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ABSTRACT 33 

The MetaboHealth score is a highly informative health indicator in ageing studies and yet 34 

contains only a small number of metabolites. Here we estimate the heritability of the score 35 

in 726 monozygotic (MZ) and 450 dizygotic (DZ) twin pairs, and test for association with 36 

plasma proteins by comparing extreme scoring individuals selected from two large 37 

population cohorts -the Leiden Longevity Study (LLS) and the Rotterdam Study (RS) and 38 

discordant monozygotic twin pairs from the Netherlands Twin Register (NTR). 39 

The heritability for the MetaboHealth score was estimated at 40%. In 50 high and 50 low 40 

scoring MetaboHealth groups from LLS and RS, we uncovered significant differences in 41 

plasma proteins, notably in 3 (out of 15) cytokines (GDF15, IL6, and MIG), and 106 proteins 42 

(out of 289) as determined by Mass Spectrometry based proteomics analysis. A high 43 

MetaboHealth score associated with an increased level for 42 serum proteins, 44 

predominantly linked to inflammation and immune response, including CRP and HPT. A low 45 

score associated with decreased levels of 71 proteins enriched in high-density lipoprotein 46 

(HDL) remodeling and cholesterol transport pathways, featuring proteins such as APOA1, 47 

APOA2, APOA4, and TETN.  48 

In MZ twins selected for maximal discordance within a pair we found 68 serum proteins 49 

associated with the MetaboHealth score indicating that a minor part of the associations 50 

observed in LLS and RS is likely explained by genetic influences. Taken together, our study 51 

sheds light on the intricate interplay between MetaboHealth, plasma proteins, cytokines, 52 

and genetic influences, paving the way for future investigations aimed at optimizing this 53 

mortality risk indicator.  54 
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INTRODUCTION 55 

As the global human population rapidly ages, it is valuable to measure vulnerability and 56 

expected resilience of older individuals to support prevention and well-informed treatment 57 

aimed at enhancing well-being [1]. Efficient disease prevention hinges on possibilities for 58 

evaluating not only an individual’s disease risk, but also the overall physiological vulnerability 59 

in an early stage which is often referred to as biological age. Originally the biological age of 60 

individuals was estimated from a suite of physiological tests and biochemical clinical 61 

quantifications [2]. More recently explorations shifted towards comprehensive molecular 62 

(‘omics’) datasets, providing global information on an individual’s biological state. Currently 63 

blood-based biomarkers to assess overall vulnerability in aging are constructed from 64 

molecular markers and based on chronological age, disease onset and mortality [3]. Here we 65 

focus on data from metabolomics and proteomics platforms representing such novel 66 

molecular markers. 67 

Proton nuclear magnetic resonance (1HNMR) metabolomics enables a cost-effective and 68 

standardized assessment of a multitude of small circulating metabolites. Recent extensive 69 

collaborative efforts, like BBMRI-NL [4], FINSK/THL [5], COMETS [6], and the UK-Biobank [7], 70 

resulted in large datasets generated on the same Nightingale Health Pl  1H-NMR 71 

metabolomics platform. This platform has been largely explored as a source for generating 72 

markers associated with  a multitude of endpoints (e.g., type 2 diabetes [8], aging [4], risk 73 

factors [9], and disease onset [10]). It gained particular attention, after training the 74 

MetaboHealth score, using mortality as endpoint,  in the largest study of its kind so far 75 

(44,000 individuals and 5,500 incident deaths) [11]. This score stratifies mortality risk with a 76 

higher accuracy than conventional clinical variables, with lower and higher values indicating 77 
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low and higher 5 years risk for mortality, respectively. The MetaboHealth score, though 78 

originally trained on mortality outcome, predicts multiple conditions related to overall 79 

health decline associated with ageing, such as frailty [12], cognitive decline [13], cancer, as 80 

well as respiratory deficiencies [7]. Remarkably, the MetaboHealth score includes only 14 81 

metabolic markers. These are involved in processes like glycolysis, fatty acid metabolism, 82 

lipoproteins, and inflammation, e.g., GlycA.  Although the MetaboHealth score offers an 83 

indication on physiological vulnerability, especially for older individuals, it remains largely 84 

illusive which pathophysiological mechanisms and corresponding blood factors are tracked 85 

by this mortality-trained risk score.  86 

To address this question, we performed profiling of proteins and cytokines in serum to 87 

explore which molecular pathways co-vary with the MetaboHealth score. To this end, we 88 

tested for differences in plasma protein profiles of 50 out of 2200 Leiden Longevity Study 89 

participants (mean age~ 56 y.o.)  with the most extreme low and high values of 90 

MetaboHealth; similarly 50 out of 2900 Rotterdam Study participants (mean age~ 67 y.o.), 91 

and 50 monozygotic twins (MZTs) from the 25 most discordant MetaboHealth scoring pairs 92 

out of 2,754 twins in the Netherlands Twin Register (mean age~ 36 y.o.). Considering that 93 

MZTs have identical genomes, their within-pair associations are free of genetic confounding 94 

[14]. Therefore, while the first two cohorts offer an insight into population associations, the 95 

MZTs differences inform to what extent MetaboHealth differences in the plasma proteins 96 

and cytokines are unconfounded by shared genetics and environment. Overall, our 97 

exploration leads to a better understanding of the predictive power of the MetaboHealth 98 

score. 99 
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RESULTS 100 

Description of the dataset and study population 101 

We performed a nested case-control study design [15], selecting 50 participants with 102 

extreme MetaboHealth scores (MetaboHealth), 25 with high score and 25 with low score, 103 

from the middle-aged cohort Leiden-Longevity-Study Partners-Offspring (LLS_PAROFFS, 104 

mean age~ 56 y.o.), and the Rotterdam Study (RS, mean age~ 67 y.o.) composed by older 105 

aged individuals (Figure 1B and Supplementary Table). To minimize potential confounding, 106 

we ensured that the lower extreme samples were age- and sex-matched, with at least one 107 

high MetaboHealth case (Figure 1A-B). Given that a high MetaboHealth score corresponds to 108 

higher mortality risk and poor health status, we categorized individuals with high scores as 109 

“cases” and the remainder as “controls”. These disparities in scores are manifested also in 110 

phenotypic characteristics. We observed that the cases show significantly higher BMI in 111 

LLS_PAROFFS (cases: 26.53 vs controls: 24.37 kg/m2) and a higher incidence of 112 

antihypertensive medication in RS (cases: 15 vs controls: 6 users) (Supplementary Table S1). 113 

We observed in both study samples a lower level of lymphocyte percentage in the cases (RS:  114 

cases= 25.58% vs controls= 35.24%, LLS_PAROFFS:  cases=24.72% vs controls= 31.52%) 115 

(Figure 1B). Interestingly, cases and controls shared similar phenotypic characteristics, 116 

despite being derived from two independent cohorts, differing for the significantly higher 117 

ages in RS (mean (age) RS= 74 y.o., mean (age) LLS-PAROFFs=59 y.o.), accompanied by a slightly 118 

elevated BMI in RS (mean (BMI) RS= 25.86, mean (BMI) LLS-PAROFFs=24.86) and most 119 

importantly the larger MetaboHealth contrast in RS (mean (MetaboHealth contrast) RS= 2.4, 120 

mean (MetaboHealth contrast) LLS-PAROFFs=1.7) (Figure 1B, Supplementary Table S1). 121 
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To investigate to what extent associations between proteins and MetaboHealth scores 122 

reflect confounding by shared genetic or environmental factors, we investigated the contrast 123 

in MetaboHealth discordant monozygotic twins (MZTs) from the Netherland Twin Register 124 

dataset (NTR, mean age~ 36 y.o.) (Figure 1A). 25 Twin pairs with the highest discordance 125 

with respect to their MetaboHealth score were selected from 2,754 NTR participants. In 126 

accordance with the observations in RS and LLS, the individuals with higher MetaboHealth 127 

exhibited a significant reduction in the lymphocyte percentage (cases: 31.37% vs controls: 128 

38.64% ). Nonetheless, the NTR shows some relevant characteristics when compared to the 129 

other two studies. It represents the youngest population, with a 20-year gap 130 

(mean(age)NTR=36 y.o.), it has a larger presence of females (36 out of 50), for which the 131 

MetaboHealth previously showed a reduced accuracy [16]. These differences, and the 132 

selection criterium based on the twin discordancy, possibly lead to a diminished contrast in 133 

MetaboHealth values (mean (MetaboHealth contrast) NTR= 1.18) (Figure B).  134 

 135 

Luminex cytokine assays: higher levels of GDF15, IL6, and MIG in the 136 

participants with a high MetaboHealth score 137 

To explore the inflammatory state variation between the MetaboHealth extremes, we 138 

quantified 15 cytokines on the Luminex platform (Materials and Methods for a complete 139 

explanation). Six out of the 15 (40%) cytokines (IL2, TRAIL, GRO1a, IFNg, ILb, and PAI1) were 140 

below the detection threshold in most samples, likely implying that the participants were 141 

relatively healthy at the time of sampling (Figure 2A and S1). Indeed, on average, more 142 

cytokines go undetected in low MetaboHealth participants across the LLS and RS cohorts, 143 

hinting at their overall lower inflammation rate (Figure 2A). This discrepancy in detectability 144 
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attains statistical significance in the case of IL6 (p-value=0.001) (Figure 2A). The same 145 

distinctive patterns between the high and low MetaboHealth score cohorts can be observed 146 

when considering the two cohorts separately (Figure S1 B-C). 147 

Our subsequent analyses focused on nine cytokines (MIP1a, IL6, RANTES, MIG, MCP1, 148 

Eotaxin, Psel, GDF15, and BDNF) exhibiting the fewest detectability issues (Figure 2A). We 149 

assessed differential expression of these cytokines between MetaboHealth cases and 150 

controls, based on a univariate linear regressions corrected for age, and sex as fixed effects. 151 

Interestingly, significantly higher levels of GDF15 (estimate~1.08, fdr=3.9 x 10-8), IL6 152 

(estimate~1.05, fdr=1.8 x 10-4), and MIG (estimate~0.95, fdr=1.23 x 10-3) were observed in 153 

the high MetaboHealth group when considering LLS_PAROFFS and RS together (Figure 2B). 154 

Adjusting for medication usage (blood pressure lowering and statins) and cell count 155 

(particularly lymphocyte %) influenced mostly the association with GDF15 (Figure S2A-D), 156 

yet it remained significant. Finally, reproducing the univariate associations separately for the 157 

two cohorts shows similar patterns (Figure S2F), underpinning their robustness.  158 

To further investigate the origin of the observed signal, we looked into the correlation 159 

structure between cytokines. The generally modest intercorrelation showed a profile of 160 

mostly independent features (Figure S2E). Next, we estimated the correlation of the 161 

cytokines with the metabolomics components of the MetaboHealth score (Figure 2C). While 162 

MetaboHealth exhibits the highest correlations, we observed several noteworthy relations, 163 

i.e. strong positive correlations between Glycoprotein Acetyls (GlycA), a metabolomics 164 

inflammation marker, and GDF15 (r=0.33, p=8.2 x 10-4), MIG (r=0.27, p= 7.5x 10-3), and IL6 165 

(r=0.33, p= 1.9x 10-3). Intriguingly, GDF15 displayed also elevated positive correlations with 166 

glucose (r=0.35, p= 4.2x 10-4), phenylalanine (r=0.35, p= 3.0 x 10-3), and isoleucine (r=0.23, 167 

p= 2.1x 10-2). In contrast, we uncovered prominent negative correlations between GDF15 168 
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and S-HDL-L (total lipids in small HDL) (r=-0.38, p= 9.9x 10-5), and between MIG and Histidine 169 

(r=-0.33, p= 8.7x 10-4).  170 

 171 

Plasma proteomics associated with extremes in MetaboHealth are 172 

enriched for inflammatory response and cholesterol transport pathways 173 

In the two population-based samples (50 cases and 50 controls), we investigated plasma 174 

proteome profiles by a DIA-based quantitative plasma proteomics pipeline [17,18] 175 

(Materials and Methods). 261 out of 337 measured plasma proteins (77%) passed the 176 

detection limit and quality control criteria (detailed in Materials and Methods). We 177 

identified 106 (68 negative and 38 positive) significant univariate linear associations with the 178 

MetaboHealth extremes, adjusted for age, sex, and BMI (Figure 3A). APOA1 (estimate~-1.46, 179 

fdr=2.44 x 10-13), APOA2 (estimate~ -1.4, fdr= 4.02x 10-12), TETN (estimate~-1.31, fdr= 6.42x 180 

10-11), GELS (estimate~-1.26, fdr= 3.18 x 10-10), and APOA4 (estimate~ -0.93, fdr= 5.71 x 10-6) 181 

were the strongest negative associated proteins. In contrast, the positive acute phase 182 

proteins CRP (estimate~1.51, fdr= 5.81x 10-14), LBP (estimate~1.35, p= 1.88 x 10-11), HPT 183 

(estimate~1.14, p= 1.74 x 10-8), were the strongest positive associated proteins. In line with 184 

what was observed for the cytokines, the additional correction for medication usage had 185 

minimal impact on the univariate associations, while lymphocyte percentage exhibited a 186 

slightly more pronounced influence (Figure S4B-D). Furthermore, a meta-analyses to 187 

evaluate the associations separately in the two cohorts revealed alike results, with generally 188 

stronger signals in the RS (Figure S5 A-B).  189 

Subsequently, we explored the statistical interrelations and biological functionalities of 190 

the 106 plasma proteome features that exhibited significant association to the 191 
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MetaboHealth extremes. These proteins showed high correlations with GlycA, comparable 192 

to those observed for the MetaboHealth score (Figure S6A). Moreover, within the group of 193 

positively associated proteins, smaller clusters of highly correlated proteins are found (Figure 194 

S6B). To gain some biological interpretation, we employed KEGG and Gene Ontology to 195 

perform functional enrichments separately for the positively and negatively associated 196 

proteins (Figure S7). As expected, considering that lower MetaboHealth values are related to 197 

healthier metabolic profiles, the negatively associated proteins demonstrated high 198 

enrichments for processes relating to “cholesterol transport”, “cholesterol metabolism”, and 199 

“high-density lipoproteins particle remodeling” (Figure 3B, S7C and S7E). Conversely, the 200 

positively associated proteins were more enriched with “Inflammatory response”, 201 

“complement and coagulation cascades”, and intriguingly, “Coronavirus disease” (Figure 3B, 202 

S7D and S7F). The latter can be interpreted as a validation, as a subset of about a dozen of 203 

inflammation related features, measured with the same proteomics platform, were 204 

previously linked to COVID19 outcome [18]. Four of these twelve COVID related plasma 205 

proteins exhibited consistently statistically significant differences between the extremes of 206 

the MetaboHealth score in RS and LLS-PAROFFs (Figure S8). 207 

 208 

Genetic influences on the MetaboHealth score and analysis of plasma 209 

proteins in extreme discordant MZ twins 210 

The NTR has collected 726 complete monozygotic twin (MZTs) and 450 dizygotic twins 211 

(DZTs) twin pairs with metabolomics data. We estimated the resemblance in MetaboHealth 212 

score as a function of zygosity in these pairs. The correlation between MZ twin pairs was 213 

estimated as r= 0.432 (95% CI = 0.370-0.489), and the correlation in DZTs was r = 0.230 (95% 214 
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CI = 0.141-0.316), indicating the MetaboHealth score as a heritable trait (h2 = 0.4) (detailed 215 

information in Materials and Methods) [19].  216 

To exclude potential confounding from genetic factors within our associations, we 217 

conducted a monozygotic twin (MZTs) discordant twin pairs design; i.e., high and low scoring 218 

MetaboHealth genetically matched twins. In this design an observed effect is not 219 

confounded by genetic factors. Therefore, from the total population of MZ twin pairs, we 220 

selected a subsample of 25 most discordant MZ twin pairs to further explore associations of 221 

the score to the Luminex based cytokines and Mass Spectrometry-base proteomics profiling. 222 

Concordantly with the previous sections, the protein markers with the strongest associations 223 

with the MetaboHealth score also show a clear separation between cases and controls in the 224 

NTR dataset, albeit less than in the LLS and RS studies (Figure 4, and S11). To take advantage 225 

of the genetic similarity of the MZ individuals, we tested for associated proteins using a 226 

linear mixed model (Methods). The cytokines did not show significant differences in this 227 

within-pairs design, although we observed similar trends to the results in LLS and RS, with 228 

elevated cytokines in twins with high MetaboHealth scores (Figure S10A). The proteomics 229 

analyses revealed a robust signal, identifying a total of 86 significant associations (Figure 230 

S10B). Notably, CRP (estimate~1.19, fdr= 3.75x 10-5) and LBP (estimate~1.15, fdr= 8.39x 10-5) 231 

once again emerged as the most prominently positively associated proteins, while TETN 232 

(estimate~-1.2, fdr= 9.69x 10-5) and GELS (estimate~-1.11, fdr= 4.43x 10-5) were confirmed as 233 

the most negatively associated proteins. Moreover, the lower associations of APOA1 and 234 

APOA2 in the twins’ profiles differs from the contrast in LLS and RS and suggests the 235 

presence of genetic confounding in the associations between these proteins and the 236 

MetaboHealth scores. A correction for health factors had similar results as for the other two 237 

cohorts, with lymphocyte percentage having the highest effect (Figure S10C-D). 238 
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When comparing the NTR associations with the ones observed between the extremes in 239 

the other populations, we observed a decrease in signal but maintained a high consistency 240 

in the direction of associations (Figure 4). Specifically, 22 positively and 46 negatively 241 

associating proteins were in common with the results in RS and LLS-PAROFFs (Figure 4). 242 

These results strengthen the reliability of our previous findings indicating that the 243 

MetaboHealth score is highly informative on the overall health status of individuals, and 244 

finally that a part of its associations with protein levels in extreme individuals can be 245 

explained by genetic pleiotropy, i.e. genetic factors influencing both omics traits. 246 
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DISCUSSION 247 

The MetaboHealth score, along with other 1H-NMR metabolomics-based markers, 248 

displays risk stratification across a spectrum of health and disease outcomes relevant in 249 

ageing research. The score, though based on mortality, has shown to be an indicator of 250 

overall health status in middle and older aged individuals. Within this context, our study set 251 

out to quantify comprehensive plasma proteome profiles in 150 samples at the extreme 252 

ends of the MetaboHealth distributions from three large Dutch cohorts (Leiden Longevity 253 

Study, Rotterdam Study, and the Netherlands Twin Register, spanning a total dataset of 254 

7,854 individuals). Our findings revealed significant differential expression among 106 255 

plasma proteins and 3 cytokines markers, consistently observed in the RS and LLS-PAROFFs, 256 

between the highest (cases) and the lowest (controls) MetaboHealth scores, respectively 257 

indicating elevated and reduced mortality risk. These associations were for the majority not 258 

confounded by age, sex, BMI, and medication usage. A part of the proteins associated with 259 

the MetaboHealth contrast could be explained by genetic confounding as demonstrated by 260 

investigating discordant monozygotic twins. 261 

The majority of the significant associations (68 out of 106) resulted in negatively 262 

associated proteins with the case/control contrast, indicating higher protein levels in 263 

samples of healthier subjects (reflected by lower MetaboHealth scores). Functional 264 

enrichment of these proteins revealed associations with healthy metabolism, particularly in 265 

high-density lipoprotein (HDL) remodeling and cholesterol transport pathways. Notably, the 266 

most prominent associated proteins were APOA1 and APOA2, crucial components of HDL 267 

and widely recognized as protective markers for cardiovascular disease [20,21]. It should be 268 

noted that likely a substantial genetic component drives APOA1 and 2b, since these proteins 269 
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were significantly less discordant in the MetaboHealth discordant MZ twins. This aspect 270 

must be further investigated since a genetic component may be overestimated given that 271 

the MetaboHealth contrast in the (overall younger) MZ twins was rather small in comparison 272 

to the cohort studies. Interestingly, the associations with tetranectin (TETN) and gelsolin 273 

(GELS) emerged as consistently stable also in NTR. Both these proteins are under 274 

consideration as potential protective markers for various diseases, such as cancer, 275 

cardiovascular disease and neurodegeneration [22–24]. 276 

We also observed several relevant proteins that were significantly positively associated 277 

with the MetaboHealth contrast. The cytokine markers selected for this study were 278 

previously reported to strongly associate with frailty, ageing, age-related disease, and 279 

mortality [25–28]. While a large part of the cytokines could not be efficiently detected, 280 

which can be attributed to the absence of ongoing infections and acute inflammation at 281 

blood sampling, GDF15, IL6, and MIG (gene name=CXCL9), showed significant associations 282 

with higher MetaboHealth levels. These cytokines serve different roles in the body and are 283 

involved in cell signalling immune response, and inflammation. All three markers are 284 

potential biomarkers for aging-related physiological decline and frailty, where IL6 marks 285 

chronic inflammation (“inflammaging”) [29–32]; GDF-15 is a senescence associated 286 

secretory protein (SASP) and a marker of physiological stress response and mitochondrial 287 

dysfunction and MIG is the most prominent marker emerging from the inflammatory aging 288 

clock (see materials and Methods) [25]. In this regard, also the 38 significantly positively 289 

associated plasma proteins are predominantly involved in inflammatory response, 290 

complement and coagulation cascades, and COVID19. CRP, HPT and LBP, well-known 291 

biomarkers assessing the degree of inflammation and immune response, displayed the 292 

highest significant associations.  293 
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Interestingly the inflammatory component in the positively associated markers also links 294 

to COVID19 infection pathways, regardless of their infection status, considering that blood 295 

samples used in this study were drawn up to 15 years before the COVID19 pandemic. 296 

Noteworthy is that both the proteomics panel and the metabolomics assay composing the 297 

MetaboHealth score in plasma, were previously observed to be able to stratify severe cases 298 

of COVID19 [7,18]. Several plasma proteins previously related to COVID19 were significantly 299 

different also in our MetaboHealth contrast in at least one study. These include the inter-�-300 

trypsin inhibitors family, ITIH1, ITIH2, respectively positively and negatively associated, and 301 

HRG, LCAT, which are both positively associated to MetaboHealth (Figure S8A). 302 

Significant disparities in phenotypic characteristics were observed between cases and 303 

controls across the cohorts, mostly in the higher levels of BMI and antihypertensive usage 304 

respectively in LLS and RS. However, of great importance from a health perspective seemed 305 

to be the significant reduction of lymphocyte percentage consistently among the cases in all 306 

studies, although still within healthy ranges (20-40%). Concordantly, the systematic 307 

adjustment for health and risk factors (age, sex, BMI, lymphocyte and monocyte %, lipid and 308 

antihypertensive medication usage) resulted in an attenuation of the signal to 89/106 309 

plasma proteins and 3/3 cytokines, with the strongest effect being related to the lymphocyte 310 

percentage (Figure S4A-D). Interestingly, a decrease in lymphocyte counts and increased 311 

cytokine in blood is frequently related to a decline in immune system functions that 312 

accompanies physiological aging [33–36]. Considering the age matching within our study 313 

inclusion criteria, these observations suggest that the MetaboHealth score successfully 314 

identified individuals with accelerated biological aging given their chronological age. While 315 

the correction for cell counts partially accounted for the observed signal, it was evident that 316 

hematopoietic variation alone does not explain the observed MetaboHealth contrast in 317 
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plasma proteins. Consequently, further investigation is required to elucidate whether 318 

MetaboHealth and cell count percentages can jointly be more informative in indicating 319 

health status of older individuals and secondly what the relation with these parameters and 320 

inflammation is. . 321 

Conducting heritability analyses within the Netherlands Twin Register allowed us to 322 

establish that the MetaboHealth score has a heritability of ~40%, at least in relatively 323 

younger ages (mean age~36 y.o.). Therefore, the Monozygotic twin subset provided an ideal 324 

setting to further examine the proteomics associations within a genetically identical 325 

population. Cytokines did not exhibit significant associations to the MetaboHealth contrast 326 

in the twins, while we found up to 46 negative and 22 positive plasma protein relations. An 327 

attenuation of the number and strength of associations indicate that part of the signal may 328 

be explained by genetic factors that influence both the MetaboHealth score and quantified 329 

proteins. Further research should be focused on investigating the genetic confounding in 330 

twins of higher ages where MetaboHealth is even more informative. Pertaining to this, it is 331 

essential to highlight that NTR participants had lower MetaboHealth contrasts as they are 332 

younger of age as well as due to the inclusion restriction. Supposedly for the same reasons, 333 

diminished associations are noted also when comparing the results in LLS-PAROFFs to RS 334 

(Figures S5). Possibly as individuals age, environmental and/or stochastic factors gain 335 

greater importance on the features included in the MetaboHealth score over genetic 336 

influences. 337 

One aspect of our study that can be regarded as a limitation is the generally healthy state 338 

of the participants in the cohorts from which we derived our participants. Consequently, the 339 

observed contrast between the extreme levels of MetaboHealth was relatively modest. This 340 

is underscored by the fact that several of the examined cytokines consistently fell under the 341 
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detection limit, a circumstance that can be largely attributed to the overall absence of 342 

ongoing infections at blood sampling which proteins may be useful biomarkers in clinical 343 

studies. We envision MetaboHealth as a score potentially giving an indication of vulnerability 344 

in individuals from the population in a modifiable health phase, way before onset and 345 

diagnosis of specific diseases.  The score indeed effectively identified relevant biological 346 

differences within all three populations indicating that early changes in multiple metabolic 347 

and proteome parameters known to reflect decline in health is represented by the score. 348 

Given the limited number of individuals in our selection we do not have the statistical power 349 

to explore concrete endpoints such as mortality or frailty in this study.  We consider this 350 

study as a proof of principle design to explore the relevance of omics scores generated in the 351 

ageing field in the context of additional omics levels, to better understand why a score 352 

predicts endpoints and by what parameters the predictive power may potentially be 353 

improved.  354 

In conclusion, our study confirms MetaboHealth as a robust marker for the inflammatory 355 

aspects of aging. In accordance with the current biological aging theories, this score 356 

effectively identifies individuals exhibiting reduced lymphocyte counts and increased levels 357 

of pro-inflammatory proteins regardless of chronological aging. We believe that this 358 

investigation supports integrating the MetaboHealth score with proteome data to enhance 359 

the prognostic value of the score, increase our comprehension of the aging process and loss 360 

of health in individuals identified by the score and the health gain that may be expected by 361 

timely intervention. 362 

363 
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MATERIALS AND METHODS 364 

Study design 365 

This study was actuated starting from the metabolomics data included in the BBMRI-NL 366 

consortium originated from the participants to three cohorts: Leiden Longevity Study (LLS-367 

PAROFFS), Rotterdam Study (RS), and the Netherlands Twin Register (NTR). The Leiden 368 

Longevity study is a population-based cohort with a unique two-generation design, 369 

examining 421 Dutch long-lived families [37]. The current work was performed on the first 370 

measurements (IOP1) of the second generation, namely the Offspring and their Partners, for 371 

a total of 2,313 participants. The Rotterdam Study is a population-based prospective study 372 

on individuals living in a specific neighborhood in Rotterdam, prone to cardiovascular 373 

endpoints [38]. The current study was set off utilizing the first measurements (RS-I), which 374 

enclosed a total of 2,986 participants. The Netherlands Twin Register is a prospective study 375 

investigating young and adult twins and multiples along with their family members. In this 376 

particular study we focused on the monozygotic dizygotic twin pairs within in the cohort, for 377 

heritability estimation and implemented a within pairs case-control study design for the 25 378 

most discordant MZ twin pairs.  379 

 380 

Data and sample collection 381 

Metabolomics measurements 382 

The metabolomics dataset was generated by the BBMRI-NL Consortium on the EDTA 383 

plasma samples of the entire cohorts (LLS-PAROFFS: 2,313 samples, RS: 2,986 samples, and 384 

NTR: samples). The features were quantified using the high-throughput proton Nuclear 385 

Magnetic Resonance (1H-NMR) platform made available by Nightingale Health Ltd., Helsinki, 386 
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Finland. This technique can quantify over 230 metabolic features in a single assay, including 387 

lipids, lipoproteins, fatty acid composition, various amino acids, and their derived measures 388 

(e.g., ratios) [39,40]. We employed the dataset quantified in 2014 to ensure the correct 389 

projection of the MetaboHealth model, originally trained on this version of the platform.   390 

 391 

Selection of the participants from the large population studies 392 

LLS-PAROFFS and RS: The sample selection was based on the chronological age 393 

independent part of the MetaboHealth, which was obtained as the residual from a linear 394 

regression of chronological age on the metabolomics score. The cases were defined as the 395 

25 participants with the highest MetaboHealth, indicating an unhealthier status, within each 396 

cohort separately. Following, to limit the confounding effect of sex and age, the controls 397 

were selected as the participants with the lowest score that could have at least one match 398 

with the cases in terms of both age, and sex. 399 

NTR: The twin population of NTR was composed on 726 complete monozygotic (MZTs) 400 

and 450 complete dizygotic (DZTs) twin pairs. We extracted the 25 twin pairs which showed 401 

the largest differences in MetaboHealth score. 402 

 403 

Cytokines quantification 404 

We used previously validated multiplex immunoassays (Luminex platform) to determine 405 

plasma protein levels [41]. All assays were performed at the ISO-certified multiplex core 406 

facility of the UMC Utrecht, Utrecht, The Netherlands. Before analysis all samples were 407 

centrifuged through 0.22 μm spin-X filtration columns (Corning, Corning NY USA) to remove 408 

debris. Non-specific (heterophillic) antibodies, which may interfere with the assay, were 409 

blocked using Heteroblock (Omega Biologicals, Bozeman, MT, USA) as previously described 410 
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[10,11]. If applicable, samples were diluted in high performance elisa buffer (HPE buffer, 411 

Sanquin, Amsterdam, the Netherlands). We determined levels of the immunoregulating 412 

proteins IL-1β, IL-2, IL-6, IFN-γ, GDF-15, CCL2/MCP-1, CCL3/MIP-1α, CCL5/RANTES, 413 

CCL11/Eotaxin, CXCL1/GRO-1α, CXCL9/MIG, PAI-1, BDNF, TRAIN and soluble P-selectin in 414 

plasma. These markers were selected based on two critera, first that they could be 415 

measured on our budgetary boundaries using the Luminex platform in the Utrecht 416 

University; secondly because they were previously indicated as markers of ageing, mortality, 417 

frailty and age-related disease. The last criterium was in great part based on the following 418 

studies: A) belonging to the top 15 most informative variables in the iAge clock [25](for the 419 

cytokines: CXCL9/MIG, EOTAXIN, CCL3/Mip-1α, IL-1β, IFN-γ, CXCL5/RANTES;,CXCL1/GRO-1α, 420 

CCL2/MCP1, IL-2; TRAIL, PAI-1); B) recognized as indicators of frailty (Pselectin and BNDF) 421 

[26]; C) or marker of chronic inflammation (IL6) [27], and d) finally, widely explored marker 422 

for aging, cancer, cardiovascular, and lung disease (GDF-15/MIC-1) [28]. 423 

Although the majority of the features (73%) were quantified in undiluted samples, PAI1 424 

was measured with a dilution rate of 1/10, and, GDF15, RANTES, and BDNF, with a dilution 425 

rate of 1/100. 426 

 427 

Protein digestion 428 

Protein digestion was performed on an Agilent Bravo liquid handling Platform following 429 

Vollmy et. al. [18]. A pooled QC sample was prepared by pooling an equal amount of each 430 

digested sample. Then all samples were diluted 40 times with TFA 1% to bring them to an 431 

approximate concentration of 10 ng/uL. Finally, the samples were loaded onto Evotips 432 

(Odense, Danemark) using an Agilent Bravo liquid handling platform.  433 

 434 
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LC-MS data acquisition 435 

The digested samples were measured using the 60 SPD method of a Evosep One (Odense, 436 

Danemark) on a EV-1109 column (C18, 8 cm x 150 µm, 1.5 µm, Evosep, Danemark) coupled 437 

to a timsTOF-HT (Bruker, Germany) equipped with a Captive Spray source and operating in 438 

DIA-PASEF adapted from Skowronek et. al. [42] Briefly, two ion mobility windows per dia-439 

PASEF scan with 12 variable isolation window widths adjusted to the precursor densities 440 

were used. The ion mobility range was set to 0.6 and 1.5 cm−1. The accumulation and ramp 441 

times were specified as 100 ms for all experiments. Source capillary voltage and 442 

temperature were set to 1800 V and 180°C. Drying and sheath gas were set to 3 L/min. The 443 

pooled QC samples were injected every 8 samples.  444 

 445 

Processing of proteomics data 446 

Raw data were processed using DIA-NN 1.8.1 [43], Peptides were searched against an in-447 

silico predicted library computed from the human proteome with isoforms (UniProtKB and 448 

TrEMBL, 103830 protein entries and 20560 genes) and the common protein contaminants 449 

with 2 missed-cleavages and no variable modification. Match Between Run was used and 450 

the Heuristic inference was disabled.  MS1 and MSMS mass accuracy were set to 10 and 20 451 

ppm respectively.  452 

The protein intensities were computed using the maxLFQ algorithm implemented in the 453 

DIA-NN R-package. For this only the prototypic precursors that satisfy the following criteria 454 

were considered: Q.value ≤ 1%, missing value ≤ 20% and RSD ≤ 40% in the QC samples. The 455 

protein groups were filtered at lib.Q.Value ≤ 1%, lib.PG.Q.value≤ 1%. 456 

 457 
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Covariates 458 

Data on age (in years), sex (males/females), BMI (kg/m2), cell counts (%), lipid medication, 459 

and blood pressure lowering medication were reported within the BBMRI-nl Consortium. 460 

These covariates were evaluated as possible confounders as they are known to be associated 461 

with both the metabolomics and the proteomics datasets. Age and sex were self-reported, 462 

and BMI was calculated based on weight and height. The cell counts percentage was defined 463 

as the measured monocytes and lymphocytes percentage, taking the granulocyte 464 

percentage as given. 465 

 466 

Statistical Analyses 467 

Preprocessing 468 

Metabolomics and MetaboHealth score projection: We applied the same quality control 469 

previously described by Deelen et al. [11], using the R package MiMIR [44]. While the 470 

Nightingale Health platform measures over 250 metabolomics features, we focused our 471 

attention on the 14 metabolomics variables included in the MetaboHealth model (list of 472 

analytes can be found in the Supplementary Table S1). Then, we applied a logarithm 473 

transformation to the analytes, while adding a value of 1 to all analytes containing any zero 474 

as a value. Afterwards a z-scale normalization was applied separately within each cohort to 475 

minimize batch effects. Finally, we projected the MetaboHealth score using the coefficients 476 

indicated by Deelen et al. [11,44]. 477 

Cytokines: Initially, we assessed the occurrence of samples reported as under the lower 478 

detection thresholds, comparing cases and controls, separately for each feature. 479 

Subsequently, we employed the Fisher test to determine the statistical significance of these 480 
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difference (p-value� 0.05). Following, we proceeded to exclude six out of fifteen features 481 

that consistently fell below the lower detection thresholds in most of the quantified samples 482 

(namely, IL2, TRAIL, GRO1a, IFNg, IL1b, and PAI1 were undetected in more than 65% of the 483 

samples). There were no values recognized as outlier samples, considered as values more 484 

than 5 standard deviations (SD) away from the mean of the feature. Finally, the remaining 485 

nine features were first log transformed and then z scaled separately per biobank to reduce 486 

batch effects. 487 

Proteomics: We applied a similar approach to the proteomics. We evaluated the 488 

differential patterns in missing values of the features between the cases and controls. 489 

Features with more than 5% missing values (20 missing) were subsequently excluded, 490 

resulting in a set of 261 analytes, from the 337 initial set 8 values (0.03%) were recognized as 491 

outliers, meaning that they resulted as the values 5 SD away from their mean of the feature 492 

and set as missing information. We imputed the remaining 114 missing values (0.4%) using 493 

the non-linear iterative partial least squares method (nipals), implemented in the R package 494 

pcaMethods. Finally, to enhance comparability and facilitate downstream analysis we 495 

performed a log transformation and a z-scaling of the features per biobank. 496 

 497 

Linear Association and Meta-analyses in RS and LLS-PAROFFS 498 

Initially, we applied linear regression models across the entire dataset to assess the 499 

associations between each cytokines and proteomics features separately, with the 500 

case/control status of the participants. These analyses accounted for potential confounding 501 

factors (age, sex, BMI, cell counts, and usage of lipid medication and blood pressure 502 

lowering medication). Subsequently, we attempted to evaluate the associations 503 

independently for each cohort (LLS-PAROFFS and RS) and conducted a meta-analysis. The 504 
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meta-analysis was performed with a restricted maximum likelihood estimator using the 505 

package metafor in R. To correct for multiple testing, we applied False Discovery Rate (FDR). 506 

 507 

Enrichment Analyses and Network analysis 508 

We performed the functional enrichment of the most interesting proteomics features 509 

using the web-tool Enrichr [45]. We evaluated the Gene Ontology (GO) Biological Processes 510 

(BP), the KEGG pathways, and Reactome. Firstly, we performed an enrichment analyses on 511 

the full set of 337 proteomics features to evaluate the functions overall characterizing to the 512 

proteomics platform (Figure S7A-B). Secondly, we analyzed separately the 38 positively and 513 

the 68 negatively associated proteins to the MetaboHealth’s extremes corrected for sex, age, 514 

and BMI (Figure S7C-H). To ensure a fair enrichment analysis of the significantly associated 515 

proteins we used the full list of 337 proteins as the background of possible analytes. To 516 

better interpret at the GO BP results we used the R package rrvgo  (threshold=0.7), which is 517 

able to summarize the redundant information in the database [46]. 518 

 519 

Analyses in the Netherlands Twin Register   520 

First, we examined heritability of the MetaboHealth score within Netherland Twin 521 

Register. Monozygotic twins (MZTs) share their (almost) complete DNA sequence, while 522 

dizygotic twins (DZTs) share on average 50% of their segregating genes. Any differences in 523 

correlations between MZTs and between DZTs offers a first hint on genetic influences in the 524 

signal. We obtained an estimate of the heritability of a trait (h2) using the formula: h2 =  525 

2(rMZTs-rDZTs), where r denotes the correlation between the twins [19]. 526 

Secondly, we assessed the associations between the cytokines and serum protein 527 

features with the case/control status of the selected MZTs with the highest MetaboHealth 528 
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differences. To do this we used linear mixed models to consider the family status, while 529 

allowing to systematically correct for potential covariates. Finally, FDR to correct for multiple 530 

testing. 531 

 532 

Data sharing 533 

Mass Spectrometry data have been deposited to the ProteomeXchange Consortium 534 

via the PRIDE partner repository with the dataset identifier PXD057946. Phenotypic 535 

information are available upon reasonable request at BBMRI-nl 536 

https://www.bbmri.nl/services/samples-images-data. 537 
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Figures Legends 716 

Figure 1: Study description. A) Flowchart detailing the inclusion criteria for samples within 717 
each study population. B) Contrast in MetaboHealth, lymphocyte percentage, age and BMI 718 
within each cohort. 719 
 720 
Figure 2: Increase GDF15, IL6, and MIG associate with MetaboHealth levels. A) Differential 721 
detectability between cases (top) and controls (bottom) for the Luminex cytokine measures, 722 
with detected values in blue and undetected in grey. The heatmap on the bottom details the 723 
adjusted p-value of the Fisher test evaluating the significances of the differential 724 
detectability. C) Volcano-plot pertaining the univariate associations between the cytokines’ 725 
levels and the participants’ case/control status corrected for sex, and age. In red the 726 
positively associated cytokines, in grey the ones not significant. D) Heatmap depicting the 727 
correlations between each cytokines with the components of the MetaboHealth score. 728 
 729 
Figure 3: Quantitative plasma proteomics reveals proteins that associate with 730 
MetaboHealth scores in RS and LLS-PAROFFS cohorts. A) Volcano plot depicting associations 731 
of proteins with MetaboHealth scores (corrected for sex, and age). In blue the negatively 732 
and in red the positively associated plasma proteins are depicted. Grouped significantly 733 
enriched Gene Ontology Biological Processes are shown for B) the negatively and C) 734 
positively associated plasma proteins. D) and E) depict the enriched KEGG pathways for the 735 
plasma proteins respectively negatively and positively associated with the MetaboHealth 736 
score. 737 
 738 
Figure 4: Plasma proteins associated with extreme MetaboHealth scores validated in the 739 
NTR dataset. A) Profile depicting the values of the most significantly associated proteins 740 
(|estimate|>1) and cytokines (y-axis) in all samples (x-axis), clearly separating the cases and 741 
controls in all 3 datasets. The annotation on the top show the phenotypic characteristics of 742 
all individuals. The annotation on the left shows the associations’ estimate, and log10(FDR) 743 
observed in RS and LLS, and the platform for each feature (Mass Spectrometry based Plasma 744 
Proteomics or Luminex). B) Beta-beta plot comparing the linear models in the extremes of 745 
RS and LLS_PAROFFs on the x-axis and the linear mixed models in the NTR on the y-axis. Each 746 
dots corresponds to a feature, and it’s colored based on significance. The labels are shown 747 
only when the features are consistently significant in the 2 analyses.  748 

 749 
 750 

Supplementary Figures legends 751 
 752 
Figure S1: Quality control of the cytokines in LLS-PAROFFS and RS. A) Percentage 753 

of undetected values for each cytokine (x-axis) divided per cohort (y-axis). Differential 754 
detectability analysis performed separately for B) LLS-PAROFFS and C) RS. Cytokines 755 
distributions C) before and D) after the pre-processing steps (log transform and z-scaling). 756 

 757 
Figure S2: Sensitivity analyses and Meta-analyses of the cytokines’ associations with 758 

MetaboHealth extremes: A- D) Volcano-plot of the univariate linear associations between 759 
the cytokines and the case/control status of the participants systematically corrected by 760 
increasing covariates. In grey the not significant cytokines and red the positively significant 761 
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ones. E) Intercorrelations of all the cytokines. F) Forest plots of the univariate linear 762 
associations divided in RS (green), LLS-PAROFFS (yellow), and Meta-analyses (red). 763 

 764 
Figure S3: Quality control of the proteomics dataset in RS and LLS-PAROFFS: A) 765 

Percentage of missingness in the highly missing features divided per cohort. B) Differential 766 
detectability between cases (top) and controls (bottom) for the proteins showing significant 767 
difference. The heatmap on the bottom details the adjusted p-value of the Fisher test 768 
evaluating the significance of the differential detectability. 9 randomly selected plasma 769 
proteins distributions C) before and D) after the pre-processing steps (log transform and z-770 
scaling). 771 
 772 

Figure S4: Sensitivity analyses and Meta-analyses of the plasma proteins with the 773 
MetaboHealth extremes in RS and LLS-PAROFFS: A- D) Volcano-plot of the univariate 774 
linear associations between the cytokines and the case/control status of the participants 775 
systematically corrected by increasing covariates. In grey the not significant cytokines, in 776 
blue the negatively and red the positively significant plasma proteins. Upset plot detailing the 777 
amount of significantly D) negatively and E) positively associated features after correcting 778 
for covariates. 779 

 780 
Figure S5: Meta-analyses of the associations between the proteomics features and the 781 

MetaboHealth extremes: Forest-plot of the meta-analysis for the significantly A) Negatively 782 
and B) positively associated features. 783 

 784 
Figure S6: Correlations of the significantly associated proteomics: Heatmaps of the 785 

correlations of the proteomics features with A) MetaboHealth and its components, and B) 786 
with the proteomics features themselves. 787 

 788 
Figure S7: Functional Enrichments of the proteomics datasets: Bar-plots displaying the 789 

log10pvalues of the significant enrichments performed for all 320 features in the platform in 790 
A) GO Biological Processes pathways, and B) KEGG pathways. GO Biological Processes 791 
significantly enriched in the C) negatively and D) positively associated proteomics features. 792 
Reactome pathways significantly enriched in the E) negatively and F) positively associated 793 
proteomics features.  794 

 795 
Figure S8: Covid related proteins. Plots displaying the case/control (red/blue) differences 796 

in RS and LLS-PAROFFs for the proteins previously associated to covid infection by Völmy et 797 
al. 798 

 799 
Figure S9: Pre-processing in NTR. A) Percentage of undetected values per cytokines (y-800 

axis) per sample (x-axis). B) Percentage of undetected values per proteomics feature (y-axis) 801 
in each sample (x-axis). C) Differential detectability of the cytokines in NTR. 802 

 803 
 804 
Figure S10: Associations in NTR. Volcano plot of the univariate linear mixed models 805 

comparing the case/control status with A) cytokines and B) proteomics features corrected 806 
for age, and sex. Upset plots of the significantly C) negative and D) positive proteomics 807 
markers. 808 

 809 
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Figure S11: Complete Heatmap profiles of the significant proteins. Profile depicting the 810 
values of the significantly associated proteins (FDR<0.05) and cytokines (y-axis) in all 811 
samples (x-axis), clearly separating the cases and controls in all 3 datasets. The annotations 812 
on the top show the phenotypic characteristics of all individuals. The annotation on the left 813 
shows the associations’ estimate, and log10(FDR) observed in RS and LLS, and the platform 814 
for each feature (Mass Spectrometry or Luminex). 815 

 816 
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Figure 1: MetaboHealth-driven selection and main phenotypic differences
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Figure 2: Increased GDF15, IL6 and MIG associate with higher MetaboHealth levels
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Figure 3: 68 negatively and 38 positively associated serum proteins
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Figure 4: Proteomics associations to MetaboHealth are confirmed in the Monozygotic twins of NTR
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