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Causality between Smoking and DNA Methylation Supplementary Information

Supplementary Methods

In this study, we analyzed data from the Netherlands Twin Register (NTR) [1] to examine the
causal influences between smoking status and blood DNA methylation (DNAm) using MR-DoC
models [2,3]. In the current analyses, we included data from European-ancestry adult twins with
both genotypic and DNAm data, comprising 2,577 individuals (67% female).

Genotypic Data, Principal Components Analysis, and Ancestry Outlier Pruning

The DNA samples included in the current study were genotyped on 3 SNP (single nucleotide
polymorphism) microarray platforms: Affymetrix 6.0 (N=2,399), Affymetrix Axiom (N= 83),
and Illumina GSA NTR array (N= 95). Genotype calling was done following the manufacturer’s
protocols. Sample and variant quality control (QC), imputation, genetic principal component
analysis (PCA), and ancestry assignment have been previously described [4]. Briefly, after QC
and harmonizing variants across the three platforms, the data were aligned to the positive strand
of Genome Reference Consortium Human Build 37 (GRCh37) and then imputed against the
European (EUR) super-population of the 1000 Genomes Project Phase-3 (KGP3) [5], the
Haplotype Reference Consortium (HRC) [6] 1.1 (Ega version), and the Genome of the
Netherlands Consortium (GoNL) [7] reference panels. Using SmartPCA in EIGENSTRAT [8],
the first 20 PCs for the genotypic data were calculated in the KGP3 data, and the NTR samples
were then projected onto the PC space based on the SNP weights. Samples identified as outliers
in the PC space were then excluded.

Peripheral Blood DNA Methylation Data

Epigenome-wide DNAmM in peripheral whole blood was measured with the Infinium
HumanMethylation450 BeadChip Kit (i.e., the lllumina 450k microarray), following the
manufacturer’s protocol [9]. QC and normalization of the DNAm data were performed using a
custom pipeline developed by the BIOS (Biobank-based Integrative Omics Study) Consortium,
as previously described [10]. Briefly, sample QC was done using MethylAid [11], followed by
probe QC with DNAmMArray [12]. The latter removed the probes with a raw signal intensity of
zero, bead number <3, or a detection p-value >0.01, as well as the ambiguously mapped probes.
Next, samples and probes with >5% missingness were removed. The resulting DNAm data were
normalized using the Functional normalization algorithm [13] implemented in DNAmATrray [12],
with the first four PCs (with eigenvalue >1) derived from control probes. Finally, the probes
containing a SNP within the CpG site (at C or G nucleotide) were removed regardless of the
minor allele frequency. These SNPs were previously identified using DNA sequencing data from
the Dutch population in GoNL [7]. For the current analyses, only autosomal probes were
included, yielding 411,169 CpG sites that passed all QC metrics.
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Smoking Assessment at Blood Sampling

Self-reported cigarette smoking status was recorded through an interview during the home visit
for blood sample collection in 2004-2008 and 2010-2011. Participants were asked, “Do you
smoke?”” with one of three possible answers: “No, I never smoked” (N = 1,492), “No, but I did in
the past” (N = 549), and “Yes” (N = 528). Those endorsing current smoking were asked how
many years they had been smoking and how many cigarettes or rolling tobacco they smoked per
day. Those endorsing former smoking were asked how many years ago they quit smoking, how
many years they had smoked before quitting, and the maximum number of cigarettes or rolling
tobacco they used to smoke per day. The original wording in Dutch is shown below.

Rookt u? 1. Ja la: hoelang rooktual? ........................ jaar
1b: hoeveel sigaretten/ shagjes per dag?
................................... sigaretten/ shagjes
2. Nee, wel in het 2a: hoelang is dat geleden?.............c.ccocveee. jaar
verleden 2b: hoeveel jaren heeft u gerookt?............... jaar
2c: hoeveel rookte u per dag (max)?
.................................... sigaretten/ shagjes

3. Nooit
Gerookt binnen | 1. Ja
laatste uur voor | 2. Nee
bloedafname? 3. Nvt

The responses were checked for consistency with the information from the NTR longitudinal
surveys filled out closest to blood sampling. As previously described [14], potential
misclassification of smoking status through self-reports was evaluated based on plasma cotinine
levels (a metabolite of nicotine and a biomarker of smoking exposure), measured in a subset of
the sample. Of the 591 individuals with self-reported never smoking and measured plasma
cotinine, only five (0.8%) had cotinine levels indicative of smoking (>15 ng/ml), thus suggesting
low misclassification of smoking status. The number of individuals endorsing current or former
smoking was too small to evaluate a dose-response relationship of the causal effects in MR-DoC
models restricted to currently or formerly smoking individuals. Likewise, the sample with former
smoking was too small to examine the effect of “time since quitting smoking” on DNAm.

mQTL Allelic Score

We identified 12,940 smoking-associated CpGs with cis-mQTL summary statistics available
from GoDMC [15] (excluding NTR), using GoDMC’s definition of “cis” interval (within 1Mb of
the CpG). In GoDMC, the contributing cohorts performed genome-wide mQTL analyses, testing
the associations of ~480,000 CpG sites with ~12 million SNPs. However, before the meta-
analysis, the cohort-level results were filtered to retain the SNP-CpG pairs withp <1 x 10~°
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within the cohort. Thus, since the summary statistics were already partly thresholded, we
computed the mQTL allelic scores by applying clumping and thresholding in PLINK1.9 [16],
using summary statistics from the Genetics of DNA Methylation Consortium (GoDMC;
excluding NTR) [15]. Linkage disequilibrium (LD)-based clumping was performed using --
clump-pl 1 --clump-kb 250, with two levels of LD r: (0.5 and 0.1) specified for —--
clump-r2, thus yielding two sets of LD-clumped cis-SNPs. Using either set of SNPs, we
computed the allelic score with --score at a threshold of 0.05 (applied with --g-score-
range). If none of the SNPs had p <0.05, no threshold was applied for score calculation. An
additional allelic score was calculated using the top cis-mQTL (with the minimum association p-
value) for each CpG. Thus, for every CpG, three scores were calculated (two LD-clumped
mQTL allelic scores, plus the top-mQTL), though these scores were not necessarily distinct; for
example, if a CpG had only one cis-SNP, all three criteria yielded the same score. Likewise, for
some CpGs, the two LD-clumping cut-offs resulted in the same set of SNPs and, hence, identical
mQTL allelic scores.

To assess the strength of an mQTL allelic score, we first estimated its incremental R? by fitting
generalized estimating equations (GEE), controlling for the standard EWAS covariates (as
above), genotyping platform, and the first ten genetic PCs. For each CpG, the mQTL allelic
score with the highest incremental R? was retained for further filtering based on F-statistic.

For each CpG, the effective GEE sample size (Ng ) was computed using the following
formulae:

NMZ — 2 * NMZ
Eff =71 + vz
DZ __ 2 * NDZ

N = 7=
Eff 71 + Tpz
NEff = NEIY}:Zf + NEL?fo + NITLd

where, Ng7; and N£7; are the estimated effective sample sizes of MZ and DZ twins, Ny, and

Np, are the numbers of complete MZ and DZ twin pairs, while 7, and r,, are the twin
phenotypic (DNAm) correlations in MZ and DZ twin pairs, respectively. N;,, is the number of
individuals without the co-twin.

The estimated effective sample size was then used to transform the incremental R? value into an
F-statistic as:

R* Ny — K

F = X
1 — R? K -1
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where K = 2, given two parameter estimates: the intercept and the regression coefficient of the
mQTL allelic score.

Polygenic Risk Score of Smoking

The PRS of smoking was based on the European-ancestry summary statistics from the genome-
wide association study (GWAS) of smoking initiation (lifetime regular smoking) by GSCAN
(GWAS & Sequencing Consortium of Alcohol and Nicotine use)[17], excluding the NTR from
the meta-analysis.

As described in a previous study using the same PRS in the NTR[4], the post-imputation SNPs
from the merged best-guess three-platform data were QCed to satisfy the following criteria:
MAF >0.01, HWE p >0.00001, Mendel error rate < 1%, and genotype call rate over 98%.
Furthermore, the imputation info for the three platforms needed to be above 0.10, and the allele
frequency between platforms after imputation could not differ more than 2%, leaving a total of
7,551,860 post-QC SNPs for analysis. The PRS was calculated using LDpred v0.9[18], with
HRC+GoNL as the LD (linkage disequilibrium) reference panel. For estimating the target LD
structure, we used a subset of unrelated individuals and a set of well-imputed variants in the
NTR. The parameter 1d_radius was set by dividing the number of variants in common (from
the output of the coordination step) by 12000. For the coordination step, the median sample size
was used as the input value for N. For the LDpred step, we applied the following thresholds for
the fraction of variants with non-zero effects (in addition to the default infinitesimal model): —-
PS=0.5,0.3,0.2,0.1,0.05,0.01.

To determine the LDPred threshold that yielded the PRS with the highest predictive power for
the variables of interest (current vs. never and former vs. never smoking), we fitted logistic
regression models in R (v4.3.2) to estimate incremental R? on a liability scale. We first fitted a
null logistic regression model using the g1m () function with

family=binomial (1ink="'logit"') and astandard set of covariates comprising age
(linear and quadratic), sex, SNP microarray platform (dummy variables), and the first ten genetic
PCs (without including the PRS). Then, we fitted a full model with the PRS as an additional
independent variable. We estimated the liability-scale R? in both models and then the difference
in the two R? estimates as the variance in the outcome variable explained by the PRS (controlling
for the covariates). For both outcome variables (current and former smoking), the PRS with the
highest incremental R? was based on a threshold of 0.1 and thus retained for further analyses.
The PRS was residualized for the SNP microarray platform and the first ten genetic PCs using
linear regression models. The residuals were then standardized to have a mean of zero and an
S.D. of one before using it as an 1V in the MR-DoC models.

Univariate Twin Models
Before fitting the MR-DoC models, we examined univariate ACE twin models of smoking status
to estimate the additive genetic (A), shared environmental (C), and unique environmental (E)
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variance components of the latent liability scale, with age and sex as covariates. Maximum-
likelihood tetrachoric correlation estimates for current versus never smoking were: ry,, = 0.925
(S.E.=0.021) in MZ pairs, and rp; = 0.533 (S. E.= 0.083) in DZ pairs. Likewise, former
versus never smoking had ry,, = 0.822 (S.E.= 0.038) and rp; = 0.474 (S.E.= 0.096). Based
on likelihood-ratio tests (LRT), an AE twin model was the most parsimonious model for both
current versus never (AE versus ACE LRT p = 0.417) and former versus never smoking (AE
versus ACE LRT p = 0.530) (Supplementary Table S31). The estimated variance components
of current versus never smoking liability were A = 0.927 (maximum-likelihood 95% confidence
interval: 0.879, 0.959) and E = 0.073 (0.041, 0.121). The corresponding estimates of former
versus never smoking were A = 0.827 (0.745, 0.888) and E = 0.173 (0.112, 0.255).

Prior twin analyses of DNAm at CpG sites in NTR [10] showed that, of the 411,169 autosomal
post-QC CpG sites, the AE twin model was the best fitting model at all but 426 sites, with
significant (after multiple-testing correction of LRT p-values) C variance at 185 sites and
significant non-additive genetic (D) variance at 241 sites. Of the smoking-associated CpGs [19],
only two CpGs had significant estimates of C, while only seven CpGs had significant estimates
of D. Thus, in the MR-DoC models, we specified an AE variance decomposition of DNAm at all
smoking-associated CpGs. Note that, in the results presented in the main text, none of the CpG
sites with consistent, nominally significant estimates of causal effects in either direction (525
sites with current smoking — DNAm; 64 sites with DNAm — current smoking) have significant
C or D estimates per the previous univariate twin analyses [10]. Moreover, since smoking status
liability also has an AE variance decomposition, including a C or D variance component of
DNAm in the model would not change the possible sources of covariance between smoking
status and DNAm in the model.

MR-DoC Models

We used the OpenMx (version 2.21.8) [20] package in R (version 4.3.2) to fit the MR-DoC
models using the code provided in the original publications [2,3]. Binary smoking status was
examined under the liability threshold model [21], assuming a latent liability distribution with its
mean fixed at zero and variance fixed at one, while the threshold was freely estimated.

In each MR-DoC model, the residual variance of smoking status liability is decomposed into a2
(A) and eZ (E), while that of DNAm is decomposed into a3 (A) and e?3 (E). The correlation
between the latent A factors of smoking and DNAm (rA) represents the confounding due to
additive genetic factors. The correlation between the latent E factors (rE) represents the
confounding due to unique environmental factors. Across all models, the causal path from
smoking to DNAm is labeled g1, while that from DNAm to smoking is labeled gz2. The
residualized PRS and mQTL allelic scores are regressed on respective latent factors, representing
the underlying “true” standardized scores with mean fixed at zero and variance fixed at one. The
coefficient of the path from the latent score to the observed score estimates the standard
deviation of the observed score (SDpgs and SDy, o7y, respectively).

We fitted five sets of MR-DoC models with current versus never smoking and similar sets with
former versus never smoking (Figure 1): (1) Smoking — DNAm MR-DoC1 with horizontal



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

pleiotropy, (2) Smoking — DNAm MR-DoC1 with unique environmental confounding, (3)
DNAm — Smoking MR-DoC1 with horizontal pleiotropy, (4) DNAm — Smoking MR-DoC1
with unique environmental confounding, and (5) bidirectional MR-DoC2. Each model included
age and sex as covariates of smoking status. Thus, for each CpG site included in the analyses,
three causal estimates were obtained in either direction (Smoking — DNAm, or DNAm —
Smoking) from (1) MR-DoC1 with horizontal pleiotropy, (2) MR-DoC1 with unique
environmental confounding, and (3) MR-DoC2. For each set of causal estimates across CpG
sites, we calculated the Bayesian inflation factor (1) using the R package bacon [22], made QQ
plots using the R package GWASTools [23], and then applied Benjamini-Hochberg FDR
correction [24] to the p-values using the R package gvalue [25]. For Bonferroni multiple-testing
correction, the significance level was defined as @ = 0.05/16940 = 2.95 x 107¢ for Current
Smoking — DNAm MR-DoC1 models and a = 0.05/11124 = 4.49 x 107° for DNAm —
Current Smoking MR-DoC1 and bidirectional current-smoking MR-DoC2 models.

Functional Enrichment Analyses

We used Metascape [26] (v3.5.20240101; https://metascape.org/gp/index.html#/main/stepl, with
the default settings for “Express” analyses) to perform gene-set annotation and functional
enrichment analyses of the CpGs with potential causal effects in either direction. The input list of
gene IDs was selected based on proximity to the CpGs with consistent and nominally significant
(p <0.05) estimates in all three models; i.e., 64 CpGs with potential DNAm — Current Smoking
effects (“Nearest Gene” in Supplementary Table S3) and 525 CpGs with potential Current
Smoking — DNAm effects (“Nearest Gene” in Supplementary Table S1). None of the sites with
potential DNAm — Current Smoking effects are located in the MHC region. For Current
Smoking — DNAm effects, 21 additional sites in the MHC region showed consistent, nominally
significant estimates. There was no significant relationship between a CpG site having consistent
causal estimates and its being located in the MHC region (Fisher’s exact test p-value = 0.5455).
However, out of an abundance of caution, the sites located in this region were not included in the
enrichment analyses to avoid sites with potentially unreliable results due to its complex LD
structure.

As described in the Metascape manuscript [26], the program performed integrated enrichment
analyses against multiple reference ontology knowledgebases, including GO processes [27],
KEGG pathways [28], canonical pathways [29], and Reactome gene sets [30]. The significant
terms with a hypergeometric p-value <0.01 and >1.5-fold enrichment were clustered into a
hierarchical tree based on Kappa-statistical similarities among their gene memberships. The tree
was then cast into clusters based on a threshold of 0.3 kappa score to obtain enriched, non-
redundant ontology terms.

eFORGE (experimentally derived Functional element Overlap analysis of ReGions from
EWAS)


https://metascape.org/gp/index.html#/main/step1
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We performed eFORGE 2.0 [31-33] analyses of the selected CpG probe IDs with consistent and
nominally significant (p <0.05) estimates in either direction (from Supplementary Tables S1,
S3). Using the web-based tool (https://eforge.altiusinstitute.org/), we examined the overlap
between the implicated CpGs and multiple comprehensive reference sets of genomic and
epigenomic features that regulate gene expression in different tissues and cell types. The
platform was set as “Illumina 450k array”, with default analysis options: proximity = 1kb
window, background repetitions = 1000, and significance thresholds of FDR <0.01 (strict) and
FDR <0.05 (marginal). Three sets of analyses were performed for each list of probe IDs,
selecting the reference data from “Consolidated Roadmap Epigenomics - Chromatin - All 15-
state marks”, “Consolidated Roadmap Epigenomics - DHS”, and “Consolidated Roadmap
Epigenomics - All H3 marks”.

The eFORGE results include the specific probe IDs overlapping between the input set and the
reference sample. We performed iterative follow-up analyses for the CpGs with potential DNAmM
— Current Smoking effects, based on the overlapping probe IDs to examine the specificity of
significant (FDR <0.01) enrichment in tissues of interest. Analyses restricted to the 21 CpGs
overlapping with enhancers in the fetal brain (Supplementary Figure S18, Table S12) showed
significant enrichment only for enhancers in the fetal brain samples, suggesting high specificity
(Supplementary Figure S21). The histone mark analyses also showed enrichment in the fetal
brain (though not specific to the brain), wherein all 21 CpGs overlapped with H3K4mel, while a
subset of 17 CpGs overlapped with H3K4me3 (Supplementary Figure S22). Finally, we
performed analyses restricted to these 17 CpGs.

We performed similar follow-up analyses with probe 1Ds showing overlap with enhancers in the
lung (potentially etiologically relevant tissue) and the primary B-cells in cord blood (the tissue
type with the most significant enrichment) (from Supplementary Figure S18, Table S12).

Enrichment in blood cell types may be influenced by residual cell-composition effects in whole
blood analyses [31]. So, we also examined the overlap between the CpGs with potential DNAm
— Current Smoking effects and the genes implicated in the GWAS of blood cell counts [34] to
probe the potential impact of the cell-count GWAS associations on the causal inference and cell-
type enrichment. Similar overlap was examined for the subset of CpGs overlapping with
enhancers in cord blood primary B cells.
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Ilustrative MR-DoC models of causality between current smoking and blood DNAm at (A)
€g23916896 and (B) cg05575921 in the AHRR gene.

We fitted five MR-DoC models at each CpG: (1) Smoking — DNAm MR-DoC1 with horizontal
pleiotropy, (2) Smoking — DNAm MR-DoC1 with unique environmental confounding, (3) DNAm
— Smoking MR-DoC1 with horizontal pleiotropy, (4) DNAm — Smoking MR-DoC1 with unique
environmental confounding, and (5) bidirectional MR-DoC2. Thus, for each CpG, three causal
estimates were obtained in either direction of causation.

In the path diagrams, squares/rectangles indicate observed variables, circles indicate latent
(unobserved variables), single-headed arrows indicate regression paths, and double-headed
curved arrows indicate (co-)variance. The residual variance of smoking status liability is
partitioned into additive genetic (Asmk) and unique environmental (Esmk) components. Likewise,
the residual variance of DNAm is partitioned into Aonam and Epnam. The correlation between
Asmk and Apnam represents the confounding between smoking and DNAm due to latent
(unobserved) additive genetic factors, while the correlation between Esmk and Epnam represents
confounding due to latent unique environmental factors. Each model included age and sex as
covariates of smoking status (not shown). DNAm g-values were residualized for standard
biological and technical covariates used in EWAS (see Methods). The smoking PRS and the
mQTL allelic scores were residualized for standard GWAS covariates, including genetic
principal components and genotyping platform. In the path diagrams, the residualized PRS and
mQTL allelic scores are regressed on respective latent factors, representing the underlying
“true” standardized scores (mean = zero; variance = one). The coefficient of the path from the
latent score to the observed score estimates the standard deviation of the observed score.

Note. The paths are labeled by the point estimate and its S.E. in parentheses. For better
readability, the path diagrams show only the within-individual part of the models fitted to data
from twin pairs.
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377  Figure S2
378  QQ Plot of MR-DoC1 models (with unique environmental confounding, rE) of Current Smoking
379 > DNAm at 411,169 epigenome-wide CpGs (Bayesian genomic inflation factor, A = 1.09).
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380

381 Figure S3

382  QQ Plot of MR-DoC1 models (with unique environmental confounding, rE) of Current Smoking
383 > DNAm at 16,940 smoking-associated CpGs (Bayesian genomic inflation factor, A = 1.20).
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386  Figure S4
387  QQ Plot of the Current Smoking - DNAm causal estimates in MR-DoC2 models across 11,124
388  smoking-associated CpGs (Bayesian genomic inflation factor, 1 = 1.20).
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389

390 Figure S5

391  QQ Plot of the DNAm - Current Smoking causal estimates in MR-DoC2 models across 11,124
392  smoking-associated CpGs (Bayesian genomic inflation factor, 1 = 1.01).
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395 Figure S6
396  Bidirectional Causal Estimates at the 64 CpGs with Robust Evidence of the Causal Effects of
397  Current Smoking on DNA methylation

Bidirectional Causal Estimates between Current Smoking and DNAm
At 64 CpGs where Current Smoking Likely Affects DNAm
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399  These CpGs did not show robust evidence for the reverse effects of DNAm on current smoking.

400  Please refer to Supplementary Tables S1 (Current Smoking = DNAm) and S2 (DNAm -
401  Current Smoking) for the corresponding data.
402
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404  Figure S6
405  Upset plot of the intersection of CpGs with statistically significant Current Smoking = DNAmM
406 effects after Bonferroni correction in each of the three MR-DoC models
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412  Figure S8
413  Upset plot of the intersection of CpGs with statistically significant DNAm - Current Smoking

414  effects after Bonferroni correction in each of the three MR-DoC models
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422  Figure S9
423 19 CpGs with potential bidirectional causal effects between current smoking and DNA
424 methylation

Suggestive Bidirectional Causal Effects between Smoking and DNAm at 19 CpGs
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425
426  Note. Three CpGs had more robust evidence of Current Smoking = DNAm causal effects than

427  vice versa. One CpG had more robust evidence of DNAm - Current Smoking causal effects than
428  vice versa. The rest 15 CpGs had only suggestive evidence (consistent, nominally significant
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estimates across models) in both directions. Please refer to Supplementary Tables S1-S4 for the

corresponding data.

Figure S10

Top Enriched Ontology Clusters in Metascape’s Gene Annotation and Functional Enrichment
Analyses of the 525 CpGs (outside the MHC region) with Potential Current Smoking - DNAm

effects

-log10(P)

10

G0:0030097: hemopoiesis

G0:0045596: negative regulation of cell differentiation
G0:0000902: cell morphogenesis

GO0:0071345: cellular response to cytokine stimulus

hsa05166: Human T-cell leukemia virus 1 infection

G0:0009792: embryo development ending in birth or egg hatching
G0:0006954: inflammatory response

R-HSA-5663202: Diseases of signal transduction by growth factor receptors and second messengers
G0:0051960: regulation of nervous system development
G0:0051090: regulation of DNA-binding transcription factor activity
G0:0010720: positive regulation of cell development

GO0:0001501: skeletal system development

G0:0008285: negative regulation of cell population proliferation
R-HSA-449147: Signaling by Interleukins

G0:0030855: epithelial cell differentiation

hsa04015: Rap1l signaling pathway

G0:0045936: negative regulation of phosphate metabolic process
R-HSA-9675108: Nervous system development

G0:0030335: positive regulation of cell migration

GO0:0051338: regulation of transferase activity

Note. The “NearestGene” IDs from Supplementary Table S1 were used as the input data for
Metascape[26]. Please refer to Supplementary Tables S5-S6 for the corresponding annotation

and enrichment results.

As detailed in the Metascape manuscript[26], the program first identified all significant ontology
terms, including GO/KEGG terms, canonical pathways, and hallmark gene sets. The significant
terms (based on hypergeometric p-value <0.01 and >1.5-fold enrichment) were then clustered
into a hierarchical tree based on Kappa-statistical similarities among their gene memberships.
The tree was then cast into term clusters based on a threshold of 0.3 kappa score. The enrichment
clusters and their underlying terms are marked as “Summary” and “Membership”, respectively,
under the column GrouplD in Supplementary Table S24. The “Summary” terms provide an
overview of enriched, non-redundant ontology terms.
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Figure S11

Enrichment Results for Gene-Ontology (GO) Processes in Metascape’s Gene Annotation and
Functional Enrichment Analyses of the 525 CpGs (outside the MHC region) with Potential

Current Smoking - DNAm effects
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Note. The “NearestGene” IDs from Supplementary Table S1 were used as the input data for
Metascape[26]. Please refer to Supplementary Table S6 for all enrichment results.
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465  Figure S12
466  Top 100 Ontology Terms in Metascape’s Gene Annotation and Functional Enrichment Analyses

467  of the 525 CpGs (outside the MHC region) with Potential Current Smoking - DNAm effects
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469  Note. The “NearestGene” IDs from Supplementary Table S1 were used as the input data for
470  Metascape[26]. Please refer to Supplementary Table S6 for all enrichment results.
471
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Causality between Smoking and DNA Methylation Supplementary Information

Figure S13
eFORGE analyses of overlap between gene-regulatory chromatin states and the 525 CpGs (outside the MHC region) with potential

Current Smoking - DNAm effects

DMPs analyzed across samples for erc2-chromatin15state—all Sites_with_Consistent_Effects_of_Smoking_on_DNAm_in_All_3_Models
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Note. Please refer to Supplementary Table S7 for the corresponding data.
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480 Figure S14

481 eFORGE analyses of overlap between histone-mark modifications and the 525 CpGs (outside the MHC region) with potential Current
482  Smoking - DNAm effects

483

DMPs analyzed across samples for erc2-H3-all Sites_with_Consistent_Effects of Smoking on_DNAm_in_All_3 Models
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Figure S15

eFORGE analyses of overlap between DNase hypersensitivity (DHS) sites and the 546 CpGs with potential Current Smoking =
DNAm effects

DMPs analyzed across samples for erc2-DHS Sites_with_Consistent_Effects of Smoking_on_DNAm_in_All_3 Models
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Note. Please refer to Supplementary Table S9 for the corresponding data.

E029 Primary monocytes from peripheral blood —

E046 Primary Natural Killer cells from peripheral

E050 Primary hematopoietic stem cells G-CSF-mobili —{

E051 Primary hematopoietic stem cells G-CSF-mobili —{

£028 Breast variant Human Mammary Epithelial Cells —{

E004 H1 BMP4 Derived Mesendoderm Cultured Cells —|

EO05 H1 BMP4 Derived Trophoblast Cultured Cells —|

E007 H1 Derived Neuronal Progenitor Cultured Cells —|
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Causality between Smoking and DNA Methylation Supplementary Information

496  Figure S16
497 64 CpGs with potential DNAm - Current Smoking effects, based on consistent, nominally
498  significant estimates across models

CpGs with Consistent Estimates of the Effects of DNAm on Current Smoking
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499
500 Note. These CpGs were used for the follow-up enrichment analyses with eFORGE[31] and

501 Metascape[26]. None of these sites are in the MHC region. Please refer to Supplementary

502  Table S3 for the corresponding data.
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Figure S17
Top Ontology Clusters in Metascape’s Gene Annotation and Functional Envichment Analyses of
the 64 CpGs with Potential DNAm - Current Smoking effects

| |hsa05142: Chagas disease

| GO0:0050864: regulation of B cell activation

| R-HSA-9614085: FOXO-mediated transcription
| GO0:0016125: sterol metabolic process

| G0:0015748: organophosphate ester transport
| G0:0015711: organic anion transport

| G0:0009410: response to xenobiotic stimulus

| R-HSA-211859: Biological oxidations

-log10(P)

Note. The “NearestGene” IDs from Supplementary Table S3 were used as the input data for
Metascape[26]. None of the ontology terms were significant after multiple-testing correction.
Please refer to Supplementary Tables S10 and S11 for all annotation and enrichment results.

Figure S18

Enrichment Results for Gene-Ontology (GO) Processes in Metascape’s Gene Annotation and
Functional Enrichment Analyses of the 64 CpGs with Potential DNAm - Current Smoking
effects

| G0:0002376: immune system process

| G0:0008152: metabolic process

| G0:0048519: negative regulation of biological process
| G0:0051179: localization

| G0:0040007: growth

| G0:0032501: multicellular organismal process

| G0:0050896: response to stimulus

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-log10(P)

Note. The “NearestGene” IDs from Supplementary Table S3 were used as the input data for
Metascape[26]. None of the ontology terms were significant after multiple-testing correction.
Please refer to Supplementary Table S11 for all enrichment results.
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Supplementary Information

Causality between Smoking and DNA Methylation

Figure S19

523
524

eFORGE analyses of overlap between gene-regulatory chromatin states and the 64 CpGs with potential DNAm - Current Smoking effects

_on_Smoking_in_All_3_Models

with_Consistent_Effects_of_DNAm

DMPs analyzed across samples for erc2-chromatin15state-all Sites

o < o
anjen-d eiwouiq o160}

525
526
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Note. Please refer to Supplerﬁentéry Table S12 for the corresponding data.
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528  Figure S20
529  eFORGE analyses of overlap between histone-mark modifications and the 64 CpGs with potential DNAm - Current Smoking effects

DMPs analyzed across samples for erc2-H3-all Sites_with_Consistent_Effects_of DNAm_on_Smoking_in_All_3 Models
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532  Note. Please refer to Supplementary Table S13 for the corresponding data.
533

30



534  Figure S21
535 eFORGE analyses of overlap between DNase hypersensitivity (DHS) sites and the 64 CpGs with potential DNAm - Current Smoking effects

DMPs analyzed across samples for erc2-DHS Sites_with_Consistent_Effects_of DNAm_on_Smoking_in_All_3_Models
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538  Note. Please refer to Supplementary Table S14 for the corresponding data.
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541  Figure S22

542  Follow-up eFORGE analyses of overlap between gene-regulatory chromatin states and the 21 CpGs enriched for overlap with Enhancers in the
543  “Fetal Brain Male” sample in Figure S19/Table S5

DMPs analyzed across samples for erc2-chromatin15state-all CpGs_Enriched_for_Fetal_Brain_Enhancers_and_Effects_on_Smoking

] ' B o 1 I B -
sl iit toenebrdnin bbb biieng

544
545

546  Note. Please refer to Supplementary Table S15 for the corresponding data.
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549  Figure S23

550  Follow-up eFORGE analyses of overlap between histone-mark modifications and the 21 CpGs enriched for overlap with Enhancers in the “Fetal
551  Brain Male” sample in Figure S19/Table S5

DMPs analyzed across samples for erc2-H3-all CpGs_Enriched_for_Fetal_Brain_Enhancers_and_Effects_on_Smoking
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555
556

33



557  Figure S24
558  Follow-up eFORGE analyses of overlap between DNase hypersensitivity (DHS) sites and the 21 CpGs enriched for overlap with Enhancers in the

559  “Fetal Brain Male” sample in Figure S19/Table S5
DMPs analyzed across samples for erc2-DHS CpGs_Enriched_for_Fetal_Brain_Enhancers_and_Effects_on_Smoking
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562  Note. Please refer to Supplementary Table S17 for the corresponding data.
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565  Figure S25
566  Follow-up eFORGE analyses of overlap between DNase hypersensitivity (DHS) sites and the 17 CpGs enriched for overlap with H3K4me3

567  modifications in the “Fetal Brain Female” samples in Supplementary Figure S23/Table S9
DMPs analyzed across samples for erc2-DHS CpGs_Enriched_for_Fetal_Brain_H3K4me3_and_Effects_on_Smoking
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570  Note. Please refer to Supplementary Table S20 for the corresponding data.
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Causality between Smoking and DNA Methylation Supplementary Information

571  Figure S26

572  Estimated DNAm - Current Smoking effects at the 17 CpGs showing highly specific enrichment for overlap
573  with gene-regulatory elements in the brain in Figure 5

574

Estimated Effects of DNAm on Current Smoking
At 17 CpGs Showing Enrichment for Functional Elements in the Brain
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576  Note. The Y-axis shows the probe ID and the “Nearest Gene”. For the corresponding data, please refer to

577  Supplementary Table S3.
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579
580
581

582
583

584
585
586

Figure S27
eFORGE analyses of overlap between gene-regulatory chromatin states and the 18 CpGs underlying the enriched overlap with Enhancers in the
“Lung” sample in Figure S19/Table S5

DMPs analyzed across samples for erc2—chromatin15state—all CpGs_Enriched_for_Lung_Enhancers_and_Effects_on_Smoking

Note. Please refer to Supplementary Table S21 for the corresponding data.
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587

Figure S28

588
589
590

eFORGE analyses of overlap between histone-mark modifications and the 18 CpGs underlying the enriched overlap with Enhancers in the “Lung”

sample in Figure S19/Table S5

DMPs analyzed across samples for erc2-H3-all CpGs_Enriched_for_Lung_Enhancers_and_Effects_on_Smoking
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Note. Please refer to Supplementary Table S22 for the corresponding data.
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594  Figure S29
595 eFORGE analyses of overlap between DNase hypersensitivity (DHS) sites and the 18 CpGs underlying the enriched overlap with Enhancers in the

596  “Lung” sample in Figure S19/Table S5
597
DMPs analyzed across samples for erc2-DHS CpGs_Enriched_for_Lung_Enhancers_and_Effects_on_Smoking
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604  Figure S30
605 eFORGE analyses of overlap between gene-regulatory chromatin states and the 18 CpGs underlying the enriched overlap with Enhancers in the
606  “Primary B cells from cord blood " sample in Figure S19/Table S5

DMPs analyzed across samples for erc2—chromatin15state-all CpGs_Enriched_for_PrimaryBCellsCordBlood_Enhancers_and_Effects_on_Smoking
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612
613 Figure S31

614 eFORGE analyses of overlap between histone-mark modifications and the 18 CpGs underlying the enriched overlap with Enhancers in the “Primary
615 B cells from cord blood” sample in Figure S19/Table S5

DMPs analyzed across samples for erc2-H3-all CpGs_Enriched_for_PrimaryBCellsCordBlood_Enhancers_and_Effects_on_Smoking
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623  Figure S32
624 eFORGE analyses of overlap between DNase hypersensitivity (DHS) sites and the 18 CpGs underlying the enriched overlap with Enhancers in the

625  “Primary B cells from cord blood " sample in Figure S19/Table S5
626
DMPs analyzed across samples for erc2-DHS CpGs_Enriched_for_PrimaryBCellsCordBlood_Enhancers_and_Effects_on_Smoking
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629  Note. Please refer to Supplementary Table S26 for the corresponding data.
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632  Figure S33
633  Upset plot of the intersection of CpGs with statistically significant (FDR <0.05) Former Smoking - DNAm
634  effects in each of the three MR-DoC models
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637  Note. Please refer to Supplementary Table S27 for the corresponding data.
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641  Figure S34
642  Upset plot of the intersection of CpGs with statistically significant (FDR <0.05) DNAm - Former Smoking
643 effects in each of the three MR-DoC models
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646  Note. Please refer to Supplementary Table S29 for the corresponding data.
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649  Figure S35
650 Estimated DNAm - Former Smoking effects at the two former-smoking-associated CpGs that showed robust
651 evidence of DNAm - Current Smoking effects

652
Putative Effects of DNA Methylation on Current Smoking
Compared to the Estimated Effects on Former Smoking
T
|
I
I
I
|
cVN) I
<t
85| ——
©O 6 |
©9 =) o
S0 ! Outcome
o I .
! -©- Current Smoking
! S P By P ———
: -@- Former Smoking
|
1
T Model
|
| -®- MR-DoC2
|
| -@- MR-DoC1 w/ Pleiotropic Path
|
= : MR-DoC1 w/rE
=5 N~ —.—
59 :
©6 : -
g |
| @
: ------- —(O—r————-
|
|
! T T T
0.0 0.4 0.8 1.2
Causal Estimate (95% C.I.
653 Lt
654

655  Note. Please refer to Supplementary Tables S3 and S29 for the corresponding data.
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658
659
660
661

662
663

664
665
666
667

Figure S36
Prior EWAS association statistics of smoking-associated CpGs stratified by whether the CpG was identified as
having an mQTL allelic score with F-statistic >10 in the current study

EWAS Meta-Analysis Association Statistics of Smoking-Associated CpGs
With and Without an mQTL Allelic Score with F-statistic >10

404

30 1

-log10(FDR) from EWAS of Current vs. Never Smoking

mQTL- mQTL+

On the X-axis, “mQTL-" indicates the CpGs without an mQTL allelic score with F >10 (5,816 CpGs), and
“mQTL+ " indicates the CpGs with an mQTL allelic score with F >10 (11,124 CpGs). The Y-axis shows the -
log10(FDR) values of the association results from the previous EWAS meta-analysis of current vs. never
smoking[19]. The “mQTL-" CpGs were not tested for DNAm — Smoking causal effects in the current study.
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