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Abstract 

Background 

Measuring major blood vessels from CT pulmonary angiography examinations (CTPAs) to 

assess cardiovascular diseases has the potential to improve overall patient outcomes. However, 

this process is time-consuming and prone to errors. Deep learning (DL) approaches offer the 

potential to enhance accuracy, speed, and consistency.  

Objectives 

To develop and train a deep learning-based algorithm capable of automatically and accurately 

segmenting and measuring major blood vessels in CTPAs. 

Methods 

Seven hundred CTPAs from 652 patients were retrospectively collected at a single center. The 

dataset was split into two subsets, one for training and cross-validation (n = 490) and one for 

assessing model performance (n = 210). The segmentation masks for the descending aorta (DAo), 

ascending aorta (AAo), and pulmonary trunk (PT) were generated by our previously developed 

segmentation model and were quantitatively validated by two radiologists. These validated 

masks were subsequently used as ground truth for model training. An U-Net deep learning model 

was created using the nnU-Net framework and trained on 490 CTPAs with 5-fold cross-

validation. Following the training, the model was applied to volumes of interest in the images to 

generate a pool of candidate regions containing potential vessels. A vessel detection algorithm 

was developed and used on the candidate pool to identify vessels followed by measurement. The 

final model was evaluated on 210 and 47 CTPAs from internal and external datasets, 

respectively. 

 

Results 

Assessing model segmentation performance on the internal evaluation set, the median Dice 

scores were 0.95 for the DAo, 0.96 for the AAo, and 0.95 for the PT. The model measurements 

showed a strong correlation with those made by the radiologist, with Pearson's r values of 0.91 

for image noise, 0.98 for intravenous contrast concentration in the PT, 0.93 for AAo diameter, 
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and 0.55 for PT diameter (P < .001). Additionally, the AAo segmentation (median Dice score 

0.94) and the PT diameter measurement (r = 0.77) were evaluated in two external datasets. 

 

Conclusions 

The fully automated, deep learning-based algorithm accurately segmented and measured major 

blood vessels in real-world CTPAs. 
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Main Text 

 

Introduction 

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide [1]. 

Identification and accurate measurement of major blood vessels within the thoracic cavity is 

essential for radiologists in the diagnosis and assessment of CVDs [2–4]. Computed tomography 

(CT) pulmonary angiography (CTPA) is the gold standard for diagnosing pulmonary embolism 

(PE) and involves the use of an intravenous (IV) contrast agent to enhance the visualization of 

pulmonary arteries [5,6]. Additionally, CTPA enhances the visibility of other major blood 

vessels in the chest cavity, enabling radiologists to assess CVDs more effectively [7,8]. Several 

CVDs, such as chronic thromboembolic pulmonary hypertension (CTEPH), pulmonary arterial 

hypertension (PAH), and aortic aneurysms, can be diagnosed or suspected based on the presence 

of enlarged pulmonary arteries or an enlarged ascending aorta [9–11]. Therefore, a fully 

automated solution has the potential to improve radiologists' workflow efficiency and accuracy 

and enhance overall patient outcomes. 

Existing automatic methods for segmenting and measuring major blood vessels in the chest 

cavity often rely on traditional image processing and analysis techniques [12–14]. While deep 

learning-based solutions have shown promise [15–17], many existing datasets have limitations, 

including small sample sizes and a lack of representative artifacts and co-morbidities. To address 

these challenges, we propose training and testing the state-of-the-art semantic segmentation deep 

learning framework, the no-new-U-Net (nnU-Net) [18], on a large and diverse dataset of CTPA 

examinations. This dataset is designed to accurately reflect the range of imaging conditions 

encountered in clinical practice [19]. The nnU-Net framework represents a significant 

advancement in U-Net model training, automating the process of hyperparameter optimization 

and model selection [18]. In this study, we developed a deep learning model utilizing the nnU-

Net architecture to automate the segmentation and measurement of major blood vessels within 

the thoracic cavity, specifically the descending aorta (DAo), ascending aorta (AAo), and 

pulmonary trunk (PT), in routine clinical contrast-enhanced CTPAs. 
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Materials and Methods 

Internal dataset 

We retrospectively collected a dataset of 700 non-ECG-gated CTPA examinations performed 

between 2014 and 2018 at a single institution (Nyköping Hospital, Sweden), with approval from 

the Swedish Ethical Review Authority (EPN Uppsala Dnr 2015/023 and 2015/023/1) for the 

collection and analysis of CTPA examinations [19]. The CTPAs were routine clinical 

examinations, exported sequentially from the history list in the institution’s Picture Archiving 

and Communication System (PACS) in Digital Imaging and Communications in Medicine 

(DICOM) format, with all personal identifiers removed from the headers using the Dicom2USB 

hardware solution (www.dicom2usb.com).  

CT Acquisition Protocols 

Five CT scanners were used to acquire the CTPAs: Brilliance 64, Ingenuity Core, and Ingenuity 

CT (Philips, Netherlands); LightSpeed VCT (GE Healthcare, USA); and Somatom Definition 

Flash (Siemens, Germany). Scans were performed using a bolus tracking method with the region 

of interest in the pulmonary trunk, utilizing pixel spacing of 0.59–0.98 mm, tube voltages of 80–

120 kV, and slice thicknesses of 0.625–2.0 mm. The contrast medium (Omnipaque 350 mg I/ml, 

GE Healthcare) was administered in doses ranging from 20 to 114 ml (mean 62 ml) at injection 

rates of 2.4 to 6.1 ml/s (mean 3.6 ml/s). Secondary reconstructions with a 2.0 mm slice thickness 

were applied to all examinations in the internal dataset. All annotations and measurements were 

performed in the axial plane, providing standardized data for model development and inference. 

 

Data annotation 

In previous work, we developed a fully automated deterministic algorithm for segmenting and 

measuring major vessels in CTPA examinations [19]. In this study, we utilized the previously 

developed deterministic solution to generate 2D segmentation masks, which serve as the ground 

truth for the major blood vessels in the thoracic cavity: the descending aorta (DAo), ascending 

aorta (AAo), and pulmonary trunk (PT). These ground truth segmentation masks were validated 

by two radiologists, DT and TF, with 7 and 17 years of experience in chest radiology, 

respectively. A single 2D segmentation mask for each vessel was obtained from each CTPA 

volume at a specific anatomical location, either at the carina of the trachea or the level of the 

pulmonary trunk. This automated process successfully generated 2D segmentation masks for 
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major blood vessels in 596 out of 700 CTPAs, with validation by the radiologists, resulting in a 

total of 1,788 validated masks. However, the remaining 104 CTPAs required manual annotation, 

as they could not be processed automatically. This manual annotation produced an additional 312 

2D segmentation masks for the three major blood vessels, using the open-source software 

Medical Imaging Interaction Toolkit (MITK) [20]. The manual annotations for these 104 CTPAs 

were also validated by DT and TF to ensure consistency and accuracy. The manual (DT and TF) 

ground truth measurements of major blood vessels included the diameter of the AAo and the PT, 

the IV contrast concentration in the PT (mean HU value in 2 cm2 ROI) and the image noise 

(standard deviation of HU in 1 cm2 ROI in the DAo), as reported [19].  

 

Examination quality of CTPA volume images 

The examination quality metrics and methodologies applied were developed and validated in 

[19], where a comprehensive analysis was conducted on the CTPA images to establish robust 

quality scoring criteria. In short, for each CTPA examination the radiologist assessed five image 

quality parameters that affect the evaluation for PE: motion artifacts, streak artifacts, IV contrast 

concentration in the PT, parenchymal disease and image noise. Each parameter was scored, 

resulting in classification of the quality of the CTPA as good, acceptable or inferior. For detailed 

information on the original formulation and calculation of the quality scores, please refer to the 

supplementary information of [19].  
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Figure 1 Schematic of the study cohort. From the internal dataset, 210 CT pulmonary angiography (CTPA) examinations were used for model testing across all 
tasks: measurement of image noise, intravenous (IV) contrast in the pulmonary trunk (PT), diameter of the ascending aorta (AAo), and diameter of the PT. The
FUMPE dataset was used for external validation of PT diameter measurements. From the SegThor dataset, 28 CT examinations without IV contrast were 
excluded. The remaining 12 CT scans with IV contrast were used to test the diameter of the AAo. 
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External datasets 

Two publicly available datasets were used to externally evaluate the proposed algorithm: the 

Segmentation of Thoracic Organs at Risk in CT images (SegTHOR) [21] and the Ferdowsi 

University of Mashhad's PE dataset (FUMPE) [22]. The SegTHOR training set contains 40 CT 

scans with and without IV contrast, all with manual segmentation of the aorta. For the external 

evaluation of ascending aorta segmentation, 12 CT scans with IV contrast were selected from the 

40 CT scans, while the remaining 28 CTs without IV contrast were excluded. The FUMPE 

dataset contains 35 CTPAs with the diameter of the pulmonary trunk (PT) annotated by 

radiologists, which were used for the external evaluation. An overview of our internal and 

external datasets is shown in Figure 1. 

 

Computational Environment 

The computational environment used for both model training and inference on test data in this 

study includes specific software versions: Ubuntu (22.04.3 LTS) as the operating system, Docker 

(27.0.3) for containerization, and CUDA (12.1.1), along with Nvidia driver (535.183.01), to 

ensure seamless interaction with NVIDIA GeForce RTX 2080 Ti GPUs. The programming 

languages used are Python (3.10.6) and MATLAB R2023b (The MathWorks, Inc., Natick, 

Massachusetts, USA). The deep learning framework PyTorch (version 2.1.0) was utilized, and 

the nnU-Net framework was implemented in version 2.1.1. Post-processing computations were 

conducted on the same machine equipped with an Intel Core i9-9900X CPU (10 cores, 20 

threads, 3.5 GHz base clock, 4.5 GHz boost clock). 

 

Model training and validation 

For model training, the nnU-Net framework was implemented using the PyTorch Nvidia 

container (nvcr.io/nvidia/pytorch:24.04-py3) on a Docker platform (Docker Inc., Palo Alto, 

California, USA), providing an optimized environment for deep learning and scientific 

computing. The nnU-Net deep learning open-source framework is an adaptable and automated 

solution designed for semantic segmentation tasks, particularly in the field of medical image 

segmentation. It builds on a U-Net-like architecture with a contracting path (encoder) and an 

expansive path (decoder) with skip connections to efficiently capture and process image details. 

The framework automates the processes of data preprocessing, training pipeline, and network 
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configuration, including aspects such as network topology, depth, learning rate, filter selection, 

patch and batch size, based on the dataset characteristics, thereby eliminating the need for 

manual fine-tuning [18].  

 

A 2D U-Net architecture with a depth of 7 was generated by the nnU-Net framework, designed 

for an initial input size of 512x512 pixels (Figure 2). In the downsampling operations 

(contracting path), each level consisted of a 2D convolutional layer with a kernel size of 3×3 and 

a stride of 2, followed by another 2D convolutional layer with the same kernel size but a stride of 

1. The network started with 32 filters and increased up to 512 filters as the depth increases. In the 

upsampling operations (expansive path), a 2D transposed convolutional layer with a kernel size 

of 2×2 and a stride of 2 was used. Both downsampling and upsampling operations were followed 

by instance normalization and a leaky rectified linear unit (Leaky ReLU) activation.  

 

During training, the nnU-Net framework utilized a tailored set of hyperparameters to optimize 

the learning process. The optimizer selected was Stochastic Gradient Descent (SGD) with 

Nesterov momentum, with a momentum value of 0.99. Weight decay was applied with a 

coefficient of 3e-05 to control model complexity. The training process was set to run for a 

maximum of 1000 epochs. To further refine the training, a learning rate scheduler was used, 

which progressively reduced the learning rate each epoch, starting at 0.01 and decreasing to 2e-

05 by the final epoch. The nnU-Net framework employs a variety of data augmentation 

techniques to enhance model generalization and prevent overfitting to the training dataset. These 

techniques include spatial transformations such as rotations, scaling, and mirroring. Specifically, 

the rotations cover a full 360-degree range around the X-axis, with scaling applied between 0.7 

to 1.4 times the original size. Mirroring is applied along both the X and Y axes. Additionally, 

Gaussian noise and blur, as well as brightness, contrast, and gamma transformations, are utilized 

to further augment the data and improve model robustness. 

 

Model inference and post-processing 

After model training, three trained models were obtained for the segmentation tasks of the DAo, 

AAo, and PT. Before applying model inference, the volume of interest (VOI) was first 

determined by including only the slices between approximately 22% and 65% of the total size of 
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the CTPA volume. This approach ensured that most of the mediastinum was accurately captured, 

encompassing two key anatomical landmarks: the carina of the trachea and the level of the 

pulmonary trunk. Model inference was then applied only to this volume of interest to generate 

candidate pools for DAo, AAo, and PT segmentations. Once the candidates were obtained, 

deterministic algorithms were developed in MATLAB to identify the best 2D segmentation 

masks for measurement. The study design is illustrated in Figure 2. 
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Figure 2 Study Design. 700 CT pulmonary angiography (CTPA) examinations were collected, and a fully 
automated deterministic segmentation algorithm [19] was applied  to generate 2D segmentation masks 
for the descending aorta (DAo), ascending aorta (AAo), and pulmonary trunk (PT). Segmentation masks 
were successfully generated for 596 of these examinations, while the remaining 104 required manual 
annotation. The dataset was divided into a training set comprising 490 examinations and a testing set 
comprising 210 examinations (a). The 2D U-Net deep learning model, generated by the nnU-Net 
framework, was trained on 490 CTPA scans using 5-fold cross-validation. By default, the convolution 
layer used a 3×3 filter size, followed by an instance normalization (IN) layer and a leaky rectified linear 
unit (lRELU) layer (b). Model inference was applied to the volume of interest (VOI) to generate a pool of 
vessel candidates. A 2D vessel detection algorithm was then applied to the candidate pool to determine 
the objects of interest for measurement. A 2D measurement algorithm [19] was subsequently applied to 
achieve accurate vessel measurements (c). For segmentation and measurement performance, the final 
model was evaluated on 210 CTPAs from the internal dataset and on 12 and 35 CTPAs from two publicly 
available datasets, respectively (d). Modules in gold-colored boxes represent previously developed 
solutions, while those in light blue-colored boxes were developed as part of this work. 

 

Descending aorta segmentation 

To ensure the correct selection of the descending aorta (DAo) from the segmentation candidates, 

we first applied 3D connected component analysis to identify the largest component within the 

volume of interest (VOI), assuming it to be the DAo. Next, we removed any connected 

components with fewer than 200 pixels using 8-connectivity and performed a morphological 

closing operation on the binary image with a disk-shaped structuring element having a radius of 

9 pixels. These image processing steps focused on isolating and refining the largest 3D structure, 

presumably the DAo, by filtering out smaller components and smoothing the object boundaries. 

Once we obtained the 3D segmentation of the DAo, we applied the same measurement algorithm 

used by radiologists. Specifically, the standard deviation of HU within a 1 cm² circular region of 

interest (ROI) in the DAo was used as a measure of image noise in the CTPA examination. We 

calculated the image noise in every 2D segment of the 3D DAo segmentation and then took the 

median of these values. The median value of the image noise provided the final measurement.  

 

Ascending Aorta Segmentation 

We began by applying a filtering operation to eliminate small, irrelevant objects from the 

candidate pool using an area opening operation, which removes connected components with 

fewer than 200 pixels based on 8-connectivity. Next, we performed a 3D connected component 

analysis, retaining only components with an area greater than 12,500 pixels. To ensure the spatial 

relevance of the selected component, likely representing the AAo, we calculated the z-coordinate 
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of the centroids of the filtered components. The component whose centroid was closest to the 

superior part of the CTPA was identified and retained for further processing. We then tracked 

any sudden area loss or significant shifts in centroid position to remove adjacent objects or 

irrelevant tissues. After these operations, a final connected component analysis using 26-

connectivity was performed to select the largest remaining component in the candidate pool. 

Finally, a morphological closing operation with a disk-shaped structuring element with a radius 

of 9 pixels was applied to smooth the boundaries of the final 3D component. To measure the 

diameter of the AAo, we used the equivalent diameter property of the 'regionprops' function in 

MATLAB's image processing toolbox. We calculated the equivalent diameter for all 2D objects 

within the final 3D component, and the median value of these 2D equivalent diameters provided 

the final measurement. 

 

Pulmonary Trunk (PT) Segmentation and IV contrast in PT 

We first eliminated components smaller than 200 pixels from the candidate pool. The candidate 

pool was further refined by applying morphological opening using a disk-shaped structuring 

element with a radius of 7 pixels, helping to remove noise and small irrelevant structures. Next, 

components with less than 10,000 pixels were removed, ensuring that only significant regions 

remain. To identify the components most likely corresponding to the pulmonary trunk within the 

candidate pool based on the slice number of the CTPAs, we established two reference points as 

follows: 

 

 

Let � represent the total number of slices in the CTPA. Then: 

 

��������� 	
��� 1 � �
��� ��
2� � �
��� � �

10� 

 

��������� 	
��� 2 � �
��� ��
2� � �
��� � �

16� 

The algorithm then calculates the distance of each component's centroid from the reference 

points and counts the number of slices above, below, and within the reference regions. If exactly 
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two components are present, the algorithm evaluates their proximity to the reference points and, 

based on the patient's position, selects the component that is either the highest or lowest in the 

scan volume as the pulmonary trunk. For three components, the algorithm prioritizes them 

according to their proximity to the reference points and selects the most appropriate one based on 

the patient's position. If more than three components are identified, the algorithm refines its 

selection criteria further, focusing on the second or third closest component, depending on the 

patient's position, to accurately identify the pulmonary trunk. Finally, the selected component 

undergoes a closing operation using a disk-shaped structuring element with a radius of 9 pixels 

to smooth the boundaries and complete the segmentation of the pulmonary trunk. As a measure 

of the IV contrast concentration in the PT, we calculated the mean HU of all 2D objects within 

the final 3D component. To measure the diameter of the PT, we extracted horizontal line 

segments based on the Hough transform for each 2D object within the final 3D component, and 

the median value of these 2D Hough lines provided the final diameter measurement. 

 

Statistical Analysis 

The model's segmentation performance was evaluated using the Boundary F1 (BF) score, the 

Dice-Sørensen coefficient (DSC), and the Jaccard Index (JI) with Matlab (MathWorks, Inc., 

R2023b). The BF score evaluates the accuracy of the model segmentation boundary of an object 

by comparing it to the ground truth segmentation boundary [23]. The BF score is calculated as 

the harmonic mean of recall and precision: 

�� � 2 �  ������ � 	������
�
������� � 	������
�� 

Here, ������ is the ratio of ground truth boundary points near the model segmentation boundary 

to the total ground truth segmentation boundary length. 	������
� is the ratio of model boundary 

points near the ground truth segmentation boundary to the total model segmentation boundary 

length. 

Given two sets, A (model segmentation) and B (ground truth segmentation), 
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DSC is defined as: 

 �!�", �� � 2 �  |"% & �|%
|"| � |�|  

And JI defined as follow: 

'(�", �� �  �!�", ��
2 �  �!�", �� 

 

Bland-Altman [24] and scatter plot analyses were used to evaluate measurement performance of 

the model. Specifically, Bland-Altman analysis assessed the agreement between the model's and 

the radiologist's measurements, while the scatter plot analysis examined the relationship between 

them. Pearson’s correlation coefficient was utilized to evaluate the correlation between the 

model's and the radiologist's measurements. Subgroup analysis of radiologist measurements, 

based on examination quality, sex, and age, was conducted using the Kruskal-Wallis H-test. A p-

value of less than 0.05 was considered statistically significant. For statistical analysis, we utilized 

SciPy, a Python library for scientific computing (version 1.13.1), and Microsoft Excel from 

Microsoft 365 (Microsoft Corporation, Washington, USA). 
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Results 

The internal dataset (n=700 CTPAs) included 383 CTPA examinations from 353 women 

(median age, 73 years; IQR, 20 years) and 317 examinations from 299 men (median age, 71 

years; IQR 15 years) (Table 1). The internal dataset was split into training and testing sets using 

a 70/30 split ratio. For the training and 5-fold cross-validation sets, 1,470 2D segmentation 

masks from 490 CTPAs were selected. The remaining 630 2D segmentation masks from 210 

CTPAs were used for the testing set. Additionally, all 312 manually annotated 2D segmentation 

masks from 104 CTPAs were included in the testing set. There is no patient overlap between the 

training and testing sets. For model training, each of the three major blood vessels (DAo, AAo, 

and PT) was trained separately using the internal dataset comprising 1,470 2D masks (490 masks 

per vessel) derived from 490 CTPAs. The segmentation models were trained using 5-fold cross-

validation, with 80% of the data (a total of 1,176 2D masks, 392 masks per vessel) used for 

training and 20% (a total of 294 2D masks, 98 masks per vessel) used for cross-validation.  

 

 

Table 1 Study Characteristics of the Internal Dataset 

Characteristics Training Dataset Test Dataset Overall 

No. of patients 466 186 652 

No. of CTPA exams 490 210 700 

Sex (Women/Men) 245/221 108/78 353/299 

Median age (IQR) years  72.0 (17.0) 74.0 (19.75) 72.0 (18.0) 

  Women 73.0 (19.0) 74.0 (22.5) 73.0 (20.0) 

  Men 71.0 (16.0) 74.0 (16.0) 71.0 (15.0) 

Diseases 
   

   Emboli in (Right/Left) lung 100/81 37/33 137/114 

   Pneumothorax in (Right/Left) lung 4/2 0/0 4/2 

   Pleural effusion in (Right/Left) lung 147/140 83/74 230/214 

   Infiltrate or atelectasis (or other opacities) in (Right/Left) lung 298/275 146/138 444/413 

   Pericardial fluid  (excessive amounts) 57 26 83 

   Sign of acute congestive heart failure 89 42 131 

   Lymph nodes (Mediastinum/Right hilum/Left hilum)¹ 90/48/37 48/28/17 138/76/54 

Quality of CTPA exams (Good/Acceptable/Inferior) 200/158/132 58/70/82 258/228/214 

Note. — Unless otherwise indicated, data are number of examinations. CTPA = computed tomography pulmonary angiography 

¹ Lymph nodes larger than 1 cm (short axis)  
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Radiologists Ground Truth Measurements 

The median image noise was 20.5 HU (IQR, 8 HU) in the internal training dataset and 20 HU 

(IQR, 10 HU) in the internal test dataset, with significant differences observed based on 

examination quality, sex, and age groups older than 64 years (Table 2 and Supp. Table 1). The 

median diameter of the AAo was 33 mm (IQR, 6 mm) in the internal training dataset and 34 mm 

(IQR, 6 mm) in the internal test dataset, with significant differences particularly noted across sex 

and older age groups. The median IV contrast concentration in PT was 394 HU (IQR, 146 HU) 

in the internal training dataset and 358 HU (IQR, 158 HU) in the internal test dataset, with 

significant differences observed in older patients, especially those aged over 79 years. The 

median diameter of the PT was 26 mm (IQR, 5 mm) in the internal training dataset and 28 mm 

(IQR, 6 mm) in the internal test dataset, without significant differences across examination 

quality, sex, or age groups. 
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Table 2 Radiologists Ground Truth Measurements  

Category Training Dataset (n=490)   Test Dataset (n=210) 

 
Quality of CTPA exams 

Overall 
  Quality of CTPA exams 

Overall 
 

Good Acceptable Inferior p-value 
 

Good Acceptable Inferior p-value 
No. of CTPA exams ¹ 

           
   Women 121 (24.69) 80 (16.33) 56 (11.43) 

- 

257 (52.45) 
 

41 (19.52) 41 (19.52) 44 (20.95) 

- 

126 (59.99) 

   Men 79 (16.12) 78 (15.92) 76 (15.51) 233 (47.55) 
 

17 (8.1) 29 (13.81) 38 (18.1) 84 (40.01) 

  Age < 65 years 62 (12.65) 50 (10.2) 33 (6.73) 145 (29.58) 
 

16 (7.62) 21 (10) 23 (10.95) 60 (28.57) 

  Age 65-79 years 92 (18.78) 78 (15.92) 61 (12.45) 231 (47.15) 
 

25 (11.9) 31 (14.76) 30 (14.29) 86 (40.95) 

  Age ≥ 80 years 46 (9.39) 30 (6.12) 38 (7.76) 114 (23.27) 
 

17 (8.1) 18 (8.57) 29 (13.81) 64 (30.48) 

Image noise (HU) ²  
           

   Overall 19.0 (9.0) 20.0 (7.0) 23.0 (7.0) < 0.0001 20.5 (8.0) 
 

16.0 (9.8) 20.0 (8.8) 23.5 (8.0) < 0.0001 20.0 (10.0) 

   Women 19.0 (10.0) 20.5 (7.0) 21.0 (8.0) 0.02 20.0 (9.0) 
 

16.0 (9.0) 20.0 (7.0) 23.0 (8.0) 0.0004 20.0 (10.0) 

   Men 20.0 (7.0) 20.0 (7.0) 23.5 (5.2) 0.0002 21.0 (8.0) 
 

16.0 (9.0) 19.0 (10.0) 24.0 (8.8) 0.003 21.0 (9.5) 

  Age < 65 years 21.0 (8.0) 19.0 (7.8) 21.0 (8.0) 0.92 20.0 (8.0) 
 

15.5 (12.2) 18.0 (8.0) 22.0 (6.5) 0.11 20.0 (9.5) 

  Age 65-79 years 18.5 (9.2) 20.5 (7.8) 23.0 (6.0) 0.0001 20.0 (9.0) 
 

18.0 (7.0) 20.0 (8.0) 24.0 (7.8) 0.006 20.0 (8.8) 

  Age ≥ 80 years 19.0 (9.8) 20.5 (6.5) 23.5 (4.8) 0.001 21.0 (7.8) 
 

14.0 (5.0) 21.0 (9.5) 24.0 (9.0) 0.0005 20.0 (10.8) 

Diameter of ascending aorta (mm) ³  
          

   Overall 32.0 (6.0) 33.0 (5.0) 34.0 (6.0)  0.01 33.0 (6.0) 
 

35.0 (6.5) 33.0 (6.0) 34.0 (6.0) 0.07 34.0 (6.0) 

   Women 31.0 (5.0) 32.0 (5.0) 32.0 (7.0) 0.45 31.0 (6.0) 
 

34.0 (6.0) 31.0 (7.0) 32.0 (4.0) 0.11 33.0 (6.5) 

   Men 34.0 (6.0) 35.0 (4.8) 35.0 (5.2) 0.22 35.0 (5.0) 
 

38.0 (7.0) 35.0 (4.0) 36.0 (4.8) 0.07 36.0 (5.0) 

  Age < 65 years 29.5 (6.0) 31.0 (5.8) 31.0 (8.0) 0.3 31.0 (7.0) 
 

32.0 (7.8) 29.0 (6.0) 31.0 (5.0) 0.39 31.0 (7.0) 

  Age 65-79 years 34.0 (5.2) 34.0 (4.0) 34.0 (4.0) 0.72 34.0 (5.0) 
 

35.0 (7.0) 33.0 (6.5) 35.0 (4.0) 0.28 35.0 (6.0) 

  Age ≥ 80 years 33.0 (6.0) 35.0 (5.8) 36.0 (5.8) 0.01 35.0 (7.0) 
 

37.0 (3.0) 35.5 (3.5) 36.0 (6.0) 0.34 36.0 (5.0 

IV contrast concentration in PT (HU) � 
          

   Overall 425 (125) 370 (134) 374 (193) < 0.0001 394 (146) 
 

406 (141) 334 (148) 316 (167) < 0.0001 358 (158) 

   Women 432 (123) 363 (135) 351 (189) < 0.0001 390 (144) 
 

404 (98) 343 (122) 372 (212) 0.03 372 (145) 

   Men 419 (128) 380 (124) 398 (194) 0.03 396 (143) 
 

 493 (156) 321 (158) 296 (138) 0.003 322 (172) 

  Age < 65 years 406 (127) 326 (102) 280 (81) < 0.0001 356 (129) 
 

372 (76) 321 (90) 294 (167) 0.03 326 (132) 

  Age 65-79 years 422 (103) 387 (141) 386 (172) 0.08 396 (136) 
 

435 (148) 335 (140) 312 (132) 0.004 356 (150) 

  Age ≥ 80 years 448 (121) 394 (120) 454 (136) 0.05 441 (140) 
 

482 (156) 392 (166) 398 (227) 0.22 406 (224) 

Diameter of PT (mm) ³ 
           

   Overall 26.0 (4.0) 27.0 (6.0) 27.0 (5.0) 0.002 26.0 (5.0) 
 

27.0 (7.0) 27.5 (5.0) 29.0 (6.0) 0.05 28.0 (6.0) 

   Women 25.0 (5.0) 26.5 (5.0) 27.0 (4.2) 0.02 26.0 (6.0) 
 

26.0 (6.0) 27.0 (5.0) 28.0 (4.5) 0.24 27.0 (5.8) 

   Men 26.0 (5.5) 28.0 (5.0) 27.0 (6.0) 0.33 27.0 (5.0) 
 

29.0 (3.0) 29.0 (8.0) 30.0 (4.8) 0.45 29.0 (5.2) 

  Age < 65 years 25.0 (4.8) 26.0 (6.0) 27.0 (5.0) 0.11 26.0 (5.0) 
 

25.5 (6.2) 25.0 (6.0) 28.0 (7.5) 0.06 26.0 (5.2) 

  Age 65-79 years 26.0 (5.0) 27.0 (5.0) 27.0 (5.0) 0.24 27.0 (5.0) 
 

28.0 (8.0) 27.0 (4.0) 29.0 (4.8) 0.2 28.0 (6.0) 

  Age ≥ 80 years 26.0 (4.0) 28.0 (8.5) 28.0 (6.8) 0.04 27.0 (6.0) 
 

29.0 (5.0) 30.5 (5.2) 29.0 (5.0) 0.43 29.0 (5.2) 

Note. — Unless otherwise indicated, data are number of examinations and data in parentheses are the interquartile range., HU = hounsfield unit,  mm = millimeter, PT = pulmonary trunk, IV = intravenous, ROI= region of 
interest 
¹ Data in parentheses are the percentage. 
² The measurement was done by calculating the SD of HU within a circular ROI of 1 cm² in the descending aorta at the level of the PT. 
³ The diameters of the PT and ascending aorta were measured at the level of the PT. 
� The measurement was done by calculating the mean HU in a circular ROI of 2 cm² just proximal to the PT bifurcation. 
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Model segmentation performance evaluation on the internal and external testing dataset 

Segmentation performance was evaluated for three major blood vessels: the descending aorta

(DAo), ascending aorta (AAo), and pulmonary trunk (PT), on an internal test dataset of 210

CTPAs. The trained nnU-Net deep learning model successfully detected all three major blood

vessels in all 210 CTPAs. However, there were segmentation failures in 3 cases for the DAo, 8

cases for the AAo, and 15 cases for the PT. For the successfully segmented vessels, the median

Dice scores for the DAo were 0.94 (IQR, 0.05) for good quality, 0.95 (IQR, 0.05) for acceptable

quality, and 0.95 (IQR, 0.04) for inferior quality examinations. For the AAo, the scores were

0.96 (IQR, 0.04), 0.96 (IQR, 0.05), and 0.95 (IQR, 0.05), respectively. Similarly, for the PT, the

scores were 0.96 (IQR, 0.05), 0.95 (IQR, 0.04), and 0.95 (IQR, 0.04), corresponding to good,

acceptable, and inferior quality examinations. A combined overall median Dice score of 0.95

(IQR, 0.05) for these three major blood vessels was achieved on the internal test dataset (Figure

3, A). AAo segmentation was performed on 12 contrast-enhanced CT examinations from the

SegTHOR dataset [21]. The median Dice, Jaccard, and Boundary F1 (BF) contour matching

scores were 0.94 (IQR, 0.02), 0.88 (IQR, 0.04), and 1.0, respectively (Figure 3, B). 
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Figure 3 Segmentation performance on the internal and external test sets. (A) The internal test set 
segmentation performance, measured by the Dice Similarity Coefficient (DSC), is provided for all tasks, 
including the descending aorta (DAo, n= 207 CTPA exams), the pulmonary trunk (PT, n= 195 CTPA 
exams), and the ascending aorta (AAo, n= 202 CTPA exams). The quality of each CTPA examination was 
rated by a radiologist as good (black), acceptable (blue), or inferior (red). Green boxes represent the 
DSC for all quality ratings. (B) The Boundary F1, Dice, and Jaccard index scores for AAo segmentation 
are provided for the SegTHOR dataset (n�=�12 CT exams with contrast agent). The median (orange 
line), interquartile range (boxes), and outliers (x) are shown. 

 

Model measurement performance evaluation on the internal and external testing dataset 

Measurement evaluations were conducted on the successfully segmented vessels. Image noise 

was assessed on 207 CTPAs, the diameter of the AAo on 202 CTPAs, and both the IV contrast 

concentration in PT and the diameter of the PT on 195 CTPAs from the internal testing dataset. 

These measurements resulted in Pearson’s r values of 0.91, 0.93, 0.98, and 0.55, respectively, all 

with p < 0.001 (Figure 4, A1-D1). The proposed model's measurements compared favorably 

with those of the radiologist, with mean differences observed for image noise (-0.03 HU), AAo 

diameter (1.78 mm), PT IV contrast level (17.62 HU), and PT diameter (-2.16 mm) (Figure 4, 

A2-D2). We also present the mean percentage differences between the proposed model and the 

radiologist using Bland-Altman analysis: -1.96% for image noise, 5.56% for the AAo diameter, 

and -7.65% for the PT diameter) (Figure 4, A3-D2). 
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Figure 4. Comparison of developed AI model to the Radiologist. Both automatic and manual 
measurements from the test set cases were evaluated using regression analysis (top row, dashed 
regression lines), Bland-Altman plots for differences in radiodensity and diameters (middle row, limits of 
agreement from -1.96 to +1.96 SD), and Bland-Altman plots for percentage differences (bottom row, 
limits of agreement from -1.96 to +1.96 SD). The analysis included: (A) Image noise (n=207 CTPA 
exams), (B) Intravenous (IV) contrast agent in pulmonary trunk (n=195 CTPA exams), (C) Ascending 
aorta diameter (n=202 CTPA exams), and (D) Pulmonary trunk diameter (n=195 CTPA exams). The 
quality of each CTPA examination was rated by the radiologist as good (black diamonds), acceptable 
(blue circles), or inferior (red squares). 

 

For the external evaluation of measurements, PT diameter was assessed in 35 CTPA exams from 

the FUMPE dataset. First, inference was performed using a trained nnU-Net DL model, followed 

by the selection of the best 2D PT segmentation candidate through a post-processing algorithm. 

Finally, a measurement algorithm was applied, resulting in Pearson’s r�=�0.83, p�<�0.001 

(Figure 5, A). The limits of agreement between the proposed model and FUMPE radiologist 

annotations showed mean differences of −1.43 mm and -5.14% (Figure 5, B and C). 
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Figure 5. External Testing of Automatic Pulmonary Trunk (PT) Diameter Measurement. Automatic PT diameter measurements from the
FUMPE dataset (35 CTPA exams) were compared to manual radiologist annotations from the original study using three methods: (A) regression
analysis, depicted with dashed regression lines, (B) Bland-Altman plots of differences in millimeters, with limits of agreement from -1.96 to +1.96
SD, and (C) Bland-Altman plots of percentage differences, with the same limits of agreement. 
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Segmentation and measurement performance comparison with the previous solution 

This study demonstrates significant improvements in segmentation performance over our 

previously proposed fully automated deterministic solution [19], particularly with higher success 

rates for segmenting the DAo (99% vs. 90%), AAo (96% vs. 86%), and PT (93% vs. 88%) in the 

internal test set. Measurement performance had notable improvements in image noise (0.03 HU 

vs. -0.25 HU) and the diameter of the PT (-2.16 mm vs. -3.20 mm), but a larger variance in the 

diameter of the AAo (1.78 mm vs. 0.51 mm) and IV contrast concentration in the PT (17.62 HU 

vs. -0.28 HU) (Table 3). Overall, the current study provides enhanced segmentation accuracy, 

while measurement accuracy improvements are more variable. 

 

Table 3 Comparison of Segmentation and Measurement Performance Between the Current and Previous Solution 

Characteristics Previous Solution This Study 

Segmentation Performance 
  

  Internal test set 520 CTPAs 210 CTPAs 

    DAo 470 (90) 207 (99) 

    AAo 447 (86) 202 (96) 

    PT 455 (88) 195 (93) 

  External set 12 CTPAs 

    AAo 12 (100) 12 (100) 

Measurement Performance (mean differences) ¹   
  Internal test set 

  
    Image noise (HU) -0.25 0.03 

    Diameter of ascending aorta (mm) 0.51 1.78 

    IV contrast concentration in PT (HU)  -0.28 17.62 

    Diameter of PT (mm) -3.20 -2.16 

  External set 31 CTPAs 35 CTPAs 

    Diameter of PT (mm) -2.6 -1.43 

Note. —  Unless otherwise indicated, data are presented as the number of examinations, with percentages shown 
in parentheses. HU = Hounsfield unit, mm = millimeter, PT = pulmonary trunk, IV = intravenous , CTPA = 
computed tomography pulmonary angiography 

¹ The measurements were performed only on successfully segmented vessels. 
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Discussion 

In this study, a nnU-Net [18] based deep learning (DL) model was used along with a 

deterministic post-processing step to automatically segment major blood vessels including 

descending aorta (DAo), ascending aorta (AAo), and pulmonary trunk (PT). The proposed model 

achieved robust segmentation of major blood vessels, with a combined overall median Dice 

score of 0.95 (interquartile range, 0.05). For successfully segmented vessels, a 2D measurement 

algorithm [19] was adapted and subsequently applied to achieve accurate vessel measurements. 

The automatic measurements showed a strong correlation with the radiologist's assessments, 

with Pearson correlation coefficients ranging from 0.55 to 0.98.  

The comparison of segmentation methods for vascular structures, including traditional image 

processing approaches such as multi-atlas segmentation and model-based frameworks as well as 

modern artificial intelligence methods like deep learning models, revealed varying performance 

across different techniques. Our proposed method significantly outperformed our previous fully 

automated deterministic solution [19], particularly in segmenting the DAo, AAo, and PT. 

Segmentation success rates increased by 9%, 10%, and 5%, respectively, on the internal test set. 

Zhuang et al. employed multi-atlas segmentation on 30 cases, achieving high dice score for the 

AAo (0.96) but lower performance for the pulmonary trunk (0.79), highlighting the challenge of 

segmenting complex structures. In contrast, Ecabert et al. used a model-based framework with 

geometric mesh modeling and deformable models on 37 cases, delivering strong and consistent 

scores for both the aorta (0.95) and PT (0.94), indicating the robustness of their method in 3D 

segmentation tasks. Deep learning approaches, particularly U-Net-based semantic segmentation 

architectures, have demonstrated outstanding performance in numerous studies [15,25–27]. 

Baskaran et al. [15] tested their U-Net model on 20 cases, achieving high Dice scores for the 

aorta (0.97 for the ascending and 0.95 for the descending sections), but a lower score for the 

pulmonary trunk (0.78). Sharkey et al. [25] utilized nnU-Net, tested on internal test set of 100 

cases, showing stable results across vessels, with scores of 0.92 for the AAo, 0.91 for the DAo, 

and 0.93 for the PT. They also evaluated an external test set of 20 cases, where performance 

remained similar, except for a slightly lower score in the DAo (0.87). Román et al. [26] proposed 

a new architecture similar to V-Net for PT segmentation, achieving a Dice score of 0.89 on a test 
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set of 91 cases. In summary, U-Net-based deep learning architectures outperform other methods 

in vascular segmentation but struggle with complex vascular structures like the pulmonary trunk. 

 

Compared to U-Net-based semantic segmentation architectures, AI foundation models like the 

Segment Anything Model (SAM) have demonstrated improved generalization, efficiency, 

performance, and accessibility [28]. SAM, developed by Meta AI Research [29], was trained on 

the largest image segmentation dataset to date, comprising over 1 billion masks across 11 million 

images. Ma et al. introduced MedSAM, a refined version of SAM specifically designed for 

medical image segmentation. However, despite these advancements, MedSAM and nnU-Net 

models achieved similar Dice scores of 0.94 and 0.93 for aorta segmentation [30]. In contrast, 

our model, tested on a larger dataset of 210 cases, performed consistently well with accuracy 

rates of 0.95–0.96 across both the aorta and PT, demonstrating competitive results despite 

utilizing 2D image segmentation and accounting for variable examinations quality. A 

deterministic algorithm was developed to select the optimal 2D object of the major blood vessels 

from the candidate pool for measurement. However, this algorithm failed in 3, 8, and 15 cases 

for the DAo, AAo, and PT, respectively. The primary reason for these failures was inferior or 

acceptable examination quality of the cases. When our proposed segmentation method was 

evaluated on a publicly available dataset, it demonstrated comparable performance on both 

internal and external datasets, achieving a median Dice score of 0.95 (IQR, 0.05) for the AAo on 

the internal testing dataset and 0.94 (IQR, 0.02) on the external SegThor dataset [21]. 

Collectively, our method delivers robust and consistent segmentation performance while 

addressing the limitations of variability in CTPA examination quality and dataset generalization. 

 

Our study provides valuable insights into the measurement of major blood vessels, though it is 

limited by the constraints of 2D segmentation and measurement. While the majority of the 

literature focuses on 3D segmentation of the aorta and PT, our 2D approach offers a more 

efficient and task-specific method for segmenting the DAo, AAo, and PT. This approach 

provides several practical advantages, including the requirement for only 2D manual annotations 

for model development, reduced computational power, and lower algorithmic complexity. We 

observed comparable measurement performance compared to previous studies. On a test dataset 

of 288 contrast-enhanced chest CT scans, Chettrit et al. reported mean differences between their 
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algorithm and radiologists of -0.94 mm for the AAo diameter and -0.86 mm for the PT diameter 

[31]. Román et al. [26] measured the mean error of the PT radius by calculating the average 

Euclidean distance between the segmented surface and the ground truth surface using the 

Discrete Marching Cubes method, resulting in an error of 1.25 mm. In a prior study, we reported 

mean differences of -3.20 mm for the PT diameter and 0.51 mm for the AAo diameter between 

their automated measurements and ground truth [19]. Here, we observed larger discrepancies for 

the AAo, with a mean difference of 1.78 mm between automated measurements and those of 

radiologists. However, for the PT diameter, the mean absolute difference between the model's 

measurements and those of radiologists was -2.16 mm on our internal dataset, which improved to 

-1.43 mm on the external FUMPE dataset [22]. 

 

There are several limitations to our study. First, the model was initially trained on data collected 

from a single institution, albeit produced using scanners from a variety of vendors. Second, 

supplementary structural features, including the right-to-left ventricular diameter ratio [32], 

contrast reflux into the inferior vena cava [33], and cardiac chamber dimensions [34], can 

provide valuable prognostic or diagnostic information beyond the diameter of the AAo and PT. 

Third, due to the unavailability of a publicly accessible dataset, we could not evaluate our 

proposed model on a large external testing set. Fourth, to validate the generalizability of the 

proposed model, it should be evaluated on various CT protocols, including coronary CT 

angiography and venous phase contrast-enhanced CT, in addition to CTPA. Finally, while the 

proposed method achieved better segmentation results compared to our previous solution, we 

observed significant variability in IV contrast concentration in the PT and in the diameter of the 

AAo. This discrepancy is primarily due to the measurement algorithm, which was adapted from 

our solution but was originally designed for that specific segmentation algorithm. Therefore, to 

improve accuracy in future studies, a new measurement algorithm needs to be developed 

specifically for our current segmentation method. 

 

In conclusion, the automated end-to-end deep learning-based segmentation model accurately 

segmented major blood vessels in the chest cavity, and the adapted vessel measurement 

algorithm showed strong correlation with radiologists' measurements. Integrating the highly 
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accurate automated solutions presented in this study into Picture Archiving and Communication 

Systems (PACS) could be of value for radiologists in routine clinical practice. 
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Supplementary Table 1. Ground Truth Measurements by Radiologists. 

Category Training Dataset     Test Dataset   

 
Quality of CTPA exams 

Overall p-value 
  Quality of CTPA exams 

Overall p-value 
 

Good Acceptable Inferior p-value 
 

Good Acceptable Inferior p-value 

No. of CTPA exams ¹ 
             

   Women 121 (24.69) 80 (16.33) 56 (11.43) 

- 

257 (52.45) 

- 

 
41 (19.52) 41 (19.52) 44 (20.95) 

- 

126 (59.99) 

- 
   Men 79 (16.12) 78 (15.92) 76 (15.51) 233 (47.55) 

 
17 (8.1) 29 (13.81) 38 (18.1) 84 (40.01) 

  Age < 65 years 62 (12.65) 50 (10.2) 33 (6.73) 145 (29.58) 
 

16 (7.62) 21 (10) 23 (10.95) 60 (28.57) 

  Age 65-79 years 92 (18.78) 78 (15.92) 61 (12.45) 231 (47.15) 
 

25 (11.9) 31 (14.76) 30 (14.29) 86 (40.95) 

  Age ≥ 80 years 46 (9.39) 30 (6.12) 38 (7.76) 114 (23.27) 
 

17 (8.1) 18 (8.57) 29 (13.81) 64 (30.48) 

Image noise (HU) ²  
             

   Overall 19.0 (9.0) 20.0 (7.0) 23.0 (7.0) < 0.0001 20.5 (8.0) - 
 

16.0 (9.8) 20.0 (8.8) 23.5 (8.0) < 0.0001 20.0 (10.0) - 

   Women 19.0 (10.0) 20.5 (7.0) 21.0 (8.0) 0.02 20.0 (9.0) 
0.09  

16.0 (9.0) 20.0 (7.0) 23.0 (8.0) 0.0004 20.0 (10.0) 
0.34 

   Men 20.0 (7.0) 20.0 (7.0) 23.5 (5.2) 0.0002 21.0 (8.0) 
 

16.0 (9.0) 19.0 (10.0) 24.0 (8.8) 0.003 21.0 (9.5) 

  Age < 65 years 21.0 (8.0) 19.0 (7.8) 21.0 (8.0) 0.92 20.0 (8.0) 

0.41 
 

15.5 (12.2) 18.0 (8.0) 22.0 (6.5) 0.11 20.0 (9.5) 

0.62   Age 65-79 years 18.5 (9.2) 20.5 (7.8) 23.0 (6.0) 0.0001 20.0 (9.0) 
 

18.0 (7.0) 20.0 (8.0) 24.0 (7.8) 0.006 20.0 (8.8) 

  Age ≥ 80 years 19.0 (9.8) 20.5 (6.5) 23.5 (4.8) 0.001 21.0 (7.8) 
 

14.0 (5.0) 21.0 (9.5) 24.0 (9.0) 0.0005 20.0 (10.8) 

Diameter of ascending aorta (mm) ³  
             

   Overall 32.0 (6.0) 33.0 (5.0) 34.0 (6.0)  0.01 33.0 (6.0) - 
 

35.0 (6.5) 33.0 (6.0) 34.0 (6.0) 0.07 34.0 (6.0) - 

   Women 31.0 (5.0) 32.0 (5.0) 32.0 (7.0) 0.45 31.0 (6.0) 
< 0.0001  

34.0 (6.0) 31.0 (7.0) 32.0 (4.0) 0.11 33.0 (6.5) 
< 0.0001 

   Men 34.0 (6.0) 35.0 (4.8) 35.0 (5.2) 0.22 35.0 (5.0) 
 

38.0 (7.0) 35.0 (4.0) 36.0 (4.8) 0.07 36.0 (5.0) 

  Age < 65 years 29.5 (6.0) 31.0 (5.8) 31.0 (8.0) 0.3 31.0 (7.0) 

< 0.0001 
 

32.0 (7.8) 29.0 (6.0) 31.0 (5.0) 0.39 31.0 (7.0) 

< 0.0001   Age 65-79 years 34.0 (5.2) 34.0 (4.0) 34.0 (4.0) 0.72 34.0 (5.0) 
 

35.0 (7.0) 33.0 (6.5) 35.0 (4.0) 0.28 35.0 (6.0) 

  Age ≥ 80 years 33.0 (6.0) 35.0 (5.8) 36.0 (5.8) 0.01 35.0 (7.0) 
 

37.0 (3.0) 35.5 (3.5) 36.0 (6.0) 0.34 36.0 (5.0 

IV contrast concentration in PT (HU) � 
             

   Overall 425 (125) 370 (134) 374 (193) < 0.0001 394 (146) - 
 

406 (141) 334 (148) 316 (167) < 0.0001 358 (158) - 

   Women 432 (123) 363 (135) 351 (189) < 0.0001 390 (144) 
0.97  

404 (98) 343 (122) 372 (212) 0.03 372 (145) 
0.16 

   Men 419 (128) 380 (124) 398 (194) 0.03 396 (143) 
 

 493 (156) 321 (158) 296 (138) 0.003 322 (172) 

  Age < 65 years 406 (127) 326 (102) 280 (81) < 0.0001 356 (129) 

< 0.0001 
 

372 (76) 321 (90) 294 (167) 0.03 326 (132) 

0.002   Age 65-79 years 422 (103) 387 (141) 386 (172) 0.08 396 (136) 
 

435 (148) 335 (140) 312 (132) 0.004 356 (150) 

  Age ≥ 80 years 448 (121) 394 (120) 454 (136) 0.05 441 (140) 
 

482 (156) 392 (166) 398 (227) 0.22 406 (224) 

Diameter of PT (mm) ³ 
             

   Overall 26.0 (4.0) 27.0 (6.0) 27.0 (5.0) 0.002 26.0 (5.0) - 
 

27.0 (7.0) 27.5 (5.0) 29.0 (6.0) 0.05 28.0 (6.0) - 

   Women 25.0 (5.0) 26.5 (5.0) 27.0 (4.2) 0.02 26.0 (6.0) 
0.001  

26.0 (6.0) 27.0 (5.0) 28.0 (4.5) 0.24 27.0 (5.8) 
0.001 

   Men 26.0 (5.5) 28.0 (5.0) 27.0 (6.0) 0.33 27.0 (5.0) 
 

29.0 (3.0) 29.0 (8.0) 30.0 (4.8) 0.45 29.0 (5.2) 

  Age < 65 years 25.0 (4.8) 26.0 (6.0) 27.0 (5.0) 0.11 26.0 (5.0) 

0.03 
 

25.5 (6.2) 25.0 (6.0) 28.0 (7.5) 0.06 26.0 (5.2) 

0.001   Age 65-79 years 26.0 (5.0) 27.0 (5.0) 27.0 (5.0) 0.24 27.0 (5.0) 
 

28.0 (8.0) 27.0 (4.0) 29.0 (4.8) 0.2 28.0 (6.0) 

  Age ≥ 80 years 26.0 (4.0) 28.0 (8.5) 28.0 (6.8) 0.04 27.0 (6.0) 
 

29.0 (5.0) 30.5 (5.2) 29.0 (5.0) 0.43 29.0 (5.2) 

Note. — Unless otherwise indicated, data are number of examinations and data in parentheses are the interquartile range., HU = hounsfield unit, mm = millimeter, PT = pulmonary trunk, IV = intravenous, ROI=region of interest 

¹ Data in parentheses are the percentage. 

² The measurement was done by calculating the SD of HU within a circular ROI of 1 cm² in the descending aorta at the level of the PT. 

³ The diameters of the PT and ascending aorta were measured at the level of the PT. 

� The measurement was done by calculating the mean HU in a circular ROI of 2 cm² just proximal to the PT bifurcation. 
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