.60 
 
 
 
 
 
Supplementary Table 8 – Gene frequency in the best-performing algorithms for prognostic 
(RBF SVM = 5794) 

Gene Count Frequency 
(%) 

SNAI1 5545 95.70245 
DUSP1 3837 66.22368 
CEBPB 3791 65.42975 

C1S 3672 63.37591 
COL4A1 3409 58.83673 
LAMC1 3157 54.4874 
CEBPD 3121 53.86607 
ZEB1 3105 53.58992 

TWIST1 2940 50.74215 
CCN1 2913 50.27615 
TP53 2872 49.56852 

ACTN1 2609 45.02934 
VWF 2592 44.73593 

PLPP3 2336 40.31757 
CDH1 1140 19.67553 
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Figure S1. Identification of 30 biomarkers using all datasets.  
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Figure S2. Identification of additional 13 biomarkers by analyzing datasets separately.  
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Figure S3. Heatmap of top 45 genes selected for diagnostics.  
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Figure S4. Boxplots of gene expression levels of genes potentially associated with low-grade 
dysplasia. Comparison of each gene expression in NDBE and LGDBE samples obtained from a total of 3 
datasets.  *** adj. p < 0.001; ** adj. p < 0.01; * adj. p < 0.05; NS adj. p > 0.05. 
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Figure S5. Boxplots of gene expression levels of genes potentially associated with prognosis. 
Comparison of each gene expression in nonP-BE and P-BE samples obtained from a total of 9 datasets. 
*** adj. p < 0.001; ** adj. p < 0.01; * adj. p < 0.05; NS adj. p > 0.05. 
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Figure S6. Boxplots of gene expression levels of diagnostic genes. Comparison of gene expression 
levels between cell lines representing metaplasia and dysplasia, with expression levels normalized to 
reference genes (PGK1, ELF1, and RPL13A). * Genes were additionally tested in FFPE samples from 
patients diagnosed with BE with and without dysplasia. 
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Figure S7. Boxplots of gene expression levels of prognostic genes. Comparison of gene expression 
levels between cell lines representing metaplasia and EAC, with expression levels normalized to 
reference genes (PGK1, ELF1, and RPL13A). 
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