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eMethods 2 

PET-based staging systems 3 

 PET-based staging systems were included as non-binary categorical measures 4 

of Ab and tau pathology.  We included two systems for Ab: a three-stage system 5 

developed by Mattsson et al1 and a four-stage system developed by Collij et al2.  We 6 

included Braak staging for tau3,4, including both a three-stage and six-stage version.  7 

Each stage in each system was associated with a collection of Freesurfer ROIs (stage 8 

composite), as shown in eTable 2, with advancing stages indicating regions where 9 

pathology spreads over the disease course. 10 

The method for Mattsson staging and Braak staging were similar and proceeded 11 

as follows.  First, an average SUVR was calculated in each stage composite using a 12 

volume weighted average of bilateral regions.  Next, Gaussian mixture models (GMM) 13 

were fit to the distribution of uptake in each stage composite to estimate a binary cutoff 14 

for stage positivity (as described in the main text Methods: Image-based biomarker 15 

definitions).  These cutoffs allowed us to assign binary positivity measures for each 16 

subject in each stage composite.  Disease stages were then assigned based on 17 

individual patterns of positivity: to be assigned a given disease stage, an individual had 18 

to exhibit positivity for that stage and all prior ones.  In case an individual was positive 19 

for a given stage but not all prior stages, they were marked as non-stageable.  20 

Individuals could also be assigned stage 0 if they were not positive for pathology in any 21 

stage composite.   22 

 Collij staging was slightly different in that positivity for a stage composite was 23 

based on being positive for pathology in most ROIs corresponding to a given stage.  24 

That is, GMMs were fit to each Freesurfer ROI individually, and positivity for a stage 25 

composite was defined by exhibiting supra-threshold uptake in 50% or more of the 26 



associated ROIs.  Disease stage assignment then proceeded in the same manner as 27 

for Mattsson and Braak staging (individuals needed to be positive for a given disease 28 

stage and all prior stages). 29 

Cross-validation experiments 30 

Cross-validated modeling was implemented in Python (v3.10) using scikit-learn 31 

(v1.4.2).  For all cross-validation experiments, CDR status was used as a stratifying 32 

variable.  Random samples were also seeded, such that the individuals of each testing 33 

fold were the same across experiments with the same input data.  All cross-validation 34 

experiments had 10 outer folds and were repeated 10 times to generate 100 out of 35 

sample error estimates for each tested model.   36 

 We first ran models for each biomarker separately to assess the predictive value 37 

of each included definition.  These experiments used a non-nested, 10-fold cross-38 

validation.  In each iteration, training data were used to fit linear regressions where 39 

PHCGlobal was predicted from a single biomarker and covariates (age, sex, APOE E4 40 

positivity).  That is, separate models were fit for each biomarker.   Biomarker definitions 41 

with tunable parameters (Z-scores, GMMs) were also fit with training data.  A baseline 42 

model was also trained in each iteration which only included covariates as predictors.  43 

Trained models were then evaluated on the testing fold data, and the prediction 44 

accuracies for each were calculated as root mean squared error (RMSE). 45 

 We next created combinatorial models to test if combination of biomarkers 46 

improved prediction accuracy and if models incorporating continuous or non-categorical 47 

binary biomarkers outperformed models with binary biomarkers.  For these 48 

experiments, we used nested cross-validation with 10 outer folds and 5 inner folds.  In 49 

the inner cross-validation, a model selection procedure was applied to identify the best 50 

performing individual predictors (like the non-nested cross-validation experiment 51 

described above).  Inner training data were used to fit linear models predicting PHCGlobal 52 

with single biomarkers plus covariates as predictors.  Inner testing data were used to 53 

measure the out-of-sample accuracy of these models.  We then grouped the models 54 

based on the pathology (AT(N)) and variable type (binary/non-binary 55 



categorical/continuous) and selected the best performing biomarker definitions (lowest 56 

average RMSE across 5 test folds).  The outer cross-validation was then used for 57 

training new linear models which combined the biomarkers selected from the inner 58 

cross-validation.  eTable 3 shows all the combinatorial linear models that were 59 

evaluated in the outer loop using this training scheme. 60 

 We also used support vector machine (SVM) regression to directly predict 61 

PHCGlobal from imaging data.  SVMs were trained using regional Ab uptakes, tau 62 

uptakes, or gray matter volumes as input features.  An additional model combined all 63 

these regional imaging features into a multimodal predictive model.  SVM training used 64 

a nested cross-validation design with 10 outer folds and 5 inner folds.  The inner loop 65 

was used for hyperparameter tuning for the regularization parameter 𝐶, the kernel, and 66 

the kernel coefficient 𝛾.  Search spaces were informed by consensus 67 

recommendations5 and from pilot experiments: kernel (linear or radial basis function 68 

[RBF]), 𝐶 with linear kernel (2!"#, 2!$, ⋯ , 2!", 2#), 𝐶 with RBF kernel 69 

(2!%, 2!&, ⋯ , 2"&, 2"%), 𝛾 with RBF kernel (2!"%, 2!"&, ⋯ , 2", 2&).  The best 70 

hyperparameters were determined from the inner loop (lowest average RMSE across 5 71 

test folds) and used to retrain and evaluate SVM models in the outer loop. 72 

Feature importance analyses 73 

We ran additional post-hoc analyses to probe feature importance for our cross-74 

validated linear modeling.  For models which applied a model selection to filter 75 

biomarker definitions, we created pie charts showing the specific biomarker definitions 76 

which were selected as the best performing over repeated cross-validation iterations.  77 

We also extracted and plotted the (standardized) linear model coefficients for the Ab, 78 

tau, and neurodegeneration biomarkers in all binary and all continuous models (non-79 

binary categorical models were omitted because coefficient interpretation is less 80 

straightforward for non-binary categorical features).  Finally, we visualized the cutoff 81 

values that were selected for Ab and tau from models with all binary definitions. 82 

For SVM models, we visualized the feature importance of individual brain regions 83 

for Ab, tau, and neurodegeneration features.  Following previous work6,7, feature 84 



importance values were generated by calculating the covariance of each feature and 85 

PHCGlobal.  We generated brain maps showing the average feature importance across 86 

100 out-of-sample model predictions.  Maps were generated for the combined SVM and 87 

for each unimodal SVM. 88 

  89 



eTables 90 

Name Pathology  Variable type Description 

Ab composite Ab  Continuous  Ab SUVR in summary composite region 

Centiloid Ab  Continuous  Linear transformation of Ab composite SUVR8 

Ab SUVR>1.11 Ab  Binary Cutoff from Landau et al.9 

Ab SUVR>1.24 Ab  Binary Cutoff from Su et al.10 

Ab SUVR>1.42 Ab  Binary Cutoff from Jack et al.11 (reliable worsening) 

Ab SUVR>1.30 Ab  Binary Cutoff from Jack et al.11 (specificity) 

Centiloid>15 Ab  Binary Binary cutoff for Centiloid 

Centiloid>20 Ab  Binary Binary cutoff for Centiloid 

Centiloid>25 Ab  Binary Binary cutoff for Centiloid 

Centiloid>30 Ab  Binary Binary cutoff for Centiloid 

Ab composite (GMM) Ab  Binary Ab composite SUVR binarized with a GMM 

Ab composite (z>2.0) Ab  Binary Z-score cutoff of 2 for Ab composite SUVR 

Ab composite (z>2.5) Ab  Binary Z-score cutoff of 2.5 for Ab composite SUVR 

Ab composite 
(Quartiles) 

Ab  Non-binary categorical Quartiles of the Ab composite SUVR 

Centiloid (Quartiles) Ab  Non-binary categorical Quartiles of Centiloid 

Mattsson staging Ab  Non-binary categorical Ab -PET staging system2 
Collij staging Ab  Non-binary categorical Ab -PET staging system1 

Ab composite (BIZ) Ab  Non-binary categorical Binarization with an intermediate zone for 
Ab composite 

Centiloid (BIZ) Ab  Non-binary categorical Binarization with an intermediate zone for Centiloid 

MT tau SUVR Tau Continuous Tau SUVR in meta-temporal composite region 

Braak I SUVR Tau Continuous Tau SUVR in Braak I composite region 

Braak III/IV SUVR Tau Continuous Tau SUVR in Braak III/IV composite region 

Braak V/VI SUVR Tau Continuous Tau SUVR in Braak V/VI composite region 

MT tau (GMM) Tau Binary Meta-temporal tau SUVR binarized with a GMM 

MT tau (z>2.0) Tau Binary Z-score cutoff of 2 for MT tau SUVR 

MT tau (z>2.5) Tau Binary Z-score cutoff of 2.5 for MT tau SUVR 

Tau SUVR>1.20 Tau Binary Cutoff from Jack et al.11 (sensitivity) 

Tau SUVR>1.21 Tau Binary Cutoff from Jack et al.11  (specificity) 

Tau SUVR>1.23 Tau Binary Cutoff from Jack et al.11  (accuracy-young) 

Tau SUVR>1.33 Tau Binary Cutoff from Jack et al.11 (accuracy-matched) 

MT tau (Quartiles) Tau Non-binary categorical Quartiles of MT tau SUVR 

MT tau (BIZ) Tau Non-binary categorical Binarization with an intermediate zone for MT tau 
SUVR 



Braak staging (3) Tau Non-binary categorical Braak staging based on 3 stage model (I, III/IV, 
V/VI) 

Braak staging (3) Tau Non-binary categorical Braak staging based on 6 stage model (I, III, V, V, 
VI) 

Hippocampus Neurodegen. Continuous Hippocampal volume 

MT volume Neurodegen. Continuous Volume of the MT composite region 

Hippocampus (z<-2.0) Neurodegen. Binary Z-score cutoff of 2.0 for hippocampal volume 

Hippocampus (z<-2.5) Neurodegen. Binary Z-score cutoff of 2.5 for hippocampal volume 

MT volume (z<-2.0) Neurodegen. Binary Z-score cutoff of 2.0 for MT volume 

MT volume (z<-2.5) Neurodegen. Binary Z-score cutoff of 2.5 for MT volume 

Hippocampus 
(Quartiles) 

Neurodegen. Non-binary categorical Quartiles of hippocampal volume 

MT volume (Quartiles) Neurodegen. Non-binary categorical Quartiles of MT volume 

eTable 1.  Listing of all image-based AT(N) biomarkers used in cognitive prediction 91 
models. 92 
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Name Citation Regions 
Ab composite 12,13 caudal middle frontal, lateral orbitofrontal, medial orbitofrontal, pars opercularis, 

pars orbitalis, pars triangularis, rostral middle frontal, superior frontal, frontal pole, 
caudal anterior cingulate, isthmus cingulate, posterior cingulate, rostral anterior 
cingulate, inferior parietal, precuneus, superior parietal, supramarginal, inferior 
temporal, middle temporal, superior temporal 

MT 11 entorhinal, amygdala, fusiform, inferior temporal, middle temporal 
Braak I 14,15 entorhinal 
Braak III parahippocampal, fusiform, lingual, amygdala 
Braak IV middle temporal, caudal anterior cingulate, rostral anterior cingulate, posterior 

cingulate, isthmus cingulate, insula, inferior temporal, temporal pole 
Braak V superior frontal, lateral orbitofrontal, medial orbitofrontal, frontal pole, caudal 

middle frontal, rostral middle frontal, pars opercularis, pars orbitalis, pars 
triangularis, lateral occipital, supramarginal, inferior parietal, superior temporal, 
superior parietal, precuneus, bank of the superior temporal sulcus, transverse 
temporal 

Braak VI pericalcarine, postcentral, cuneus, precentral, paracentral 
Mattsson Early 1 precuneus, posterior cingulate, isthmus cingulate, insula, medial orbitofrontal, 

lateral orbitofrontal 
Mattsson 
Intermediate 

bank SSTS, caudal middle frontal, cuneus, frontal pole, fusiform, inferior parietal, 
inferior temporal, lateral occipital, middle temporal, parahippocampal, pars 
opercularis, pas orbitalis, pars triangularis, putamen, rostral anterior cingulate, 
rostral middle frontal, supramarginal 

Mattsson Late lingual, pericalcarine, paracentral, precentral, postcentral 
Colllij 1 2 posterior cingulate, isthmus cingulate, anterior cingulate (caudal+rostral) 
Collij 2 lateral orbitofrontal, paracentral, precuneus, medial orbitofrontal, inferior frontal 

(pars opercularis+pas orbitalis+pars triangularis) 
Collij 3 insula, fusiform, precentral, inferior temporal, parahippocampal, collijinferiorfrontal, 

superior frontal, lingual, supramarginal, inferior parietal, cuneus, middle frontal 
(rostral+caudal) 

Collij 4 lateral occipital, superior parietal, middle temporal, superior temporal, postcentral, 
entorhinal, frontal pole, temporal pole 

eTable 2.  List of Freesurfer regions used for composite regions.  Citations are included 108 
for papers which defined these composites.  For Collij stging composites, regions 109 
shown joined by plus signs are meta-ROIs constructed prior to averaging for the 110 
composite, as described in the original paper2.  Ab=amyloid-beta, MT=meta-temporal, 111 
ROI=region of interest. 112 

 113 

 114 

 115 

 116 

 117 

 118 

 119 

 120 

 121 

 122 



Model Ab Tau Neurodegen 
Baseline - - - 
ABIN Binary - - 
TBIN - Binary - 
NBIN - - Binary 
ACAT Non-binary categorical - - 
TCAT - Non-binary categorical - 
NCAT - - Non-binary categorical 
ACON Continuous - - 
TCON - Continuous - 
NCON - - Continuous 
ABIN/TBIN/NBIN Binary Binary Binary 
ACAT/TCAT/NCAT Non-binary categorical Non-binary categorical Non-binary categorical 
ACON/TCON/NCON Continuous Continuous Continuous 
ACAT/TBIN/NBIN Non-binary categorical Binary Binary 
ABIN/TCAT/NBIN Binary Non-binary categorical Binary 
ABIN/TBIN/NCAT Binary Binary Non-binary categorical 
ACON/TBIN/NBIN Continuous Binary Binary 
ABIN/TCON/NBIN Binary Continuous Binary 
ABIN/TBIN/NCON Binary Binary Continuous 

eTable 3.  List of linear models predicting PHCGlobal from AT(N) biomarkers.  Models 123 
were trained with a nested-cross validation scheme where the inner loop was used to 124 
select the best performing biomarkers, after grouping by pathology (Ab, tau, 125 
neurodegeneration) and variable type.  BIN, CAT, and CON are used to represent 126 
binary, non-binary categorical, and continuous variables (respectively).  Dashes are 127 
shown to indicate omission of the corresponding biomarker in the model.  All models 128 
also had age, sex, and APOE E4 status included as covariates. 129 
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 CDR=0.0 CDR=0.5 CDR=1.0+ p-value 
n 223 130 30  
Age 73.76 (7.07) 75.73 (8.32) 77.78 (8.48) 0.005 
Sex (M/F) 96/127 75/55 16/14 0.026 
APOE E4+ 79 (35.4%) 45 (34.6%) 13 (43.3%) 0.659 
Centiloid 19.92 (35.65) 41.74 (54.70) 69.79 (48.77) <0.001 
PHCGlobal 0.84 (0.36) 0.35 (0.46) -0.47 (0.55) <0.001 

eTable 4: Characteristics for the subsample with longitudinal cognitive followup. 141 
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 CDR=0.0 CDR=0.5 CDR=1.0+ p-value 
n 143 83 20  
Age 73.29 (7.50) 74.26 (8.31) 75.91 (9.34) 0.322 
Sex (M/F) 59/94 54/29 10/10 0.003 
APOE E4+ 49 (34.3%) 29 (34.9%) 12 (60.0%) 0.076 
Centiloid 19.94 (38.52) 45.26 (55.40) 74.68 (48.25) <0.001 
PHCGlobal 0.87 (0.35) 0.32 (0.50) -0.27 (0.53) <0.001 

eTable 5: Characteristics for the subsample with imaging and CSF biomarker 166 
assessments. 167 

 168 

  169 



eFigures 170 

 171 

eFigure 1:  Comparison of partial volume corrected (PVC) and non-PVC tau predictors 172 
for modeling cognition.  A.  Boxplots of cross-validated accuracy (RMSE) for models 173 
including a single tau predictor and covariates.  B.  Boxplots of cross-validated accuracy 174 
(RMSE) for models with the best selected tau predictors.  Solid colors indicate models 175 
without tau PVC, while hatches indicate models with tau PVC.  In both panels, the 176 
baseline model (just covariates) is shown in gray, with the dotted line indicating its mean 177 
performance.  Gold stars indicate a significant improvement in accuracy relative to the 178 
baseline model (*p<0.05, **p<0.01, ***p<0.001).   No significant differences were found 179 
for comparisons of PVC and non-PVC models (all p>0.05). 180 
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 183 

eFigure 2: Regional weights for SVM models which included only Aβ (A, ASVM), tau (B, 184 
TSVM), or gray matter volume (C, NSVM). 185 
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 196 

eFigure 3: Boxplots showing cross-validated accuracy (RMSE) measures for predicting 197 
PHCGlobal in CU (A) and CI (B) individuals.  Individual and combination biomarker 198 
models are compared against a baseline model using only covariates (mean 199 
performance indicated by dotted line) to predict PHCGlobal.  Colors are used to indicate 200 
the variable type of included biomarkers (yellow: binary, purple: non-binary categorical, 201 
red: continuous, blue: SVM).  Lighter coloring indicates models which only have a single 202 
pathology assessment, while darker coloring indicates models which have Ab, tau, and 203 
neurodegeneration biomarkers.  Gold stars indicate a significant improvement in 204 
accuracy relative to the baseline model (*p<0.05, **p<0.01, ***p<0.001). 205 
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 213 

eFigure 4: Boxplots showing cross-validated accuracy (RMSE) measures for predicting 214 
PHCGlobal in CU (A) and CI (B) individuals.  Combination biomarker models with non-215 
binary variable types are compared against a baseline model with binary biomarker 216 
definitions (mean performance indicated by dotted line).  Colors are used to indicated 217 
the variable type of included biomarkers (yellow: binary, purple: non-binary categorical, 218 
red: continuous, blue: SVM).  Lighter coloring indicates models which only have a single 219 
pathology assessment, while darker coloring indicates models which have Ab, tau, and 220 
neurodegeneration biomarkers.  Gold stars indicate a significant improvement in 221 
accuracy relative to the baseline model (*p<0.05, **p<0.01, ***p<0.001). 222 
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 230 

eFigure 5: Results from experiments predicting the longitudinal change in PHCGlobal.  A.  231 
Individual and combination biomarker models are compared against a baseline model 232 
using only covariates (mean performance indicated by dotted line).  B.  Combination 233 
biomarker models with non-binary variable types are compared against a baseline 234 
model with binary biomarker definitions (mean performance indicated by dotted line).  In 235 
both panels, colors are used to indicate the variable type of included biomarkers 236 
(yellow: binary, purple: non-binary categorical, red: continuous, blue: SVM).  Lighter 237 
coloring indicates models which only have a single pathology assessment, while darker 238 
coloring indicates models which have Ab, tau, and neurodegeneration biomarkers.  239 
Gold stars indicate a significant improvement in accuracy relative to the topmost model.  240 
Gray stars and bars highlight significant pairwise differences between individual models.  241 
Statistical results are derived from Nadeau-Bengio t-tests with correction for multiple 242 
comparisons (*p<0.05, **p<0.01, ***p<0.001). 243 
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 249 

eFigure 6: Boxplots showing cross-validated accuracy estimates (RMSE) for models 250 
predicting neuropsychological performance from biomarkers.  Panels show experiments 251 
using memory (A), executive functioning (B), language (C), and visuospatial (D) 252 
composites from the PHC as dependent variables.  Combination biomarker models with 253 
non-binary variable types are compared against a baseline model with binary biomarker 254 
definitions (mean performance indicated by dotted line).  In all panels, colors are used 255 
to indicate the variable type of included ATN biomarkers (yellow: binary, purple: non-256 
binary categorical, red: continuous, blue: SVM).  Lighter coloring indicates models which 257 
only have a single pathology assessment, while darker coloring indicates models which 258 
have Ab, tau, and neurodegeneration biomarkers.  Gold stars indicate a significant 259 
improvement in accuracy relative to the topmost model.   260 
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 262 

eFigure 7: Alternate version of main text Figure 1 including CSF predictors alongside 263 
imaging-based ones. 264 
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