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Additional discussion 

Four issues warrant additional discussion in supplementary materials. 

The first issue is about NIS and dedifferentiation evaluation. Many previous studies have investigated 
the dedifferentiation mechanism and redifferentiation targets of RR-PTC. NIS is the most important 
transporter of iodide and is highly expressed in thyroid epithelium (1). Previously, researchers 
hypothesized that the downregulation of NIS in primary tumors contributed to the loss of RAI uptake 
in metastatic RR-DTC lesions (2). This hypothesis was soon challenged by the intracellular 
overexpression of NIS in ~70% of thyroid cancer samples (3). In 2018, Feng et al. reported that 
increased intracellular NIS could exert a non-pump pro-tumorigenic effect (4). The relationship 
between NIS expression and the RAIR has yet to be determined (5, 6). Owing to the methodological 
limitation of proteomics, we failed to quantify NIS protein expression. However, seven molecules 
indicating thyroid differentiation, including PAX8, TG and TPO, were identified. Although the TDS 
tended to increase in the RR-PTC samples, the difference did not reach statistical significance. 
Consequently, our results do not fully support that thyroid-specific proteins in primary lesions could be 
used as diagnostic biomarkers for RR-PTC.  

Secondly, most of the molecules identified in the article were not the main regulators of their pathways. 
However, these three proteins warrant further discussion. There are few reports of S100B in thyroid 
cancer, but its high expression promotes cancer metastasis via interaction with P53 signaling in other 
glandular epithelium-derived carcinomas (7). NFKB1 belongs to the well-known NF-κB signaling, 
which is closely related to cancer initiation and progression. A functional polymorphism in its promoter 
increases the risk of PTC (8). In addition, FN1 overexpression was found in aggressive thyroid cancer 
and promoted its migration and invasion (9). The expression of this molecule was greater in BRAF-
mutated PTCs and was indictive of poor prognosis (10). These proteins are associated with aggressive 
cancer behaviors and could be promising biomarkers for RR-PTC. 

The current study did not focus on the iDG group because of its high intrinsic heterogeneity, but one 
hypothesis could help explain the process of loss of I-131 uptake in this group. The original tumor may 
comprise heterogeneous cancer cells with different tolerances to I-131 treatment. I-131 exerted a 
selective effect on cells, and those with greater tolerance survived, which ultimately results in the 
formation of negative uptake foci on I-131 WBSs.  

With respect to proteomics on RR-DTC, Song et al. performed 2D gel electrophoresis to quantify 
serum proteins derived from ten PTC patients with lung metastases in 2013 (11). Among > 100 
proteins, afamin was significantly downregulated in the serum of RR-PTC patients. Ten years later, 
another study evaluated protein expression in metastatic lymph node samples from six PTC patients 
(12). Among the 665 DEPs, CHI3L1 was confirmed to be upregulated in RR-PTC using 
immunohistochemistry. Subsequent cell experiments suggested that CHI3L1 overexpression could 
activate the classic MAPK pathway, which may then cause NIS dysfunction. These two precursor 
studies provided novel insights but were limited by small sample sizes and the lack of primary tumors.  
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Supplementary methods 

1 Proteomic data acquisition and preprocessing 

1.1 Batch design 

The quantitative analysis of protein profiles in 168 samples was estimated to take more than one week. 
For minimization of the potential batch effect due to slight uncontrolled changes in instrument 
conditions, samples with tumors were allocated into 10 batches using Proteome Expert webserver (13). 
The first nine batches contained eighteen samples, whereas the remaining six samples were allocated to 
the tenth batch. In each batch, one sample was randomly selected as the technical replicate to test the 
intra-batch stability of the sample preparation and data acquisition instruments. In addition, a 
homogenous pooled thyroid sample, which contained mixed thyroid tissue peptides, was distributed 
equally to each batch to test the inter-batch stability of the mass spectrometry (MS).  

1.2 Protein extraction and digestion 

The FFPE samples were prepared for subsequent proteomic analysis as described previously (14-16). 
Tumors on tissue slides were carefully scraped off and then dewaxed and rehydrated in heptane and 
ethanol series (100%, 90% and 75%) at room temperature. Next, protein decrosslinking was processed 
with tris-HCl (100 mM, pH = 10.0) at 95℃ for 30 mins and subsequently cooled to 4℃.  

Samples were lysed by the mix buffer containing urea, thiourea, tris (2-carboxyethyl) phosphine and 
iodoacetamide in 100 mM triethylammonium bicarbonate using pressure cycling technology (PCT) 
(45000 psi, 90 cycles of 30 s high pressure and 10 s ambient pressure, 30℃) in Barocycler 
(PressureBioSciences Inc., USA). Protein digestion was performed through Lys-C (enzyme-to-
substrate ratio: 1:100, Hualishi Tech. Ltd., China) and trypsin (enzyme-to-substrate ratio: 1:50, 
Hualishi Tech. Ltd., China) in the PCT instrument (20000 psi, 120 cycles of 50 s high pressure and 10 s 
ambient pressure, 30℃). Trifluoroacetic acid (1%, Thermo Fisher Scientific, USA) was then added to 
terminate the digestion. The peptide solutions were desalted using SOLAμ solid-phase extraction plates 
(Thermo Fisher Scientific, USA) following the manufacturer's instructions. NanoScan (Analytic Jena, 
Germany) was used to measure peptide concentrations at A280. Peptide solutions were stored at 4℃ for 
subsequent analysis. All the chemical reagents mentioned above, unless specified, were from Sigma-
Aldrich, USA. 

1.3 Proteomic data acquisition and library search 

Next, 200 ng peptides were injected into a liquid chromatography (LC) system coupled with a trapped 
ion mobility spectrometry mass spectrometer (Bruker Daltonics, Bremen, Germany) for each run. 
Prepared peptides were first loaded on to a 15 cm × 75 μm C18 column (1.9 µm, 100 Å, 20 mm × 75 
µm i.d.) and the LC effective gradient was 60 mins at a flowrate of 300 nL/min. The linear gradient 
was composed by buffer B (%) from 5 to 27% and followed by 27-40% within 10 mins and a further 
boost to 80%. The ion mobility underwent scanning within the range of 0.7 to 1.3 Vs/cm2. MS1 and 
MS2 acquisition was performed in the range of m/z from 100 to 1700 Th. All the chemical reagents and 
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instruments mentioned above, unless specified, were obtained from Thermo Fisher Scientific, USA. 

A total of 187 effective data-independent acquisition (DIA) files including 9 technical replicates and 10 
pooled samples were acquired. These raw files were then analyzed against a thyroid tissue specific 
spectral library (15) using DIA-NN (v1.8.1) (17). Fixed and variable modifications were set as cysteine 
carbamidomethylation and methionine oxidation, respectively. Peptide length range, precursor m/z 
range and fragment ion m/z range were set as 7–30, 300–1800, and 200–1800, respectively. False 
discovery rate of the precursor was set to 1%. Other parameters remained as default values.  

1.4 Quality control and data preprocessing 

Principal component analysis (PCA) was conducted using the stats R package (v3.6.0) to visualize the 
batch effect of proteomic profiles. Pearson correlation coefficients were calculated using the expression 
profiles of the technical replicates and their original samples. Similarly, correlation analysis was 
conducted to assess the batch effect using homogenous pooled thyroid sample tissues. Next, proteins 
with missing values less than 50% were regarded as quantifiable and forwarded for data normalization. 
The K-nearest neighbor (KNN) algorithm was applied for the missing value imputation using the 
SeqKnn R package. Since batch effects were undetectable, data correction was not performed. 
UniProtKB AC/IDs were converted to official gene symbols using the UniProt database (v2023.03) 
(18). When multiple IDs corresponded to one gene symbol, the median was calculated. Tumor purity 
was analyzed by the ESTIMATE algorithm. 

2 Targeted next-generation sequencing (TNGS) 

The primary lesions from 48 patients with PTC were subjected to molecular profiling via TNGS. The 
protocol was performed as described previously (19). Briefly, DNA was extracted from FFPE tissue 
sections using the QIAamp DNA FFPE Tissue Kit (Qiagen, Germany) following the manufacturer’s 
instructions. After amplification of targeted DNA fragments and removal of primers, the products were 
purified using an Ion AmpliSeq Library Kit (Thermo Fisher Scientific, USA). The concentrations of 
samples were quantitated by a NanoDrop system (Thermo Fisher Scientific, USA). The quality of the 
purified DNA was evaluated by 1% agarose gel electrophoresis. Severe degradation was detected in 
three samples, which were excluded from further analysis.  

The remaining 45 library products were sequenced via 150 bp paired-end runs on the NextSeq 500 
platform (Illumina, Inc., USA). The medians of sequencing depth and coverage were 5136× and 
98.7%, respectively. Sequencing data were aligned to a reference human genome dataset 
(hg19/GRCh37). Subsequently, read mapping, quality control, variant calling and genotyping were 
performed following the protocols of the OncoAim® Thyroid Cancer Multigene Assay Kit (Singlera 
Genomics, Inc., China). Mutations and fusions were evaluated for 23 genes (Sup table S1). The 
minimum confidence threshold for variant allele frequency was 5%. The ENSEMBL Variant Effect 
Predictor (v90) was used for variant functional annotation. In addition, the gene variants were searched 
against the ClinVar database (v2020006) (20). Somatic gene variants were categorized for clinical 
significance based on the Catalogue Of Somatic Mutations In Cancer database (COSMIC, v97) (21). 
Of note, gene variants with unknown clinical significance were subjected to nonparametric tests after 
those with a frequency < 3 were filtered out. 
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3 Bioinformatic analysis 

3.1 Dimension reduction and differential expression analysis 

As depicted above, the raw data were converted to a normalized expression profile. The dimension of 
the profile was reduced and visualized using the principal component analysis (PCA) algorithm with 
the stats R package (v3.6.0).  

Differential expression analysis was conducted using the limma R package (v3.56.2). Proteins with 
absolute fold change (FC) > 1.414 and P value < 0.05 were defined as differentially expressed proteins 
(DEPs). Heatmaps were drawn using the pheatmap R package (v1.0.12). Samples were clustered with 
the Euclidean distance and complete method.  

Analysis of variance was used to identify proteins correlated with severity of RR-PTC. Proteins with 
statistical significance were clustered using the mfuzz R package (v3.19). Proteins in monotonic 
regulated clusters were regarded as DEPs. 

3.2 Gene ontology (GO) and pathway enrichment analysis 

Gene set enrichment analysis (GSEA) was conducted using GSEA software (v4.3.2) to evaluate 
potential pathways and molecular mechanisms (22). Expression profiles and phenotype labels were 
loaded into the software, and annotated gene sets, such as Reactome and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) annotation files, were downloaded from the Molecular Signatures Databases 
(23). The minimum and maximum for excluding gene sets were set as 5 and 5000, respectively. The 
other parameters were set to their defaults. A P value < 0.05 was considered to indicate a significant 
difference. The enrichment scores (ESs) were normalized to the mean enrichment of random samples 
of the same size.  

For gene set variation analysis (GSVA), ESs were calculated with the GSEA R package (version 1.40.1) 
(24). Predefined gene sets were downloaded as described above and the settings used were the same as 
those used for GSEA. ES profiles were produced and then evaluated for differential expression using 
the limma package. A P value < 0.05 was considered the threshold for a significant difference. 

The top GO processes were enriched by Metascape web-based platform (25). Annotations were set as 
default. Ingenuine pathway analysis (IPA) of the regulated proteins identifies most significantly 
relevant pathways with P value of determined based on right-tailed Fisher’s Exact Test with the overall 
activation or inhibition states of enriched pathways were predicted by z-score (26). 

3.3 Immune infiltration analysis 

The proportions of 22 immune cells types were calculated using the CIBERSORTx algorithm (27). For 
evaluation of the purity of the tumor tissues, estimated scores were calculated for each sample with the 
ESTIMATE R package (v2.0.0) (28). Immune cytolytic activity score (CYT) was calculated from 
geometric means of normalized expression levels of the two effector genes (granzyme A and perforin 
1) (29). 

In addition, the single sample GSEA (ssGSEA) algorithm in the GSVA R package (v 3.19) (30) was 
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used to estimate the proportions of 28 immune cell types (31). T cell infiltration score (TIS) and 
immune infiltration score (IIS) were calculated using the Z-score-standardized ssGSEA matrix, as 
depicted in a previous study (32).  

3.4 Evaluation of tumor differentiation and extracellular signal-regulated kinase (ERK) pathway 

activity 

The thyroid differentiation score (TDS) was developed based on sixteen genes that closely related to 
thyroid function (33). Seven genes were identified in our profile (DUOX1, DUOX2, FOXE1, NKX2-1, 
PAX8, TG and TPO). The log2-normalized values were first centered at the median across samples. 
The means across seven genes were then calculated for each sample. Since these genes either encode 
thyroid-specific proteins or are highly expressed in thyroid follicular cells, lower TDSs indicate poor 
differentiation of thyroid cancer tissues.  

The extracellular signal-regulated kinase (ERK) pathway is essential for the uncontrolled proliferation 
of BRAF-mutated tumor cells. The ERK score was calculated to evaluate the activity of the ERK 
pathway (34). A total of eighteen genes involved in the scoring system were identified in the current 
analysis. The mean Z scores of the eighteen genes were computed and a higher score indicated more 
activated pathways (32).  

3.5 Weighted correlation network analysis (WGCNA) 

WGCNA is an analytical tool for describing correlation patterns among genes across large-scale, high-
dimensional datasets. Genes with high correlation were clustered to form a module. The modules were 
then related to external sample traits using the eigengene network methodology. The subsequent 
analysis was conducted using the WGCNA R package (v1.72-1) (35). Since genes were filtered during 
data preprocessing, all 7394 genes were processed for network construction to retain as much 
information as possible. No outlier sample was identified using the goodSamplesGenes function (Sup 
figure 10A). A correlation matrix was constructed based on pairwise genes with Pearson’s correlation 
coefficient and average linkage method. The matrix was then weighted using a power function to form 
an adjacency matrix. The soft threshold β was determined to be 3 by calculating the scale independence 
and mean connectivity to emphasize strong correlations between genes and penalize weak correlations 
(Sup figure 10B&C). The adjacency matrix was then converted to a topological overlap matrix (TOM). 
A gene dendrogram was constructed using average linkage hierarchical clustering to classify genes 
with similar expression profiles (Sup figure 10D). A total of 21 significant modules were identified at 
minimum module size = 30, merge cut height = 0.25 and deepSplit = 3 using the cutreeDynamic 
function. The expression of each module was summarized by the module eigengene (Sup figure 10E). 
Gene significance (GS) was defined as the correlation between the gene and the trait of interest, while 
module membership (MM) represented the correlation between the module eigengenes and the gene 
expression profile. Sample mutation traits were subsequently input for the subsequent assessment of 
GS and MM (Sup figure 10F).  

3.6 Machine learning algorithms 

Least absolute shrinkage and selection operator (LASSO) regression, random forest (RF), and support 
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vector machine-recursive feature elimination (SVM-RFE) were used to identify biomarker proteins for 
gene mutations and fusions (36-38).  

LASSO was conducted using the glmnet R package (v4.1-8). After model construction, lambda values 
were set at the minimum mean-squared error to select prominent variables (Sup figure 11A).  

RF was conducted using the caret R package (v6.0-94) with fivefold cross-validation. The correlation 
between the accuracy of repeated cross validation along with the number of genes was calculated for 
gene selection (Sup figure 11B). 

SVM-RFE was conducted using the e1071 R package (v1.7-13) with fivefold cross validation. The 
relation of error against gene number was plotted for gene selection (Sup figure 11C). 

3.7 External dataset validation 

Several external datasets were used for the validation of our results. GSE151179, which was published 
on May 26, 2020, by Colombo and colleagues (39), included 52 samples derived from radioiodine-
refractory and radioiodine-avid PTC patients. RNA was extracted from snap-frozen tissues and then 
quantified with a gene/miRNA microarray. The sample types included primary lesions, positive lymph 
nodes and matched normal tissues. The raw data were downloaded from the Gene Expression Omnibus 
(GEO) database (40) and preprocessed according to the authors’ instructions. Medians were calculated 
when multiple transcripts corresponded to one gene. Primary samples were pooled and labeled 
according to their I-131 uptake ability and response to radiotherapy. GSVA was conducted as described 
in the previous section. The log-transformed values were subjected to the Mann-Whitney U test for 
gene expression.  

The Cancer Genome Atlas (TCGA) published information on the genomic landscape, gene expression 
and other molecular features of 496 PTCs in 2014 (33). The patient number was increased to 504 at the 
time of data extraction. The transcript profiles of 571 samples were downloaded from the TCGA-
THCA program. RNA-seq raw counts were extracted from the raw data files and then merged into one 
expression matrix using the tidyverse, vroom and jsonlite R packages. A total of 22,418 of 60,660 
transcripts with a missing ratio > 0.8 were excluded from subsequent analyses. The data were 
normalized with the trimmed-mean of M values method in edgeR package (v4.0.2) and transformed to 
log2+1 counts per million mapped reads. Primary lesion samples were included for subsequent 
analysis.  

TCGA samples were labeled with gene variances. Single nucleotide variants and insertions and 
deletions identified using whole exome DNA sequencing were collected from TCGA. The tiers of gene 
mutations were determined based on the COSMIC database as described above (21). Information on 
gene fusions was collected from the ChimerDB 4.0 database (41). This database included all samples in 
TCGA, and gene fusion was assessed by analyzing deep sequencing data.  

Raw data from four external datasets were downloaded from the GEO database (Sup Table S7) (42-44) 
and normalized using the robust multiarray average (RMA) method. The PTC samples with BRAF, 
RAS and/or fusion status data were retained for data preprocessing. Batch effects among the four 
matrices were removed using the sva R package (v3.20.0) (Sup figure 12). Medians were calculated 
when multiple transcripts corresponded to one gene. Differential expression analyses were conducted 
for TCGA- and multiple GEO-derived expression profiles. The threshold of the adjusted P value was 
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set as 0.05. 

The predictive performance of the selected genes in the external datasets was evaluated with receiver 
operating characteristic (ROC) curves. The area under the curve (AUC) was calculated using the pROC 
R package (v1.18.5).  

3.8 Survival analysis 

Survival analysis was conducted using GEPIA2, an online tool based on the TCGA database (45). The 
THCA project was selected. Since most PTCs do not lead to death even with relapse or metastasis, 
recurrence-free survival (RFS) was evaluated instead of overall survival. The hazard ratio (HR) and P 
value were calculated. 

4 Immunohistochemistry 

FFPE tissue sections (5 μm) were prepared for immunohistochemistry (if sample quantity permitted) 
with the following antibodies: anti-ECP (eosinophil cationic protein; GB112150), anti-CD11c 
(GB115690), anti-CD27 (GB111165) and anti-CD68 (GB113109). The four antigens were identified as 
biomarkers for eosinophils, immature dendritic cells, memory B cells and macrophages, respectively 
(46-49). The sections were stained using a DAB substrate kit (G1212) according to the manufacturer’s 
instructions. An expert pathologist, blinded to the sample groups, evaluated each IHC section. The 
number of positive immune cells was counted manually in five randomly selected fields at ×200 
magnification, and the average was then calculated. All the antibodies and chemical reagents were 
sourced from Servicebio Co., Ltd., China. 
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Supplementary tables 

Supplementary tables. S1-S7 

Details are provided in a Microsoft excel file. 
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Supplementary figures 
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Supplementary figure 1. The quality control of proteomic analysis. (A) The number of proteins detected in each sample. A total of 9769 proteins were identified, which indicated the high 
quality of our data. The minimum and maximum protein numbers were 5120 (52.4%) and 8106 (83.0%), respectively, with a mean of 7481 (76.6%). Since the number of proteins identified in 
all the samples exceeded the threefold interquartile range (1614), no sample was excluded from subsequent analysis. (B&C) PCA diagram of analyzed samples labeled with batch and tissue 
type. (D) Pearson correlation analysis in each batch using technical replicates. (E) Pearson correlation analysis of batch effects using pooled thyroid samples. (F) The normalized expression of 
protein profiles labeled with tissue types. No observable batch effect was detected.  
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Supplementary figure 2. Preprocessing of proteomic profiles. (A) The protein numbers and their corresponding missing ratios. The percentage of missing proteins in the expression matrix 
decreased from 24.94% to 8.30% after 2362 proteins with a missing ratio > 50% were excluded (red bar). Missing values were not found for 3265 proteins. (B&C) Density plots of protein 
abundance before and after the removal of outliers. A total of 1079 (0.0823%) of outliers in the whole matrix were substituted. (D) The full expression profiles displayed 168 samples and 7394 
proteins with gene symbols after data preprocessing. The mean, median, median, lower and higher quartiles of the log-transformed matrix were 14.4580, 14.1805, 13.0386 and 15.6017, 
respectively. (E) The tumor purity of samples with cancer tissues calculated using the ESTIMATE algorithm. The Kruskal-Wallis test was applied to analyze the distribution of tumor purity 
across the three groups.  

* The distribution of purity in primary tumors and cervical LNMs significantly differed (adj. P = 0.038).  
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Supplementary figure 3. Pathway enrichment analysis and validation. (A) The five most enriched pathways identified by GSEA using the Reactome annotation file. (B) Five pathways related 
to the oncogenesis of the thyroid follicular epithelium. (C) Dot plot based on GSVA. The top ten enriched pathways and those related to oncogenesis and dedifferentiation are displayed in left 
and right columns, respectively. (D) Three DEGs/DEPs were differentially expressed in both GSE151179 and the present study. Ninety-nine of the 107 DEPs were identified in this cohort. 
BET1 median: 6.534 vs. 6.105, P = 0.032; C11orf96 median: 7.338 vs. 7.028, P = 0.032; SLC4A9 median: 5.216 vs. 5.392, P = 0.045. (E&F) Volcano maps of GSVA based on the Reactome 
and KEGG databases, respectively. Two pathways, N-glycan antennae elongation and GAB1 signalosome, were dysregulated in the external transcriptomic profile but not in the current 
proteomic study. 

Abbreviations: nES, normalized enrichment score; nP-value, normalized P value. 
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Supplementary figure 4. The clustering of 403 proteins along with the severity of RR-PTC. Proteins with significance difference 
in analysis of variance were divided into six clusters Proteins in cluster 1 and 4 were monotonic regulated.  
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Supplementary figure 5. The gene ontology and pathway enrichment analysis of monotonic regulated proteins. (A) The expression of 160 proteins in Id, ID and iDF subgroups. (B) The top 
non-redundant gene ontology enriched by Metascape. (C) IPA of top 20 most significantly relevant pathways. 
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Supplementary figure 6. Validation of DEPs and selected pathways. (A) Volcano map of genes in comparison of the ID and iD groups. Three genes were differentially expressed in both our 
proteomic profiles and external transcriptomic profiles. However, the regulatory direction was completely different. In the proteomic profile, MYH7 was upregulated, whereas in the 
transcriptomic profile, its expression was greater in the iD group. S100B and UXT also exhibited inverse changes in the two profiles. (B) Volcano map of pathways identified by comparing the 
ID and iD groups. Five Reactome pathways were enriched in the two profiles. a, IRAK2 mediated activation of TAK1 complex; b, TICAM1, TRAF6-dependent induction of TAK1 complex; c, 
TRAF6-mediated induction of TAK1 complex within TLR4 complex. (C) The log-transformed expression of six genes in the transcriptomic profile. MYH7, among all common DEGs, 
significantly differed according to the nonparametric test (P = 0.035). For proteins in selected and common pathways, PI4K2B and PIK3R4 participate in the synthesis of PIPs at the early 
endosome membrane, and CEACAM8 is involved in fibronectin matrix formation. (D) Volcano map of genes in the comparison of ID and Id groups. PGS1 was differentially expressed 
between the two profiles (median: 6.080 vs. 6.456, P = 0.012). (E) Volcano map of pathways identified by comparing the ID and Id groups. GAB1 signalosome was enriched in two profiles (P 
= 0.012). (F) The log-transformed expression of four genes in the transcriptomic profile. Among those involved in the above thirteen pathways, three genes (MAPKAPK2, NFKB1 and 
PLKHA6) were downregulated in the ID group, in contrast to the expression pattern observed in our proteomic profile. 
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Supplementary figure 7. Tumor microenvironment feature discriminating RR-PTC vs. Control, ID vs. IDF and ID vs. Id. Immune 
analysis was conducted based on the ssGSEA matrix. (A) Memory B cell, macrophage and immature T cell were related to I-131 
uptake. The comparison was based on the ssGSEA matrix. (B) Immunohistochemistry did not show any statistical significance on 
immune cells.  
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Supplementary figure 8. Survival analysis of selected biomarkers. RFS was defined as the time interval between the date of 
diagnosis and the date of relapse/recurrence or death (all causes) whichever occurred first.  
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Supplementary figure 9. The differential expression analysis, gene ontology and pathway enrichment analysis for samples with BRAF mutation and TERTp wild type. The RR-PTC and control 
groups were compared. (A) The differential expression analysis identified 184 DEPs. (B) Dimension reduction visualization of two groups. (C) The top non-redundant gene ontology enriched 
by Metascape. (D) Ingenuine pathway analysis of most significantly relevant pathways with the predicted activation or inhibition state. 
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Supplementary figure 10. Weighted gene co-expression network analysis. (A) Unsupervised hierarchical clustering of samples 
with the Euclidean distance and average clustering methods. (B) Scale independence analysis. (C) Mean connectivity analysis. 
When the power was 3, the scale-free R2 was > 0.85 for the first time, and the mean connectivity curve gradually stabilized. The 
soft thresholding power was thus set to 3. (D) Clustering dendrogram of all genes. (E) Module eigengene adjacency heatmap. The 
gray module was the collection of genes that were not classified into any other modules. (F) Scatter plots of gene variances and 
modules.  
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Supplementary figure 11. Identification of biomarker proteins using machine learning. (A) The reduction in variables and adjustment of the β value during LASSO regression. (B) The 
accuracy plots along with the numbers of genes in the RF models. (C) The error plots along with the numbers of genes in the SVM models. The four columns represent BRAF, TERTp, gene 
fusions and NCOA4-RET fusion from left to right.  

a The low number of TERTp-positive samples (n = 6) prevented model construction and error analysis for TERTp mutations via the SVM algorithm.  
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Supplementary figure 12. Batch effect removal of the four external datasets. Boxplots of the expression of the samples before (A) 
and after (B) batch effect removal. Density plots of expression within each dataset before (C) and after (D) batch effect removal.  
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