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Abstract

Severely brain-injured patients may enter a spectrum of conditions collectively known as

disorders of consciousness (DoC). This spectrum includes clinical categories such as

unresponsive wakefulness syndrome or minimally conscious state, where the behavioral

assessment of consciousness can often be deceptive.

To bridge this dissociation, neuroimaging techniques are employed to look for the residual

brain functions. Each neuroimaging modality imperfectly captures distinct aspects of brain

preservation - functional, anatomical, or both. In this study, we adopt a comprehensive

approach by integrating the neurophysiology and neuroimaging modalities available from the

standard and advanced clinical assessment through interpretable machine learning (ML). The

electrophysiological modalities included high-density electroencephalography (EEG) (resting

state and task), whereas neuroimaging modalities included anatomical and resting-state

functional magnetic resonance imaging (MRI), diffusion MRI, and 18F-fluoro-deoxy-glucose

positron emission tomography (FDG PET).

Our investigation reveals that specific modalities, such as functional assessments provide

comprehensive insights into the currently evaluated state of consciousness - the diagnosis of

the patients. Conversely, structural modalities offer valuable information about the patient's
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evolution within the consciousness spectrum. We validate the proposed analysis with data

coming from other centers with different acquisition parameters. Importantly, we show that

there is an improved model performance with the increase in the number of modalities. We

observe a higher inter-modality disagreement for MCS patients and those patients who

improve. Lastly, we observe a difference in feature importances in diagnosis and prognosis.

This integrative multimodal and ML methodology presents a promising avenue for a more

nuanced understanding of DoC, contributing to enhanced diagnostic precision and prognostic

capabilities in clinical practice.
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Introduction

Disorders of consciousness (DoC) are a spectrum of conditions arising from numerous causes

of brain injury. Patients with a DoC have a range of sensory-motor deficits that can

differently impair their state of consciousness and behavioral capacity to various extents.1

Due to an incapacity to express consciousness through behavioral responses, there can be a

dissociation between unresponsiveness (based on following commands with motor outputs)

and unawareness.2,3 Furthermore, the assessment of patients with DoC can be limited due to

the presence of medical devices (such as mechanical ventilation or tracheostomy tubes), acute

pain, or medications that affect arousal.4 All of these aspects pose challenges to the correct

assessment of the patient’s consciousness.

The main clinical categories on the DoC spectrum are the Unresponsive Wakefulness

Syndrome (UWS) and the Minimally Conscious State (MCS). UWS patients are behaviorally

diagnosed by eyes opening during arousal but with no signs of awareness5, whereas patients

in an MCS show reproducible, though subtle, behavioral signs of consciousness (visual

pursuit or a response to simple commands)6. Although there is no clear consensus where the

spectrum of DoC ends and healthy consciousness begins7, generally patients are said to be

emergent from MCS (EMCS) when they regain some basic communication capacity or when

they are capable of functional object use6. This recovery of consciousness can occur at any

point in the patient’s clinical evolution –from the acute to the chronic stage7.

The current diagnostic gold standard in the field is the Coma Recovery Scale-Revised

(CRS-R)8. Although repeatedly using this scale decreases the rate of misdiagnosis8, the

remaining uncertainty due to behavioral and neural disparities has yet to be systematically

addressed. Thus, despite the extensive standardization of the administration of behavioral

scales9, current guidelines recommend the use of neuronal or physiological signals across

distinct modalities to increase the certainty of a correct assessment of a patient’s state4,10–13. In

addition, individual electrophysiology or neuroimaging modalities are limited because they

occupy a narrow space in the temporal-spatial resolution plane, and are designed to evaluate
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only part of the neural structures or activities. A natural question that arises is to what extent

each modality is informative in terms of diagnosis and prognosis.

Throughout the years, various studies have focused on single modalities, and have shown the

potential of each one in improving the patient’s diagnosis.2,14–32 However, clinical teams,

especially those in hospitals with established expertise in treating DoC patients, have access

to and can integrate the information of various multimodal tests.11,33 Recent evidence

indicates that multimodal assessment enhances neuroprognostics in clinically unresponsive

critical-care patients with brain injury.33 This suggests that latent integration of information

by clinicians contributes to improved decision-making outcomes, thereby making a strong

argument for the exploration of automatic fusion approaches using machine learning (ML).

This argument is also reflected in the international guidelines for the treatment of DoC,

calling for multimodal assessments especially due to the heterogeneous pathophysiology of

DoC patients.10,13,34 On the question of how we can systematically make use of the

complementary information contained in the different neurophysiological signals, numerous

studies have assessed the possibilities of an integrative neuroimaging approach.11,35–42 These

studies highlight the need to investigate various dimensions of brain preservation (for

example anatomical and functional MRI, electrophysiology, or brain metabolism) in order to

make a more accurate assessment of the patients’ current state and evolution. Yet, up to date

there hasn’t been a large-scale multi-center study, involving commonly used neuroimaging

modalities analyzed under the same methodological umbrella, to evaluate the differences and

complementarity of the modalities assessing the patients’ current condition and evolution.

In our study, we take the multimodal integrative neuroimaging approach one step further and

adopt a multicentric, comprehensive approach by separately analyzing and then integrating

six neuroimaging modalities through interpretable ML, to investigate the patients' presently

evaluated consciousness (diagnosis) and future evolution (prognosis).

Methods

This project is part of an EU-funded four-year consortium (PerBrain) involving several

different institutions including the Pitié Salpetrière Hospital, the University Hospital of the

Ludwig-Maximilians-University of Munich, the Therapiezentrum Burgau (hospital for

neurological rehabilitation), the University of Milan, Fondazione Don Carlo Gnocchi and the

Weizmann Institute of Science. The details of the consortium’s aims are explained in
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Willacker et al. (2022). The included patients come from three different centers split in

Dataset 1 (France), Dataset 2 (Germany), and Dataset 3 (Italy).

Ethics statements

This research was approved by the ethical committee of the Pitie-Salpetriere under the French

label of ‘routine care research’ (Comité de Protection des Personnes n◦ 2013-A01385-40, Ile

de France 1, Paris, France under the code ‘Recherche en soins courants’, protocol number

M-Neuro-DOC, CE SRLF 20-2); the ethics committee of the medical faculty of the

Ludwig-Maximilians-Universität München (protocol numbers 20-634 and 20-635); and the

ethical committee section of the IRCCS Fondazione Don Carlo Gnocchi (ethics committee

IRCCS Regione Lombardia, protocol number 32/2021/CE_FdG/FC/SA). Written informed

consent from patients was obtained either through their legal guardian or, in the absence of

one, from the closest relative.

Figure 1 Multimodal assessment methods of diagnostic and prognostic categories of

patients with DoC. (A) Patients underwent multiple CRS-R assessments during their
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hospital stay and the best assessment in that range of a week (typically) was taken as the

gold-standard clinical diagnosis. The diagnostic clinical categories of patients included in the

prediction are UWS and MCS. The prognostic categories are improved or not improved

(explained in the Methods section). (B) For both the diagnostic and prognostic classification

we ran unimodal RFC to obtain probabilistic estimates of each patient belonging to one or

another category. The probabilistic outputs are then combined using a second-level RFC

either alone or in combination with the etiologies and demographic information. Missing

values are substituted with -1 (a data imputation approach). The final output is a probability

of belonging to either a diagnostic or prognostic category. Abbreviations: Coma Recovery

Scale-Revised (CRS-R), Unresponsive Wakefulness Syndrome (UWS), Minimally Conscious

State (MCS), Emergent Minimally Conscious State (EMCS), Glasgow Outcome

Scale-Extended (GOSE), Electroencephalography (EEG), Resting State (RS), Local Global

(LG) paradigm, functional Magnetic Resonance Imaging (fMRI), anatomical Magnetic

Resonance Imaging (aMRI), diffusion Magnetic Resonance Imaging (dMRI),

18F-fluoro-Deoxy-Glucose Positron Emission Tomography (FDG PET), Random Forest

Classifiers (RFC).

Table 1 Overview of the number of patients from the Paris Dataset 1 having a particular neuroimaging modality per
prediction category (diagnostic or prognostic).

Modality All patients
Diagnostic categories

(Current state of the patients)
Prognostic categories

(Evolution of the patients)
UWS MCS not-Improved Improved

EEG RS 120 63 57 50 39
EEG LG 290 138 152 117 90
FMRI RS 44 21 23 20 10
FDG PET 53 21 32 35 9
dMRI 151 79 72 49 46
aMRI 101 54 47 40 26
The table presents data obtained through various neuroimaging modalities for a total of 326 patients for diagnosis, and 232 patients with
prognostic data. Modalities include electroencephalography resting state (EEG RS), EEG local-global paradigm (EEG LG), resting-state
functional MRI (fMRI RS), anatomical MRI (aMRI), diffusion MRI (dMRI), and 18F-fluoro-Deoxy-Glucose Positron Emission Tomography
(FDG PET). The patient population is further categorized based on diagnostic information, distinguishing between those in a vegetative
state/unresponsive wakefulness state (UWS) and those in a minimally conscious state (MCS). Prognostic insights into patient evolution are
also provided, indicating the number of patients showing improvement and those not showing improvement across different modalities.
The counts in each cell represent the corresponding number of patients within the specified modality and diagnostic/prognostic category.
Not all the patients have prognostic information, thus the sum of the prognostic categories is not equal to the counts in the All Patients
column. Information on the patients’ sex, etiology, age, and whether they were acute or chronic at the time of the tests is given in
Supplementary Tables 1 and 2. Information on the Datasets 2 and 3 from Germany and Italy is presented in Supplementary tables 3 and 4.
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Patient inclusion and behavioral assessments

In the primary Dataset 1 (France), we included 326 (120 women, mean age 46.5 +/- 17.7

years) patients with a DoC who stayed at the Pitié Salpetrière Hospital for an expert

assessment of their state of consciousness between 2008 and 2022. During this evaluation,

the clinical team performed several behavioral or neuroimaging exams (clinical assessment,

MRI, EEG, PET), as well as tracked the patients' evolution. Each patient underwent

neuroimaging acquisitions tailored to their specific clinical needs, whereas EEG RS and LG

recordings were acquired as part of the standard clinical practice. The CRS-R8 was performed

by expert clinicians during the patients’ stay at the hospital to assess their current state.

Typically the multimodal assessments were done within a range of one week during the

expert evaluation. We took the best CRS-R score of the patients during this clinical

assessment and only kept the patients that were diagnosed as being in UWS and patients in an

MCS. Throughout the text under ‘current’ or ‘present’ state, we refer to the evaluation of the

patients using the CRS-R which is based on the best evaluation over an extended window of

time. According to the CRS-R scores, 153 patients were diagnosed as UWS, and 173 as

MCS. The behavioral scale used to infer the evolution of the patients after hospitalization is

the Glasgow Outcome Scale-Extended (GOSE)43 together with a phone-guided CRS-R

evaluation. The assessments were done through telephone interviews with the patient’s

current physician (if they are still in a DoC) or family member (in case they have recovered

consciousness). The best previously completed CRS-R (during the hospital stay) is taken as a

starting point, and the clinician checks in each CRS-R category if the patient has improved,

stagnated, or worsened. Using these assessments, the patients then have a GOSE score

together with a CRS-R state of consciousness category at six months post-evaluation, one

year, and two years. From the behavioral assessments during-hospitalization and

post-hospitalization, we derive two prognostic categories of patients who have either not

improved or worsened over two years, or patients who have improved (Figure 1 A). We

exclude patients who have gone through a limitation of active therapy (life-sustaining care).

The etiologies and demographics of the patients varied, and their summaries are given in

Supplementary Tables 1 and 2.

From Dataset 2 (Germany), we included 54 (16 women, age 56 +- 15.3) patients with DoC

who stayed either at the University Hospital of the Ludwig-Maximilians-Universität

München (Munich, Germany) or the Therapiezentrum Burgau (Hospital for Neurological

Rehabilitation, Burgau, Germany) for an expert assessment of their state of consciousness
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and for acute neurological care or early neurological rehabilitation between 2020 and 2023.

According to the CRS-R scores, 34 patients were diagnosed with UWS, and 20 were

diagnosed with MCS. The etiologies and demographics of the patients varied, and their

summaries are given in Supplementary Table 3.

From Dataset 3 (Italy), we included 30 (13 women, age 46.6 +- 16.9) patients with DoC who

stayed at the IRCCS Fondazione Don Carlo Gnocchi for an expert assessment of their state of

consciousness between 2020 and 2023. According to the CRS-R scores, 13 patients were

diagnosed with UWS, and 17 were diagnosed with MCS. The etiologies and demographics of

the patients varied, and their summaries are given in Supplementary Table 4.

Table 2 Overview of multimodal neuroimaging markers used as features.

Modality type Modality Paradigm Metrics
Dynamic, functional EEG Resting state Spectral, information theory, connectivity markers

Dynamic, functional EEG
Local-Global
Auditory Task

Spectral, information theory, connectivity and evoked
markers

Dynamic, functional fMRI Resting state Cortical & subcortical functional connectivity
Static, functional FDG PET Resting state Cortical & subcortical metabolic activity

Static, anatomical dMRI Resting state
White matter tract fractional anisotropy and mean
diffusivity

Static, anatomical aMRI Resting state Cortical thickness, subcortical volume
This table provides a comprehensive overview of various multimodal neuroimaging modalities, encompassing both dynamic or static and
anatomical or functional properties. Each modality is detailed with its associated paradigm and metric. Dynamic modalities, which have
multiple time points, include EEG in the resting state and task local-global paradigms, as well as fMRI in the resting state. Static modalities
include FDG PET, dMRI, and aMRI. The second type refers to whether the modality captures anatomical properties (aMRI and dMRI) or
functional ones (EEG, fMRI, FDG PET). Each modality is associated with specific metrics such as cortical and subcortical functional
connectivity, metabolic activity, white matter tract properties, and structural measures like cortical thickness and subcortical volume.
Abbreviations: Electroencephalography (EEG), functional Magnetic Resonance Imaging (fMRI), anatomical Magnetic Resonance Imaging
(aMRI), diffusion Magnetic Resonance Imaging (dMRI), 18F-fluoro-Deoxy-Glucose Positron Emission Tomography (FDG PET).

Modalities

In this study, the included modalities are high-density EEG resting state (RS) and a two levels

Local-Global (LG) auditory regularity task, anatomical- and resting-state functional-

magnetic resonance imaging (aMRI and RS-fMRI), diffusion MRI (dMRI), and

18F-fluoro-Deoxy-Glucose Positron Emission Tomography (FDG PET) (Table 2). The

acquisition protocols and parameters, the preprocessing details, as well as the analyses of the

markers are given in the Supplementary Materials. The markers we extracted from the

modalities later used in the ML models are given in Table 2.
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Machine learning models

In the main analysis, we included 326 patients from Dataset 1 who had assessments from one

to five different modalities (Table 1), while the unimodal generalization ability was tested on

Dataset 2 and Dataset 3 (Supplementary Tables 3 and 4). We have a two by two focus of the

analyses, looking into the unimodal and multimodal results both for the diagnostic and

prognostic categories.

Unimodal models

In the first level analysis, we ran unimodal models either classifying the diagnostic (UWS or

MCS) or prognostic (improved or not improved) categories. We used a Random Forest

Classifier (RFC), which is an ensemble tree-based method, from the scikit-learn library

(v1.2.0) with the default hyper-parameters (100 estimators, gini criterion, no max depth, 2

minimum samples split).44 For our goal, tree-based models seem to be the most adequate as

they capture nonlinear relationships between features and labels. Tree-based models do not

require feature scaling which is an important advantage when working with multimodal data.

On Dataset 1, we ran 100 initializations of a five-fold stratified cross-validation, keeping the

predictions from the fold that is used for testing. The resulting prediction and probability of a

patient belonging to a given clinical category were collected over these 100 iterations. To

understand whether the use of probability estimates was reasonable, we ran model calibration

checks (Supplementary Figure 1). In both the diagnostic and prognostic classification, most

models are sufficiently well calibrated except for aMRI for the prognosis. We used the

scikit-learn impurity-based (Gini) feature importance (FI) algorithm. In each iteration of the

models, we saved the FI and then averaged them across the 100 initializations to obtain a

ranking of the features per modality. For the generalization, after z-scoring the features of

both the training and testing datasets, we trained 100 new models per modality on all of the

patients from Dataset 1 and then tested on the patients from Dataset 2 and 3. We also

obtained a surrogate distribution per modality by shuffling the labels and running again the

100 iterations, 5-fold cross-validated (CV) training, and testing. We compared the two

distributions of the model results and the surrogates using divergence metrics

(Kullback-Leibler divergence, Jensen-Shannon divergence, Wasserstein distance)

(Supplementary Figure 2). To quantify classification disparity between modalities within a

patient, we created a metric called pairwise disagreement (PD), calculated as the difference in

classification probabilities between two modalities for the same patient (Figure 3A).
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Multimodal models

The multimodal model is a Late Fusion Multimodal (LFM) model that uses a stacking

approach. In the first level, we have the unimodal RFC. The probabilistic classification

outputs of these models (also called Basic models later on) are then given as features to the

second layer where an ensemble RFC makes the final classification into the diagnostic or

prognostic categories.

We also explored another version by adding demographic data and information on the

patients’ etiologies using a one-hot-encoding approach alongside the results of the neural

models, we call these Extended models. We add the value of -1 as a data imputation method

when there is either a missing modality or a missing demographic or etiological information

(the second was the case for only four patients who were admitted to the hospital for the

evaluation in the period between 2010 and 2012, three were missing information on age and

sex and the fourth one was missing information on the sex). The included demographic data

is sex (female or male), and age at the time of the assessment. The additional etiological data

we used is whether they are acute patients (within 90 days post-injury) or chronic, and four

etiological categories: anoxic, traumatic brain injury (TBI), stroke, and other which also

includes a few patients with mixed etiologies (N=14 for diagnosis from which 12 had TBI

and anoxia, N=7 for prognosis out of which 6 had a TBI and anoxia).

Similarly to the unimodal models, we ran 100 initializations of five-fold stratified

cross-validation, keeping the predictions from the fold that is used for testing. We then took

either the average of the probability estimates per patient, or thresholded it to 1 when the

value was above 0.5 and to 0 if the value was below 0.5. We then calculated summary metrics

such as the balanced accuracy per number of modalities (Figure 5).

We analyzed the results based on the number of modalities each patient has, ranging from one

to five. For each number of modalities (from one to five), and for each CV split (we have 500

splits because we ran 100 iterations each consisting of the 5-fold CV split), we calculate the

balanced accuracies for the leave-out folds, and this gives us the distributions whose medians

and interquartile ranges are given in Figure 5. Because the number of patients that have, for

example, five modalities is smaller, in some of the leave-out CV splits there was not one of

these patients present, thus the number of observations in this distribution is smaller (eg. 301

for diagnosis). Thus the number of observations reported in the Spearman correlation test
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results is the number of times a group of patients with a given number of modalities gets

randomly selected in a leave-out fold.

Statistical analysis

We used non-parametric statistical tests such as the Mann-Whitney U test, Bonferroni

corrected with a significance level of 0.05 when comparing distributions of the basic and

extended models per number of modalities. We used the Wilcoxon signed-rank test to test

whether the median of PD distributions significantly differed from zero. We also performed

Spearman correlation tests for the multimodal balanced accuracies plotted against the number

of modalities, together with the 95% confidence intervals.

Results

Neuroimaging modalities carry independent diagnostic and

prognostic information

In the diagnostic classification (Figure 2 A), the highest balanced accuracy was observed for

PET (0.73 ± 0.13), followed by dMRI (0.69 ± 0.08), EEG LG (0.69 ± 0.06), EEG RS (0.66 ±

0.09), fMRI RS (0.63 ± 0.15), and the lowest for aMRI (0.51 ± 0.1). For the prognostic

classification (Figure 2B), the highest balanced accuracy was achieved by dMRI (0.74 ±

0.09), followed by fMRI RS (0.63 ± 0.18), aMRI (0.58 ± 0.11), EEG LG (0.55 ± 0.06), PET

(0.5 ± 0.16), and the lowest for EEG RS (0.49 ± 0.1). For both diagnostic and prognostic

classification, we calculated the quality of the difference between the model distributions and

the surrogates distributions (Supplementary Figure 2).

EEG recordings, whether RS or LG, exhibit a classification accuracy close to 0.7 for

diagnosis but drop close to the chance level for prognosis. Conversely, aMRI shows an

increase from chance level for diagnosis to 0.58 for prognosis, while PET exhibits the

opposite trend, becoming non-informative in more of the CV splits for prognosis (in other

words, one part of the distribution of the PET prognostic results is at chance level). dMRI and

fMRI RS remain relevant for both diagnosis and prognosis, with dMRI gaining 0.05 points

for prognosis.
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Using two independent datasets (Dataset 2 from Germany and Dataset 3 from Italy), we

examined the generalization of diagnostic prediction in four modalities. The balanced

accuracy aligned with the training set for fMRI RS (0.7 +/- 0.12) and EEG LG (0.62 +/- 0.03)

in Dataset 2 and for EEG LG (0.75 +/- 0.05), EEG RS (0.64 +/- 0.04), and aMRI (0.58 +/-

0.12) in Dataset 3 (Italy). The aMRI models for diagnosis for Dataset 1 are at chance level,

which implies that we cannot test for their generalization. The models did not generalize

above chance level only to fMRI RS (0.44 +/- 0.08 median balanced accuracy) in Dataset 3

(Italy), and to EEG RS (0.49 +/- 0.02 median balanced accuracy) in Dataset 2.

Figure 2 Multivariate unimodal models' accuracy differs depending on the classification

target that can be diagnostic or prognostic. (A) Unimodal Random Forest classifiers for

the six modalities give a diagnostic classification accuracy which is given next to the

distributions (median +/- standard deviation). The diagnostic classification patient categories

are patients in UWS or MCS. (B) The same as in (A) but for the prognostic categories

(improved and not improved). (C) and (D), same as (A) but for the diagnostic classification

trained on Dataset 1: France and tested on the available modalities from Dataset 2: Germany

and Dataset 3: Italy. Abbreviations: Electroencephalography (EEG), Resting State (RS),

Local Global (LG) paradigm, functional Magnetic Resonance Imaging (fMRI), anatomical

Magnetic Resonance Imaging (aMRI), diffusion Magnetic Resonance Imaging (dMRI),

Positron Emission Tomography (PET).
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Pairwise disagreements of unimodal models are higher in MCS

and improved patients

When examining unimodal predictions per patient, we observed a discernible difference in

the extent of disagreements across patient groups. Notably, PD are markedly higher in

patients classified as being in an MCS compared to those in a UWS (Figure 3 B). The trend

in the diagnosis is primarily driven by combinations involving aMRI, PET, fMRI, and EEG

LG, leaving EEG RS to be more similar to the other modalities. A similar trend, though less

pronounced, is evident when comparing patients who show improvement versus those who

do not (Figure 3 C) where modalities contributing significantly to these disagreements are

dMRI and the EEG paradigms.

Figure 3 Pairwise disagreements (PD) of the classification probabilities are higher for

patients in the Minimally Conscious State (MCS) and patients that show an
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improvement. (A) The pairwise disagreement is calculated per patient per pair of modalities

as the absolute difference in the classification probabilities (probability of being in Group 1

vs Group 2, either for the diagnostic or the prognostic groups) between two modalities. (B)

PD of the classification probabilities are more common in MCS patients. Results are

displayed separately for the two diagnostic groups (UWS - dark red and MCS - light red). (C)

PD are higher in improved patients than in not improved patients with a difference

statistically less strong than the one of the diagnostic groups. PD of the classification

probabilities are more common in improved patients. Results are displayed separately for the

two diagnostic groups (Not improved - dark blue and Improved - light blue). The

distributions of the PD are tested using a Wilcoxon signed-rank test to see if two paired

samples are from the same distribution. The stars above the distributions denote the

significance in the color related to the diagnostic group (* p<0.05; ** p<0.01; *** p<0.001;

**** p<0.0001). The PD that have a gray background are those that include a model that was

at chance level in Figure 2 A or B. Abbreviations: Unresponsive Wakefulness Syndrome

(UWS), Minimally Conscious State (MCS), Electroencephalography (EEG), Resting State

(RS), Local Global (LG) paradigm, functional Magnetic Resonance Imaging (fMRI),

anatomical Magnetic Resonance Imaging (aMRI), diffusion Magnetic Resonance Imaging

(dMRI), Positron Emission Tomography (PET).

Feature importance differs in diagnostic and prognostic models

The fluctuations in diagnostic and prognostic accuracy across individual modalities require

an exploration into the most influential features for prediction, examining whether these vary

when assessing the patient's current state or their outcome. To investigate this, we ranked the

features per modality based on their average importance scores across all model iterations.

Figure 4 A, D, and F depict the FI scores for fMRI, PET, and aMRI showcasing cortical and

subcortical regions. Whereas Figure 4 B, C, and E show the mean FI combined in groups for

the EEG RS and LG and the dMRI scans. The diagnostic aMRI models, together with the

prognostic EEG RS and PET models, are all at chance level, thus we will not be analyzing

their FI scores.

Examining spectral subcategories of low-bands (delta, theta, alpha) and high-bands (beta and

gamma), we found that, in both paradigms, for diagnosis, low-frequency-based features are

most relevant (Figure 4 B, E and Supplementary Figure 10 G, I). In diagnostic EEG LG,

connectivity-derived features are also highly relevant, while high-frequency-based features
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are less informative. Conversely, for EEG LG prognostic prediction (Figure 4 E and

Supplementary FIgure 10 J), high-frequency features become the most informative. Whereas

the evoked features remain the least important for both diagnosis and prognosis. In the aMRI

prognostic models, the most relevant features are the subcortical volume features followed by

the salience and visual network cortical thicknesses, with the features from the DMN being

the lowest scoring. In fMRI RS functional connectivity analysis, subcortical regions to

cortical networks connectivity features are most informative for diagnostic classification,

followed by within-subcortical and cortical-to-cortical regions of interest connectivities

(Figure 4 A). Conversely, for prognosis (Figure 4 A), the somatomotor cortical network gains

importance, along with increased relevance of the limbic and the frontoparietal network. The

visual and salience networks and the subcortical to cortical functional connectivity decrease

in significance. In diagnostic FDG PET analysis (Figure 4 D), mean metabolic activity per

left or right hemisphere emerges as the most informative feature, followed by cortical

networks like somatomotor and visual, while subcortical areas are less informative. In dMRI,

the most important feature distinguishing UWS and MCS patients is the combined fractional

anisotropy (FA global) (Figure 4 C). This is followed by the right superior fronto-occipital

fasciculus, right posterior limb of the internal capsule, and left and right corona radiata. When

grouping tracts, projection fibers and brainstem fibers are most informative for diagnosis

based on fractional anisotropy (Figure 4 C). For prognosis, the mean diffusivity of

commissural fibers rises in importance (Figure 4 C), and the brainstem tracts measured by FA

remain among the most informative.

In addition, we also calculated the univariate AUC values per feature (Supplementary Figures

3 to 8), both for diagnosis and prognosis. We also show a non-linear relationship between the

mean feature importance scores and the feature AUC values (Supplementary Figure 13).
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Figure 4 Reordering of the feature importance (FI) distributions per group of features

for diagnosis and prognosis. (A) FI of the diagnostic and prognostic prediction using the

fMRI RS scans. The swarm plot shows the FI split into within subcortical functional

connectivity, within cortical connectivity subdivided into the 7 cortical networks, and

subcortical to cortical functional connectivity. The brain plots show the FI of the within

cortical and within subcortical functional connectivity per region of interest. (B) FI of the

diagnostic prediction using the EEG RS recordings. The bar plot shows the FI split into

conceptual families: connectivity (wSMI), information theory (Kolmogorov complexity and

permutation entropy), low spectral (delta, theta, and alpha frequency bands), high spectral

(beta and gamma bands), and other spectral marker summaries. (C) FI of the diagnostic and

prognostic prediction using the dMRI scan. The swarm plot shows the FI split into two

measures Fractional Anisotropy (FA) and Mean Diffusivity (MD) which are subdivided into

global brain-wide measures and families of tracts: projection fibers, brainstem, commissural

fibers, and associative fibers. (D) FI of the diagnostic prediction using the FDG PET scan. On

the brain plots the FI of the metabolic activity per cortical or subcortical region of interest are

shown. The bar plot shows the FI split into cortical networks and the subcortical regions, as

well as the importance of the half-brain (left or right hemisphere) metabolic activity. (E) FI of
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the diagnostic and prognostic prediction using the LG task-based EEG recordings. The bar

plot shows the FI split into the same conceptual families as the EEG RS with the addition of

the evoked markers coming from the task-based paradigm. (F) FI of the prognostic prediction

using the aMRI scan. On the brain plots the FI of the cortical thickness and the subcortical

volume are shown. All of the bar plots, including the brain plots from four different views are

given in Supplementary Figures 10, 11, 12. Abbreviations: Default Mode Network (Default),

Dorsal Attention Network (DorsAttn), Salience/Ventral Attention Network (SalVentAttn),

Somato-Motor Network (SomMot), Visual Network (Vis), Limbic Network (Limbic), Control

or Frontoparietal Network (Cont), Electroencephalography (EEG), Resting State (RS), Local

Global (LG) paradigm, functional Magnetic Resonance Imaging (fMRI), anatomical

Magnetic Resonance Imaging (aMRI), diffusion Magnetic Resonance Imaging (dMRI),

Positron Emission Tomography (PET).

Multimodal integration improves predictive accuracy

In this section we address two questions 1) whether the model accuracy improves with an

increase in the number of modalities, and 2) whether extended models will perform better

than basic ones.

In the case of diagnostic prediction (Figure 5 A), we observed an increase in balanced

accuracy for both basic and extended models. The basic model started at a chance level and

progressively improved to achieve an accuracy above 0.83. For prognosis (Figure 5 B), there

was an upward trend in accuracy, with a notable deviation when patients had four modalities,

leading to a drop in accuracy, particularly for the basic model. In most cases, the extended

model demonstrated superior performance, indicating non-redundant information derived

from demographic details and etiological divisions.

When looking into the trends for the models using a Spearman correlation test, for the

diagnostic models we see an increase of balanced accuracy for the basic model r(2294)=0.49,

p<0.0001, [95% CI: 0.46 - 0.52]; and for the extended model r(2294)=0.399, p<0.0001,

[95% CI: 0.36 - 0.43]. For the prognosis, the positive correlation of the balanced accuracy

with the number of modalities is less strong r(2037)=0.105, p<0.0001, [95% CI: 0.06 - 0.15],

and increases for the extended model to r(2037)=0.335, p<0.0001, [95% CI: 0.3 - 0.37].

The statistical difference between the basic and extended model in diagnosis was for n=1

modalities (U(500,500)=55562, p<0.0001), and n=4 (U(495,495)=98743, p<0.0001), whereas
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in prognosis was for n=2 (U(500,500)=107557, p=0.0007), n=4 (U(465,465)=68766,

p<0.0001), and n=5 (U(74,74)=1748.5, p=0.0002) modalities. For the diagnosis for n=2

(U(500,500)=124698, p=1), n=3 (U(500,500)=130672, p=1), and n=5 (U(301,301)=42645,

p=0.92) the basic and extended model results are not statistically different, the same is true

for the n=1 (U(500,500)=116245, p=0.28), and n=3 (U(500,500)=124105, p=1) for the

prognosis.

Figure 5 Increasing trends in the multimodal model balanced accuracy for the Basic

models (only neural modalities) and the Extended models (neural modalities plus

information on the patient etiologies and their demographics). (A) Balanced accuracy for

the diagnostic models (basic and extended) for patients that have from 1 to 5 different

neuroimaging modalities (x-axis). (B) Same as (A) but for the prognosis. The error bars

represent the first (Q1) and third (Q3) quartile intervals of the distributions. On the x-axis, the

first row represents the number of modalities across the function, and the second row is the

number of patients that have the given number of modalities. The stars represent significance

following Mann Whitney U tests (Bonferroni corrected) between the basic and extended

models (* p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001). Abbreviations: number of

elements in the given distribution (N).
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Discussion

Interpretable modeling approach for sparse multimodal

neuroimaging datasets

The assessment of DoC presents significant clinical challenges due to the dissociation

between behavioral responsiveness and consciousness, as well as the limitations of behavioral

scales in the presence of confounding factors. While individual neuroimaging and

electrophysiological modalities have shown potential in improving diagnostic and prognostic

accuracy, they are inherently limited in scope. Multimodal approaches, which integrate

information across various modalities, hold promise for addressing these limitations, but

there has been a lack of large-scale, multicentric studies systematically evaluating their

complementarity and effectiveness. In this study, we adopt a comprehensive, multicentric

approach to overcome these challenges. We integrate six neuroimaging modalities using

interpretable ML methods. To handle the inherent challenges of sparse and heterogeneous

multimodal datasets, we propose a two-model stacking approach. This methodology

effectively addresses issues such as the low patient-to-feature ratio, modality-specific data

sparsity, and the heterogeneity of modality combinations, enabling a robust analysis of both

diagnostic and prognostic dimensions of DoC.

Differentiating unimodal classification scores for the current state

of the patients and their evolution

Our analysis of neuroimaging modalities for patients with DoC revealed intriguing modality

differences in diagnostic and prognostic accuracy. Modalities that capture the structural

preservation of the brain and its networks (aMRI and dMRI), become more relevant for the

evolution of the patients. Whereas modalities that capture electrical activity (EEG) and

metabolic activity (PET) are mostly relevant for diagnosis. This shift in accuracy rankings for

modalities between diagnostic and prognostic classifications underscores their

complementarity.

PET had the highest accuracy in discriminating between UWS and MCS patients but seems

to carry little prognostic information in half of the CV splits (Figure 2 A and B). The

diagnostic results are aligned with previous studies that show that metabolic data
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distinguishes MCS from UWS patients35,41,45,46, with one study showing that the gradient

increase continues to EMCS patients and healthy controls36. Furthermore, FDG-PET has

demonstrated better suitability in discriminating DoC diagnoses compared to MRI-derived

measures, both active fMRI (where PET had higher sensitivity for identifying MCS

patients)35, aMRI and RS-fMRI46. In our work, we observed a drop in the prognostic accuracy

of PET compared to the diagnostic one, however, the distribution is large (Figure 2 A and B)

which indicates that certain CV splits are better predicted whereas other splits show opposing

trends to their training subset. This large variation in the accuracy could arise due to the big

imbalance in patients that improve (n=9) versus those that do not (n=35) (Table 1). One study

from the literature also shows a drop in the patient recovery value of PET compared to the

diagnostic, albeit still as high as 74% 35, whereas another study, in a sample of 20 patients,

could not show a prognostic value47. Comparing the PET with the EEG models, one study

showed a higher sensitivity of EEG models compared to FDG-PET, although the AUC of the

diagnostic prediction did not differ significantly.41

In our study, we used the same RS and LG paradigm EEG markers as those reported in two

previous studies.18,27 There is a partial overlap in the data with the previous works and the

results are in accordance with our study. Additionally, we summarize the markers into large

groups and contrast their diagnostic and prognostic accuracy. We observe a drop in the

accuracy of both EEG paradigms for the evolution of the patients (Figure 2 A and B) (in

contrast to the higher accuracy in the diagnostic models), as previously shown in other

studies24,48. On the contrary, other studies were able to show both the diagnostic and

prognostic potential of EEG. 23,39,40,49

In our work, we observe a diagnostic accuracy of aMRI close to chance levels (Figure 2A).

One study found similar diagnostic results (balanced accuracy ranging from 0.45 to 0.63)31.

However, Annen et al.32 show a high diagnostic area under the receiver operating curve of

96% using gray matter and white matter volume, a prediction comparable to that of

FDG-PET. Importantly, we used a different implementation of the cortical thickness and

subcortical volume estimates that is created specifically for clinical data with various

resolutions and originating from different neuroimaging centers50–53. The differences in the

findings compared to Annen et al.32 could be arising due to the different methodology and

diverse cohorts, leading to questions that should be answered in separate studies comparing

both FreeSurfer implementations across different etiologies (for example traumatic versus

anoxic). In comparison to the diagnostic models, we see an increase in accuracy when
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looking into the prognosis (Figure 2, A and B). When there is physical damage to the tissue

that can be quantified with neuroimaging, the regeneration is slow and this could dictate the

prognosis of the patients. In other words, patients who have more damage are less likely to

improve, but the size of the damage is not directly related to their current state as there can be

a substantial lesion in an area that does not directly affect the behaviors we test with the

CRS-R.

For the fMRI RS modality, we see a similar median balanced accuracy for the diagnosis and

prognosis but a larger distribution for the prognostic prediction, similar to the results of PET,

suggesting the influence of the results depending on the random CV splits. However, the

ordering of the modalities’ performance is different, which makes the fMRI RS one of the

most informative modalities for the patients’ evolution. Previous work has shown fMRI RS

potential of discriminating between patients and controls17, and between UWS and MCS

patients21,29,39. The higher accuracy reported in the literature compared to our results could

come from the methodological difference of seed-based versus atlas-based parcellation of RS

networks or the fact that in one of the studies21 they used data only from patients for whom

the clinical diagnosis based on CRS-R was congruent with PET scans. Two studies have

tested the outcome prediction of DoC patients at three months with an accuracy range of

0.69-0.7840 and 0.8122, but no predictive value at 12 months was observed40. Given that we

look at a different prognostic metric, the results are not directly comparable, but there is

consistent evidence that fMRI activity does contain prognostically relevant information for

DoC patients.

Previous diagnostic studies using dMRI have reported accuracies as high as 0.9554 and in a

range of 0.81-0.84 using a multivariate searchlight analysis of whole brain thalamo-cortical

tracts55. In prognostic studies of cardiac arrest patients, fractional anisotropy values have been

shown to reach values of 0.95 sensitivity, 1 specificity56, 0.98 AUC in a larger follow-up

study28, and 0.93 AUC 1‑year prognostic value of global deep white matter metrics in TBI

patients57. The consistency of our results with previously reported results emphasizes the

importance and potential of using dMRI to aid in the diagnostic and prognostic assessment of

patients in a DoC.

Generalization tests across independent datasets demonstrated varying performance (Figure 2

C and D). The modalities that could not be generalized include the fMRI RS from Dataset 3.

This discrepancy may be attributed to the heterogeneity in acquisition parameters compared

to the training set (see Methods). Task EEG (LG) outperforms resting state EEG across all

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.11.22.24317805doi: medRxiv preprint 

https://www.zotero.org/google-docs/?Zzx5PJ
https://www.zotero.org/google-docs/?jKfnby
https://www.zotero.org/google-docs/?Ek6C7M
https://www.zotero.org/google-docs/?wob4CP
https://www.zotero.org/google-docs/?reFtEF
https://www.zotero.org/google-docs/?Bl4PmP
https://www.zotero.org/google-docs/?PjFKFT
https://www.zotero.org/google-docs/?Zdldfp
https://www.zotero.org/google-docs/?9Re7S1
https://www.zotero.org/google-docs/?SbPgpS
https://www.zotero.org/google-docs/?rcj3Y1
https://doi.org/10.1101/2024.11.22.24317805
http://creativecommons.org/licenses/by-nc-nd/4.0/


centers, with a notably reduced effect in Dataset 2 from Germany. The higher performance of

EEG LG-based models highlights the critical role of active paradigms1 in assessing patients

with DoC, as these paradigms likely enhance and regulate patients' attentional states. In

contrast, resting-state paradigms may be less robust to cross-center variability due to their

dependence on intrinsic brain activity, which is more susceptible to external and

patient-specific factors. These findings together underscore the importance of accounting for

modality-specific and center-related acquisition parameters to improve model generalizability

across centers.

Pairwise disagreements between modalities

Studying the PD across modalities is important as it can point toward cases of patients where

a dissociation can elucidate the potential of recovery. We observed more PD in MCS patients

and those that improve (Figure 3), implying that the more positive clinical picture can be

captured by some signals and not others. The sources of these disagreements can be neural or

non-neural. Neural examples include the case of a functional hemispherectomy when a

patient showed almost no metabolic activity in the left hemisphere with preserved white

matter tracts58 or islands of preserved cortical activity that are posited to exist in this group of

patients59. Furthermore, UWS patients with unfavorable EEG features have shown an

increase in fMRI between-network connectivity and DMN within-network connectivity

decrease (but not significant).39 Although EEG and PET have shown to be highly correlated,

EEG connectivity patterns differed in PET-negative and PET-positive patients.24 Another

study found a diagnostic difference (between healthy controls and DoC patients) in metabolic

activity and mixed results in positive and negative DMN connectivity, but no significant

results in gray matter volume36. A disagreement between metabolic activity and gray matter

has been found in the left-sided language network of patients in MCS- and MCS+.37 The first

exhibited lower metabolic values in the left middle temporal cortex and a metabolic

functional disconnection between the left angular gyrus and the left prefrontal cortex. The

authors conclude that brain function and not gray matter structure supports the clinical signs

of language processing.37 In some patients, only the dMRI images showed a consistent loss of

white matter compared to the seemingly unchanged appearance of structural images.60

Furthermore, the reliability of discriminating between MCS and UWS patients is often

compromised due to the limited sensitivity of scalp EEG, as demonstrated by instances where

pathological brain activity can mask normal neuronal patterns in awake individuals,
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suggesting the potential for complex dissociations in severe brain injury cases10. The proposal

to rename the MCS to a cortically mediated state61 underlines the fact that the MCS

encompasses a broad and heterogeneous range of conditions. This spectrum includes both

unconscious patients who exhibit residual cortical activity leading to observable behavior and

conscious patients who, despite possibly being self-aware, are hindered by executive deficits,

which prevent them from effectively using a communication code or responding functionally

to commands.61,62 This may explain why there are more PD in MCS compared to UWS, and

that some specific modalities might not capture the heterogeneity. A complementary

perspective is that the differences in the prediction can also come from etiology-specificities

such as EEG alpha power that has been shown to be suppressed in severe post-anoxic patients

and does not differ in patient groups having other etiologies30,63. All these examples

corroborate the fact that PD from neural origin are common, and their hierarchical

importance in diagnosis and prognosis needs to be further studied.

One non-neural source of disagreement is the data quality which, even with stringent

exclusion criteria, is lower in this patient group, and it can affect analyses down the line.

Furthermore, the state of the patients fluctuates across various time scales, whereas in our

case we work with one diagnosis per patient, which could be the source of disagreement in

diagnostic models, which would not be the case for the prognostic prediction. A way to

surpass this is to look at the variability of multiple CRS-R tests and check the disagreement in

light of the patient’s clinical fluctuations.

Differing importance of feature groups within modalities, for

diagnostic and prognostic prediction

EEG

Previous results showed that the most informative EEG features to differentiate between

UWS and MCS patients are absolute alpha power, permutation entropy, Kolmogorov

complexity, and a connectivity measure in the theta band (wSMI).18,27 In our work, we find

that in EEG, the spectral feature groups are the most informative (Figure 4 B, E and

Supplementary Figure 10 G, I, J), with the low frequencies being important for diagnosis and

the high frequencies for prognosis. This finding can be related to the mesocircuit

hypothesis.7,64 The importance of high frequencies for the prognosis in the DoC patients that
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we report could further help in distinguishing the MCS patients that belong in group C of the

‘ABCD’ model of corticothalamic dynamics as having the potential to behaviorally improve.

In prognostic EEG studies of prolonged DoC, the presence of dominant delta frequencies and

reduced EEG amplitudes was related to worse outcomes, whereas the dominance of alpha

frequencies, preserved EEG reactivity, and an increase of the dominant frequency were

associated with improvement.10,23 On the contrary, in one study, higher delta power has been

associated with improved outcomes for patients transitioning from UWS to MCS47 which we

also find in EEG LG (Supplementary Figure 4). These discrepancies can come from

etiology-dependent differences such as the slowing of EEG being relevant for prognosis in

toxic encephalopathies, a transient increase in slow waves or suppression of sensory stimuli

in patients with a traumatic brain injury, contrary to the increase in gamma and alpha

frequencies in acute patients with a subarachnoid hemorrhage10.

In our work, we see that connectivity metrics have a stronger weight in the LG acquisition

compared to RS (Figure 4 B, E and Supplementary Figures 3 and 4). Previous work has

shown the importance of network metrics over frequency power24, the relevance of coherence

across various regions and frequency bands for improvement of UWS patients23, and a

stronger delta network connectivity in patients with negative outcomes24. On the contrary, a

study found no network features related to outcome at three or six months post-injury48, with

only relative alpha power improving prediction accuracy at three months in contrast to

predicting using only clinical features. This is consistent with our findings, where univariate

AUC values are at chance level for the prognosis, both in EEG RS and LG.

When using oddball auditory perception paradigms, the event-related potentials such as

mismatch negativity (MMN) and the P300 have been reported to have a low sensitivity in

MCS patients.10,65 Accordingly, in our work, most of the evoked features are the least

informative ones (Figure 4 E).

Neuroimaging

Multiple studies using PET or fMRI RS have reported a brain-wide network difference

between UWS and MCS patients21,41,45, with some reporting that the left hemisphere is more

impaired in UWS31,46. In our work, in most neuroimaging modalities, we observe a distributed

brain-wide FI (Figure 4, A, D, F, brain plots), with the exception of the fMRI RS prognostic

FI.
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However, the DMN has been mostly put into focus to differ in diagnostic groups, to have

lower activity in UWS compared to MCS15,17,22,46, both at enrollment and at ICU discharge39

and to relate with recovery outcome20,22,25,26,46. Structural information such as gray matter

volume FI32 and structural integrity31 have also been reported to be highest in DMN regions.

In our prognostic results, the DMN features are moderately informative compared to the other

networks in the aMRI and fMRI scans (Figure 4 A, F and Supplementary Figure 10 B, D). In

the fMRI scans, where both diagnostic and prognostic models are comparable, they are more

informative for the prognosis of the patients.

A few studies report the strongest metabolic activity reduction in frontoparietal areas45,46,66, or

specifically in the medial prefrontal cortex (part of DMN) or lateral parietal cortex22. Specific

networks that have been associated with diagnosis, are the primary and associative

somatosensory areas45 with one FDG-PET study observing this in the best-preserved

hemisphere62. A few studies report specific diagnostic differences only for the auditory

network in fMRI RS17,21 and glucose metabolism to be higher in MCS than in UWS47. In PET

and fMRI RS, we also observe the higher relevance of somatomotor and visual networks. In

contrast, one study reports that higher-order networks (DMN, salience, dorsal attention

network, left and right fronto-parietal network, and temporal network) had better diagnostic

accuracy than low-order networks (sensorimotor, auditory, and visual networks) as derived by

their structural integrity31, but we cannot compare this to our results because the aMRI model

is at chance level.

In our work, we find that the subcortical areas become more important for prognosis (in

contrast to diagnosis), however, this difference has not been the focus of neuroimaging

investigations. Various subcortical areas have been reported to be different in diagnostic

groups such as a lower metabolic activity in the brainstem32,45, thalamus32,45, the caudate and

para-hippocampal areas32. Thalamic white matter integrity has also been affected in patients54,

along with the pathway linking the posterior cingulate cortex/precuneus with the thalamus, as

evidenced by their mean fractional anisotropy values67. Whereas brainstem white matter tract

preservation was only observed in the ischaemic-hypoxic etiological group60, and no mean

diffusivity brainstem differences between MCS and UWS54.
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Multimodal combinations

The increase of the balanced accuracy of patients that have multiple different modalities can

be expected from literature either for the combination of EEG and FDG-PET41, EEG and

fMRI RS39,40, EEG and dMRI42, aligning with our results. Similar studies in cardiac arrest

patients show that a model utilizing only three FA features outperformed models

incorporating either only the FA global scores, clinical data, or gray matter apparent diffusion

coefficient56, or an enhanced AUC with the integration of scores and metrics from multiple

modalities (EEG, aMRI, dMRI)28. A case study by Comanducci et al.11 illustrates how

longitudinal multimodal analysis can reveal covert signs of consciousness in an unresponsive

patient. Additionally, Rohaut et al.33 demonstrate that integrating multimodal observations

enhances neuro-prognostication performance.

Benefits, caveats, and the future of integrative multimodal

neuroimaging for DoC

The current electrophysiology and neuroimaging modalities capture some aspect of brain

preservation - either the underlying structure or dynamics, and they contain non-redundant

information. The importance of having a multidimensional perspective on this clinical group

has been increasingly emphasized.4,13,33,39–41 Overall, numerous reviews put focus on the

advantage of having multimodal acquisitions4,7,12,13,68, however, the practical combination

given the limitations already exposed in this paper makes the implementation a challenging

one. Furthermore, ML-based approaches, trained on behavioral labels to differentiate between

UWS and MCS patients, may overlook conscious but unresponsive individuals, posing a

circularity problem; however, there is some robustness to mislabeling if classifiers are trained

with a sufficient amount of data27. Importantly, RFC are non-linear models, thus the

relationship between the FI and the models (measured here through the balanced accuracies)

is non-linear. Although the FI can be very informative to understanding how decisions are

made, they have important limitations, and further analysis of redundancy and synergy can

paint a clearer image of their relationships. Furthermore, future investigations should focus

on the distinction between different etiologies of patients with DoC using combined

multimodal approaches (due to interactions of neural signals with etiology30,63.
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Conclusions

In this study, we developed an explainable ML approach for the classification of DoC

patients from a large dataset of multimodal neuroimaging recordings. The observed

distinctions in accuracy, feature importance, and pairwise disagreements, underscore the need

for tailored strategies in leveraging neuroimaging modalities for enhanced clinical

decision-making. The comparison of the current state of the patients and their evolution

across modalities and features (regions or other signal summaries), may open the path to

more careful investigations within etiologies or integrative neuroimaging studies that have

more narrow hypotheses.

Data availability

The data is not publicly available. Codes used in the analysis will be made publicly available

following the publication.
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Figure legends

Figure 1 Multimodal assessment methods of diagnostic and prognostic categories of

patients with DoC. (A) Patients underwent multiple CRS-R assessments during their

hospital stay and the best assessment in that range of a week (typically) was taken as the

gold-standard clinical diagnosis. The diagnostic clinical categories of patients included in the

prediction are UWS and MCS. The prognostic categories are improved or not improved

(explained in the Methods section). (B) For both the diagnostic and prognostic classification

we ran unimodal RFC to obtain probabilistic estimates of each patient belonging to one or

another category. The probabilistic outputs are then combined using a second-level RFC
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either alone or in combination with the etiologies and demographic information. Missing

values are substituted with -1 (a data imputation approach). The final output is a probability

of belonging to either a diagnostic or prognostic category. Abbreviations: Coma Recovery

Scale-Revised (CRS-R), Unresponsive Wakefulness Syndrome (UWS), Minimally Conscious

State (MCS), Emergent Minimally Conscious State (EMCS), Glasgow Outcome

Scale-Extended (GOSE), Electroencephalography (EEG), Resting State (RS), Local Global

(LG) paradigm, functional Magnetic Resonance Imaging (fMRI), anatomical Magnetic

Resonance Imaging (aMRI), diffusion Magnetic Resonance Imaging (dMRI),

18F-fluoro-Deoxy-Glucose Positron Emission Tomography (FDG PET), Random Forest

Classifiers (RFC).

Figure 2 Multivariate unimodal models' accuracy differs depending on the classification

target that can be diagnostic or prognostic. (A) Unimodal Random Forest classifiers for

the six modalities give a diagnostic classification accuracy which is given next to the

distributions (median +/- standard deviation). The diagnostic classification patient categories

are patients in UWS or MCS. (B) The same as in (A) but for the prognostic categories

(improved and not improved). (C) and (D), same as (A) but for the diagnostic classification

trained on Dataset 1: France and tested on the available modalities from Dataset 2: Germany

and Dataset 3: Italy. Abbreviations: Electroencephalography (EEG), Resting State (RS),

Local Global (LG) paradigm, functional Magnetic Resonance Imaging (fMRI), anatomical

Magnetic Resonance Imaging (aMRI), diffusion Magnetic Resonance Imaging (dMRI),

Positron Emission Tomography (PET).

Figure 3 Pairwise disagreements (PD) of the classification probabilities are higher for

patients in the Minimally Conscious State (MCS) and patients that show an

improvement. (A) The pairwise disagreement is calculated per patient per pair of modalities

as the absolute difference in the classification probabilities (probability of being in Group 1

vs Group 2, either for the diagnostic or the prognostic groups) between two modalities. (B)

PD of the classification probabilities are more common in MCS patients. Results are

displayed separately for the two diagnostic groups (UWS - dark red and MCS - light red). (C)

PD are higher in improved patients than in not improved patients with a difference

statistically less strong than the one of the diagnostic groups. PD of the classification

probabilities are more common in improved patients. Results are displayed separately for the

two diagnostic groups (Not improved - dark blue and Improved - light blue). The

distributions of the PD are tested using a Wilcoxon signed-rank test to see if two paired
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samples are from the same distribution. The stars above the distributions denote the

significance in the color related to the diagnostic group (* p<0.05; ** p<0.01; *** p<0.001;

**** p<0.0001). The PD that have a gray background are those that include a model that was

at chance level in Figure 2 A or B. Abbreviations: Unresponsive Wakefulness Syndrome

(UWS), Minimally Conscious State (MCS), Electroencephalography (EEG), Resting State

(RS), Local Global (LG) paradigm, functional Magnetic Resonance Imaging (fMRI),

anatomical Magnetic Resonance Imaging (aMRI), diffusion Magnetic Resonance Imaging

(dMRI), Positron Emission Tomography (PET).

Figure 4 Reordering of the feature importance (FI) distributions per group of features

for diagnosis and prognosis. (A) FI of the diagnostic and prognostic prediction using the

fMRI RS scans. The swarm plot shows the FI split into within subcortical functional

connectivity, within cortical connectivity subdivided into the 7 cortical networks, and

subcortical to cortical functional connectivity. The brain plots show the FI of the within

cortical and within subcortical functional connectivity per region of interest. (B) FI of the

diagnostic prediction using the EEG RS recordings. The bar plot shows the FI split into

conceptual families: connectivity (wSMI), information theory (Kolmogorov complexity and

permutation entropy), low spectral (delta, theta, and alpha frequency bands), high spectral

(beta and gamma bands), and other spectral marker summaries. (C) FI of the diagnostic and

prognostic prediction using the dMRI scan. The swarm plot shows the FI split into two

measures Fractional Anisotropy (FA) and Mean Diffusivity (MD) which are subdivided into

global brain-wide measures and families of tracts: projection fibers, brainstem, commissural

fibers, and associative fibers. (D) FI of the diagnostic prediction using the FDG PET scan. On

the brain plots the FI of the metabolic activity per cortical or subcortical region of interest are

shown. The bar plot shows the FI split into cortical networks and the subcortical regions, as

well as the importance of the half-brain (left or right hemisphere) metabolic activity. (E) FI of

the diagnostic and prognostic prediction using the LG task-based EEG recordings. The bar

plot shows the FI split into the same conceptual families as the EEG RS with the addition of

the evoked markers coming from the task-based paradigm. (F) FI of the prognostic prediction

using the aMRI scan. On the brain plots the FI of the cortical thickness and the subcortical

volume are shown. All of the bar plots, including the brain plots from four different views are

given in Supplementary Figures 10, 11, 12. Abbreviations: Default Mode Network (Default),

Dorsal Attention Network (DorsAttn), Salience/Ventral Attention Network (SalVentAttn),

Somato-Motor Network (SomMot), Visual Network (Vis), Limbic Network (Limbic), Control
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or Frontoparietal Network (Cont), Electroencephalography (EEG), Resting State (RS), Local

Global (LG) paradigm, functional Magnetic Resonance Imaging (fMRI), anatomical

Magnetic Resonance Imaging (aMRI), diffusion Magnetic Resonance Imaging (dMRI),

Positron Emission Tomography (PET).

Figure 5 Increasing trends in the multimodal model balanced accuracy for the Basic

models (only neural modalities) and the Extended models (neural modalities plus

information on the patient etiologies and their demographics). (A) Balanced accuracy for

the diagnostic models (basic and extended) for patients that have from 1 to 5 different

neuroimaging modalities (x-axis). (B) Same as (A) but for the prognosis. The error bars

represent the first (Q1) and third (Q3) quartile intervals of the distributions. On the x-axis, the

first row represents the number of modalities across the function, and the second row is the

number of patients that have the given number of modalities. The stars represent significance

following Mann Whitney U tests (Bonferroni corrected) between the basic and extended

models (* p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001). Abbreviations: number of

elements in the given distribution (N).
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