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Statistical appendix 

1. Overview 

We assess sample size estimates for various trial designs using a two-stage 

approach also adopted in previous work[1,2], and here we describe this process in 

generality. In summary: in the first stage we fit linear mixed models (LMM) to 

observational repeated measures data from carriers and non-carriers in the DIAN-

OBS study. From the models fitted to carriers, we obtain estimates of the key 

parameters describing variability over time: these being the parameters that inform 

sample size calculations for planned clinical trials. We also estimate (using the 

models for carriers and for non-carriers) plausible target therapeutic effects. In the 

second stage we use the estimated variability parameters and target treatment 

effects to estimate the sample size requirement for a postulated trial. The postulated 

trial can potentially include designs with multiple follow-up visits, but here we restrict 

ourselves to simple designs with a baseline visit and a single follow-up visit. Both 

stages are described in detail in Section 2 below. 

The basic two-stage approach can be extended to provide confidence intervals for 

sample sizes. The method to do this is described in Section 3. This is followed (in 

Section 4) by computational details. 

 

2. The two-stage approach to sample size estimation 

Stage 1a: Quantifying variability from models for repeated measures 

i) All Cognitive, CSF, PIB and FDG variables and all MRI variables other 
than those based on the boundary shift integral  

For all outcome measures, except those based on the boundary shift integral, 

standard random slopes models were fitted separately to carriers and non-carriers. 

These LMMs have the form:  



𝑦!" = (𝛽#	+	𝑏#!) + (𝛽$	+	𝑏$!)𝑡!"	 + 𝑒!" with +𝑏#!𝑏$!
,~𝑁/0, 2𝜎#

& 𝜎#$
𝜎#$ 𝜎$&

45 and 	𝑒!"~𝑁(0, 𝜎'&)	   

(1) 

where 𝑦!" is the value of the outcome variable for the 𝑖() person at the 𝑗() visit and 𝑡!" 

is the time of that visit relative to the start of follow up, with the first visit for each 

person occurring at time 𝑡!# = 0. In the model for non-carriers the random effect for 

slope was omitted (i.e. 𝜎#$ and 𝜎$& were set to zero) since variation in change over 

time between non-carriers is generally very small, and leaving such a term in the 

model in such a case can lead to convergence problems.  

For the MRI, FDG, CSF and PIB variables (but not the cognitive variables) outcomes 

were log-transformed in order to make changes over time more approximately linear.  

When log-transformed (and after multiplying by 100), a slope essentially represents 

change on a percentage scale with respect to baseline. The models for volumetric 

MRI measures were extended to include fixed effects for total intracranial volume 

(TIV) and its interaction with time. TIV was centered by subtracting the mean of TIV 

in carriers from each TIV measurement, such that the interpretation of 𝛽$ from the 

model represented by equation (1) is the slope over time in a participant with the 

mean TIV observed in those with ADAD.   

ii) MRI variables based on the boundary shift integral  

For “direct” measurements of change between two visits obtained from the boundary 

shift integral, a different LMM was used[3,4]: 

𝑐!"* = (𝛽$	+	𝑏$!)9𝑡!*	 − 𝑡!";	−	𝑢!" + 𝑢!* +𝑤!"* 	with 𝑏$!~𝑁(0, 𝜎+$& ), 	𝑢!"~𝑁(0, 𝜎,&)				 

and	𝑤!"*~𝑁(0, 𝜎-&)      (2) 

where 𝑐!"* 	is the measured change in the outcome variable for participant i between 

visits j and k, 𝑢!" 	 and  𝑢!* 	are subject-specific random visit effects on the direct 

measurement of change, and 	𝑤!"* is the unexplained residual variability. Other 

notation is as above. 

Prior to fitting the model boundary shift integral derived changes were converted to 

change as a proportion of baseline, defined as p, by dividing by brain volume at the 



start of the relevant time interval. For consistency with the log-transformation 

approach in i) these proportions were transformed using 100*log'(1 + 𝑝) (for further 

information around this transformation, please see [3].      

Stage 1b: Target therapeutic effects 

i) Cognitive, MRI and FDG PET variables 

In considering target therapeutic effects, a useful starting point is to understand what 

a 100% effective (i.e. completely successful) treatment might achieve. For outcomes 

reflecting neurodegeneration (cognitive, MRI and FDG variables in our study) a 

100% effective treatment effect might be expected to reduce the mean rate of 

change in that variable to that in non-carriers. For such outcomes (irrespective of 

whether analysed using equation (1) or (2)), we consider an appropriate target 

therapeutic effect to be a 𝑝 × 100% reduction in the excess mean rate of change 

(over and above that seen in non-carriers) (see left panel of Figure 1, where p is 

taken to be 0.5). Extending the notation in equations (1) and (2) such that 𝛽$. and 

𝛽$/. 	represent the mean rates of change in carriers and non-carriers respectively, 

the trial should use a target therapeutic effect that reduces the rate of change from 

𝛽$. in the placebo arm to 𝛽$. − 𝑝(𝛽$. − 𝛽$/.)	in the intervention arm. The target 

treatment effect for these variables can be left as the difference between the slopes 

in the two groups, −𝑝(𝛽$. − 𝛽$/.), or converted to the difference between the mean 

levels in the two groups at the end of the follow-up period of the trial (i.e. at time 𝑡):   

𝑑 = −𝑝𝑡(𝛽$. − 𝛽$/.) (3) 

For the model of direct measures of change represented by equation (2) this quantity 

corresponds to the difference in mean change between baseline and time 𝑡. 

For the MRI and FDG variables (but not the cognitive variables) changes over time 

are more approximately linear after log-transformation. When log-transformed, a 

slope essentially represents change on a percentage scale with respect to baseline 

and so a 𝑝 × 100% reduction in the excess mean rate of change relates to rates of 

change that are themselves on a percentage scale. 

ii) CSF and PIB variables  



For outcomes reflective of amyloid and/or tau burden (CSF and PIB variables), a 

100% effective treatment effect might be expected to reduce the average level of 

that variable to that in non-carriers. For such outcomes we consider an appropriate 

target therapeutic effect to be 𝑝 × 100% of the difference between the averages in 

carriers and non-carriers at the end of follow-up (see right panel of Figure 1, where p 

is taken to be 0.25).  

As for the MRI and FDG variables above, log-transforms were used for the CSF and 

PIB variables. However, target treatment effects were defined on the original 

untransformed scale, and considered geometric means to represent average levels. 

Extending the notation in equation (1) such that 𝛽#. and 𝛽#/. represent the mean 

baseline levels of the log-transformed outcome in carriers and non-carriers 

respectively and t  is the length of follow-up in the postulated trial, the target 

therapeutic effect reduces the geometric mean level on the untransformed scale at 

the end of follow-up from 𝑒0!"10#"( in the placebo arm to (1 − 𝑝)𝑒0!"10#"( +

𝑝𝑒0!$"10#$"( in the intervention arm. When the outcome is log-transformed this 

equates to a reduction from an (arithmetic) mean of 𝛽#. + 𝛽$.𝑡 in the placebo arm to 

one of log9(1 − 𝑝)𝑒0!"10#"( + 𝑝𝑒0!$"10#$"(; in the intervention arm.  The target 

treatment effect for these variables is the difference between the mean log-

transformed levels at time 𝑡: 

𝑑 = −G𝛽#. + 𝛽$.𝑡 − log9(1 − 𝑝)𝑒0!"10#"( + 𝑝𝑒0!$"10#$"(;H (4) 

We also make the commonly adopted assumption in all scenarios that variability will 

be unaltered by treatment: such that variability in both arms will mimic that seen in 

the carrier group in the observational data. 

 
Stage 2: Sample sizes for clinical trial designs 

A number of authors including Dawson and Frost and colleagues[2,5] have shown 

how required sample sizes for a particular clinical trial design that is to be analysed 

using an LMM can be computed provided that there are postulated values for the 

parameters in the LMM, and a target treatment effect defined as a difference in 

slopes in the two treatment groups. One requirement is that transformations are 



used in a consistent fashion: for example, where the observational data are log-

transformed then a log-transformation must also be used in the analysis of the trial. 

i) All trials with a baseline and single follow-up measure of a Cognitive, CSF, 
PIB, FDG or MRI variable  

While the general approach for any LMM can be used here, for a simple planned 

design with just a single baseline and follow-up measure at time t, the simplest (and 

essentially equivalent) appropriate approach is to use an analysis of covariance 

(ANCOVA) model. Frison and Pocock[6] give a formula for the sample size in each 

arm of a trial for the ANCOVA treatment effect estimator:  

𝑁 =
2+𝜎2& −

𝜎32&
𝜎3&
,

𝑑&
(1.96 + 0.842)& (5)

 

for a power of 80% and a Type I error of 5%, where 𝑑 is the target treatment effect 

defined as a difference in means between the two groups at time 𝑡 (equation (3) for 

cognitive, MRI and FDG variables, equation (4) for CSF and PIB variables), 𝜎3& is the 

variance of the baseline measure, 𝜎2& is the variance of the follow-up measure at 

time 𝑡, and 𝜎32 is the covariance between the follow-up and baseline measures. 

These can be estimated from the repeated measures model specified in equation 

(1). Specifically, the implied variance at time t, 𝜎2&, is 𝜎#& + 	2𝑡𝜎#$ +	𝑡&𝜎$& + 𝜎'&, the 

implied variance at baseline, 𝜎3&, is 𝜎#& + 𝜎'&, and the implied covariance with the 

baseline measure, 𝜎32, is 𝜎#& + 	𝑡𝜎#$.  

As explained in Frost et. al.[1], for designs where it is planned to additionally adjust 

for a covariate such as TIV, the variances of the baseline and follow-up measures 

conditional on the covariate (and the covariance between the follow-up and baseline 

measures conditional on the covariate) should be used. Estimates of these 

conditional (co)variances can be obtained by including the centred covariate and its 

interaction with time in the models specified in equation (1). Assuming that 

covariates are perfectly balanced by randomisation arm, the estimates of the 

covariate effects are orthogonal to those for the treatment effect and hence neither 

the covariate effect estimates, nor their variances and covariances, need be used in 

the formulae for the calculation of sample-sizes (equation (5)) provided the covariate 

and its interaction with time are added to the model specified in equation (1). 



Centring the covariate ensures that the target therapeutic effect is specified for a 

person with mean levels of the covariate.   

ii) Trials with a single “direct” measure of change  

For a planned design with just a single “direct” measure of change at time t, the 

simplest appropriate approach is to use an unpaired t test. The appropriate formula 

for the sample size in each arm of the trial is:  

𝑁 =
2𝜎.&

𝑑&
(1.96 + 0.842)& (6) 

for a power of 80% and a Type I error of 5%, where 𝑑 is the target treatment effect 

defined as a difference in mean changes between baseline and time 𝑡 between the 

two groups (equation (3)) and 𝜎.& is the variance of the change over time 𝑡. These 

can be estimated from the repeated measures model specified in equation (2). 

Specifically, the implied variance of the change over time t, 𝜎.&, is 	𝑡&𝜎+$& + 2𝜎,& + 𝜎-& .  

iii) Allowing for dropout  

Once the sample size is calculated using equation (5) or (6), any dropout at the 

follow-up time point can be accounted for by inflating the value of 𝑁. For example, 

for 𝑠 × 100% dropout at time 𝑡, the required sample size 𝑁 can be calculated from 

the sample size with no dropout, 𝑁45678'(', as follows: 

𝑁 =
𝑁45678'('
1 − 𝑠

(7) 

3. Confidence intervals for estimated sample sizes.  

A single determination of the sample size using the estimates from the LMM alone 

does not provide any quantification of uncertainty in these measures. Relying solely 

on this point estimate for a clinical trial may risk underpowering (or overpowering) the 

study. For this reason, it is informative to construct confidence intervals around 

estimated sample sizes to provide a guide to the precision of the estimates. Since 

the sampling distribution of sample size estimates is complex and not readily 

amenable to approximation with explicit algebraic formulae, the bootstrap[7] can be 

used to do this. The other advantage of utilising bootstrap is that it provides 



additional robustness for the confidence interval if the assumptions of the linear 

mixed models used in the analysis do not hold exactly.  

Here we constructed non-parametric bias-corrected and accelerated (BCa) 

confidence intervals from 5000 bootstrap samples for each of our sample size 

estimates. The confidence intervals were constructed on the “effect sizes”, i.e. the 

ratio of the target treatment effect to its standard error for a two-person trial. For 

example, for the ANCOVA sample size calculation above the effect size would be 

𝑑/(2(𝜎2& − 𝜎32& /𝜎3&))$/&. The distribution of estimated effect sizes is likely to be more 

symmetric than that of estimated sample sizes and so confidence intervals 

calculated on this scale are likely to have better coverage properties. The confidence 

intervals were then transformed to the sample size scale. 

 

4. Computational details 

For computational convenience, we used an adapted version of the Stata package 

slopepower[8]. Slopepower incorporates the two stages of first fitting the LMM to 

observational data and then using the model estimates to calculate a sample size for 

a postulated trial. While slopepower uses the more general matrix algebra approach 

found in[1,2], for the simple case of a baseline measure and a single follow-up 

measure it is equivalent to using ANCOVA to calculate the sample size. The 

adaptations to slopepower include incorporating adjustment for TIV, allowing for 

analysis of outcomes based on direct measures of change, and bootstrapping the 

effect size.  

The analysis of the observational data requires linear mixed models to be fitted to 

non-carriers and carriers separately, although for convenience this was done using a 

single joint model with all parameters (including random effects and residuals) 

allowed to differ between carriers and non-carriers.  

The LMM was considered to have failed to converge if it either produced an error 

during the fitting process or resulted in an estimate of the correlation between slope 

and intercept with an absolute value of greater than 0.99, as this suggests that the 

parameter estimate is on the boundary of the parameter space.  



Some checks were carried out before including the specific outcomes in the sample 

size analysis. First, estimates for the difference in slope between carriers and non-

carriers were obtained from the LMMs specified in (1) and (2) for those variables 

reflecting neurodegeneration. When the ratio between the estimate of the slope 

difference and the standard error of this estimate (effectively a z-score) was less 

than 2.5, then this outcome was excluded from sample size analysis. This is 

because the difference in slopes between carriers and non-carriers is not highly 

significant, and so it would be unlikely to be a suitable candidate for intervention in a 

future trial where the target therapeutic effect is based on a 25% change in slope. In 

addition, there would likely be a large enough proportion of bootstrap samples that 

had effect sizes with a flipped sign (i.e. less disease in carriers than non-carriers), 

such that the confidence intervals for the effect size would span zero. This would 

mean that the upper limit of the 95% CI for the sample size could not be estimated. 

The check on the ratio between the estimate of the slope difference and its standard 

error was applied to both the model fitted to the entire trial eligible sample with 

baseline global CDR=0-1, as well as to the subset of participants with a global CDR 

score of 0 at baseline. 
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Supplemental Table 1 Estimated outcome measures at baseline and at four-year follow-up (with 95% confidence intervals) for 
carriers and non-carriers, based on the linear mixed effects model of participants in the observational studies. These estimates 
form the basis of the subsequent sample size estimates. For models where the outcome was transformed, the estimates have been 
back-transformed to the original scale. Outcomes with blank cells are where the linear mixed model failed to converge or there was 
insufficient evidence of change in slope between carriers and non-carriers.  
 Non-Carrier Carrier (CDR=0-1) Carrier (CDR=0) 

 Outcome Baseline Year 4 Baseline Year 4 Baseline Year 4 

COG 

MMSE 29.2 
( 29.0, 29.4) 

29.3 
(29.1, 29.5) 

27.1 
(26.5, 27.7) 

23 
(21.6, 24.4) 

28.9 
(28.6, 29.2) 

27.9 
(27.2, 28.6) 

CDR SB 0.04 
(-0.01, 0.09) 

0.08 
(0.03, 0.13) 

1.03 
(0.72, 1.35) 

4.21 
(3.20, 5.23) 

  

Cognitive 
Composite 1 

-0.03 
(-0.14, 0.08) 

0.12 
(0.00, 0.23) 

-0.77 
(-0.94, -0.61) 

-1.47 
(-1.78, -1.17) 

-0.23 
(-0.37, -0.098) 

-0.39 
(-0.59, -0.19) 

MRI  
(ml) 

Brain Volume 1130 
(1120, 1130) 

1120 
(1110, 1130) 

1110 
(1100, 1120) 

1080 
(1070, 1090) 

1120 
(1110, 1130) 

1110 
(1090, 1120) 

Ventricular 
Volume 

17.7 
(16.4, 19.1) 

18.5 
(17.1, 20.0) 

21.0 
(19.2, 22.9) 

27.7 
(24.5, 31.3) 

17.9 
(16.1, 19.8) 

20.7 
(18.2, 23.5) 

Hippocampal 
Volume 

6.43 
(6.31, 6.55) 

6.39 
(6.27, 6.51) 

6.11 
(5.98, 6.24) 

5.79 
(5.63, 5.95) 

6.38 
(6.27, 6.50) 

6.22 
(6.08, 6.37) 

Post. Cing. 
Volume 

9.98 
(9.78, 10.2) 

9.89 
(9.70, 10.1) 

9.45 
(9.28, 9.63) 

8.94 
(8.71, 9.18) 

9.66 
(9.43, 9.90) 

9.39 
(9.11, 9.67) 

Precuneus 
Volume 

20.1 
(19.7, 20.6) 

19.9 
(19.5, 20.3) 

18.8 
(18.4, 19.3) 

17.4 
(16.8, 18.1) 

19.7 
(19.3, 20.1) 

18.9 
(18.4, 19.5) 



 Non-Carrier Carrier (CDR=0-1) Carrier (CDR=0) 

PIB 
SUVR 

Inferior Parietal 0.91 
(0.87, 0.95) 

0.90 
(0.86, 0.95) 

1.64 
(1.49, 1.81) 

1.90 
(1.70, 2.12) 

1.46 
(1.29, 1.66) 

1.67 
(1.45, 1.94) 

Inferior 
Temporal 

0.89 
(0.86, 0.92) 

0.88 
(0.85, 0.91) 

1.41 
(1.29, 1.54) 

1.67 
(1.50, 1.87) 

1.29 
(1.15, 1.44) 

1.50 
(1.31, 1.72) 

Middle 
Temporal 

0.82 
(0.79, 0.85) 

0.80 
(0.77, 0.83) 

1.34 
(1.21, 1.48) 

1.57 
(1.41, 1.75) 

1.22 
(1.08, 1.38) 

1.42 
(1.24, 1.63) 

Posterior 
Cingulate 

1.21 
(1.17, 1.24) 

1.23 
(1.19, 1.27) 

2.16 
(1.95, 2.39) 

2.39 
(2.13, 2.67) 

1.86 
(1.63, 2.11) 

2.09 
(1.81, 2.41) 

Precuneus 1.13 
(1.09, 1.17) 

1.12 
(1.08, 1.17) 

2.38 
(2.13, 2.66) 

2.72 
(2.39, 3.09) 

1.98 
(1.72, 2.28) 

2.29 
(1.93, 2.71) 

Cortical 1.04 
(1.01, 1.06) 

1.02 
(0.99, 1.05) 

1.95 
(1.76, 2.16) 

2.18 
(1.94, 2.45) 

1.68 
(1.48, 1.91) 

1.9 
(1.64, 2.21) 

FDG 
SUVR 

Banks STS 1.22 
(1.19, 1.24) 

1.2 
(1.17, 1.23) 

1.16 
(1.13, 1.18) 

1.05 
(1.01, 1.09) 

  

Inferior Parietal 1.18 
(1.16, 1.21) 

1.17 
(1.14, 1.20) 

1.08 
(1.05, 1.12) 

0.98 
(0.93, 1.03) 

1.17 
(1.14, 1.20) 

1.11 
(1.07, 1.16) 

Posterior 
Cingulate  

1.26 
(1.23, 1.28) 

1.24 
(1.22, 1.27) 

1.18 
(1.16, 1.21) 

1.13 
(1.10, 1.17) 

1.23 
(1.2, 1.26) 

1.22 
(1.18, 1.26) 

Precuneus  1.37 
(1.35, 1.40) 

1.36 
(1.33, 1.39) 

1.24 
(1.21, 1.28) 

1.12 
(1.07, 1.19) 

  

Hippocampus  0.89 
(0.88, 0.91) 

0.89 
(0.87, 0.90) 

0.87 
(0.85, 0.88) 

0.85 
(0.83, 0.87) 

0.89 
(0.87, 0.90) 

0.89 
(0.87, 0.91) 



 Non-Carrier Carrier (CDR=0-1) Carrier (CDR=0) 

Cortical 1.2 
(1.18, 1.23) 

1.18 
(1.16, 1.21) 

1.15 
(1.12, 1.17) 

1.08 
(1.05, 1.12) 

  

CSF 
(pg/ml) 

XMAP tTau 52.7 
(47.5, 58.5) 

52.0 
(46.7, 58.0) 

113 
(100, 127) 

109 
(97.5, 123) 

88.0 
(75.9, 102) 

85.4 
(73.5, 99.1) 

XMAP tTau 
Long 

43.5 
(39.2, 48.3) 

43.3 
(38.7, 48.5) 

85.1 
(75.1, 96.4) 

86.6 
(75.9, 98.7) 

66.8 
(56.5, 79.0) 

71.7 
(60.0, 85.7) 

XMAP AB42 
Long 

518 
(470, 570) 

499 
(449, 554) 

257 
(230, 288) 

204 
(179, 233) 

313 
(268, 367) 

257 
(215, 306) 

XMAP pTau181 
Long 

21.3 
(19.7,  23.0) 

15.5 
(13.9, 17.3) 

42.1 
(36.4, 48.6) 

33.5 
(29.4, 38.2) 

  

Lumipulse 
AB40 

8770 
(8150, 9450) 

8370 
(7760, 9030) 

8320 
(7850, 8830) 

7090 
(6620, 7580) 

8290 
(7630, 9000) 

7190 
(6570, 7860) 

Lumipulse 
AB42 

787 
(728, 850) 

755 
(697, 818) 

435 
(401, 472) 

351 
(321, 384) 

512 
(459, 570) 

411 
(366, 461) 

Lumipulse tTau 249 
(230, 270) 

244 
(224, 266) 

523 
(468, 584) 

575 
(512, 647) 

410 
(356, 472) 

444 
(384, 514) 

Lumipulse 
pTau181 

26.6 
(24.2, 29.1) 

25.3 
(23.1, 27.8) 

78.7 
(68.4, 90.4) 

85.8 
(74.2, 99.3) 

56.2 
(46.9, 67.3) 

61.2 
(50.7, 73.9) 

Lumipulse 
pTau181/AB42 
ratio 

0.0339 
(0.0316, 0.0363) 

0.0335 
(0.0311, 0.036) 

0.181 
(0.150, 0.218) 

0.242 
(0.198, 0.295) 

0.109 
(0.0866, 0.138) 

0.151 
(0.118, 0.193) 

Lumipulse 
AB42/40 ratio 

0.0896 
(0.0865, 0.0928) 

0.0903 
(0.0871, 0.0936) 

0.0521 
(0.0487, 0.0558) 

0.0500 
(0.0467, 0.0534) 

0.0617 
(0.0566, 0.0673) 

0.0574 
(0.0527, 0.0624) 

 



Supplemental Table 2 Sample size estimates (with 95% bootstrap confidence 
intervals, bias corrected and accelerated) per arm needed to detect a 50% reduction 
in the annual rate of change in a four-year trial, assuming 40% dropout after four 
years. Outcomes with blank cells are where the linear mixed model failed to 
converge. Results in italics indicate that the number of bootstrap samples where the 
model failed to converge is greater than 1%, so these confidence intervals should be 
treated with caution. 
 Outcome CDR=0-1 CDR=0 

COG 

CDR SOB 161 (102,291)  

MMSE 204 (123,411) 878 (353,>10000) 

Cog Composite 104 (68,192) 326 (157,1074) 

MRI 

Brain Volume 118 (59,338)  

Brain BSI 229 (148,325) 727 (318,2398) 

Ventricular Volume 77 (50,137) 246 (120,980) 

Ventricle BSI 150 (102,198) 410 (218,941) 

Hippocampal Volume 142 (88,279) 338 (131,2096) 

Post. Cing. Volume 217 (120,626)  

Precuneus Volume 137 (80,284) 649 (254,>10000) 

FDG 

Cortical SUVR 256 (100,1208)  

Inf. Par. SUVR 146 (71,428)  

Precuneus SUVR 121 (56,368)  

Banks STS SUVR 115 (56,268)  



Supplemental Figure 1 Estimated measures from all outcomes at baseline and at four-year follow-up (means and 95% confidence 
intervals) for carriers and non-carriers. These estimates are based on the fitted parameters from fitting the linear mixed effects 
model to participants in the observational studies that match the trial eligibility criteria. These estimates form the basis of the 
subsequent sample size estimates. All estimates have been back-transformed, when necessary, in order to plot the estimated 
outcome measures in the original scale.  
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