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Implementation details of our language models and competing image-based
models

The language models used the average representation of the sequence for classification, where the hid-
den size of the final fully connected layer was 768. For language model training, both the RoBERTa-
base [6] model and the Chinese RoBERTa [1] model adopted the cross-entropy loss [10] with respective
loss weights for each task. The training loss weight for each class was set inversely proportional to
its numbers of training samples. Specifically, the loss weights for the four tasks were 1.21/1.00 (IDH
wildtype/mutation), 1.00/2.47 (1p/19q codeletion absence/presence), 1.72/1.00 (WHO low-grade/high-
grade), and 1.00/2.28 (GBM/PCNSL), respectively.

The implementation of the six image-based models followed the settings described in their original
papers. For the DeepRisk [9] model, the cross-entropy loss was adopted, and the hidden size of the final
fully connected layer was 512. The input image size for DeepRisk was [40, 256, 256], which was obtained
by sampling 8 equidistant slices from each of the five image contrasts. For the 2D MedMNIST [8] model,
the hidden size of the final fully connected layer was 512. The input image size was [5, 256, 256],
where the slices with the largest tumor area from the five MRI contrasts were concatenated. For the
3D MedMNIST [8] model, the hidden size of the final fully connected layer was 512. The input image
size was [5, 256, 256, 256], which included the original five image contrasts. For the DenseNet [4] model,
the hidden size of the final fully connected layer was 1,664. The model processed each image contrast
separately and computed the average representation of the five image contrasts for classification. The
input size of each image contrast was [24, 256, 256], where the 24 slices included eleven slices before and
twelve slices after the slice with the largest tumor area, along with the slice itself. For both the ViT [2]
the Swin Transformer [7] model, the hidden size of the final fully connected layer was 512. The input
image size was [5, 256, 256], where the models took the slice with the largest tumor area from each MRI
contrast and concatenated these slices for classification.

Details of imaging data pre-processing

For the imaging data, the patients were first categorized based on the availability of image contrasts.
For all selected patients, the T1c image contrast was included, and brain tumor segmentation was
performed based on the T1c image. The N4 bias field correction was applied first. Next, registration
was performed between the T1w image and the MIN152 template [3] using affine transformation and
linear interpolation. The obtained affine matrix was then applied to other image contrasts. Finally, skull
striping was performed based on the T1w image using ROBEX [5].

Detailed classification results of our language models and competing image-
based models

First, for the four tasks with full image contrasts (associated with DT-IDH-1, DT-CI-1, DT-WHO-1, and
DT-BTC-1), we provide the specific confusion matrices of the language model Chinese RoBERTa and
six image-based models. The results are illustrated in Supplementary Figure S1. The detailed results
demonstrate the superior classification performance of Chinese RoBERTa compared to the image-based

1



models, where the language model exhibited minimal bias across different categories and achieved the
highest correct classification counts in nearly all categories.

Then, for the experiments with missing image contrasts (associated with DT-IDH-2, DT-IDH-3,
DT-IDH-4, DT-CI-2, DT-WHO-2, and DT-BTC-2), we first supplement the classification results of the
language model and image-based models with additional metrics that are not available in the main text.
The results are presented in Supplementary Table S1, where the AUC, ACC, F1-score, SEN, SPEC, PPV,
and NPV are reported. The detailed results indicate that Chinese RoBERTa generally outperformed the
competing image-based models and better addressed the issue of missing image contrasts. Moreover, we
present the detailed classification results of all four language models for the experiments with missing
image contrasts in Supplementary Table S2. The Chinese RoBERTa performed best overall, achieving
the highest performance in five of the six datasets.

In addition, we present the detailed classification results for the two external datasets DX-IDH-1 and
DH-IDH-1. The results are shown in Supplementary Table S3, where the AUC, ACC, F1-score, SEN,
SPEC, PPV, and NPV are reported. The results support the observation that the advantages of the
language model over the image-based models were reliable and that it better handled cross-site data
variability.

The detailed comparison with the radiologists

We present the numerical classification results of the language model Chinese RoBERTa, the image-based
models, and the evaluation given by the three radiologists. The comparison is shown in Supplementary
Table S4, where the AUC, ACC, and F1-score are reported. The comparison between the radiologists,
image-based models, and report-based model in terms of the F1-score is consistent with the perfor-
mance in terms of the ACC, showing that our report-based model outperformed junior radiologists and
image-based models, while the experienced radiologist (with ten years of experience) achieved the best
performance.

Data examples of patients from different datasets

To give a more straightforward understanding of the radiological reports of patients with full image con-
trasts, with missing image contrasts, and from different hospitals more clearly, we provide representative
samples from all datasets in Supplementary Table S5. The difference in the number of image contrasts
leads to variations in the report length and information richness. Yet the language model effectively
addressed these variations caused by missing image contrasts.

In addition, the writing styles of different hospitals were apparently different, particularly in the
descriptions of the names of various image contrasts (which were originally in Chinese), as well as in
whether the report included descriptions of normal structures and the order of descriptions. Our language
model was capable of adapting to the cross-site data variability, as indicated by the results in the main
text and supplementary materials.
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Figure S1: The confusion matrices of Chinese RoBERTa and the image-based models. The vertical axis
represents the true labels and the horizontal axis represents the predicted results. All four tasks with
full image contrasts on DT-IDH-1, DT-CI-1, DT-WHO-1, and DT-BTC-1 are included. WT: wildtype;
MT: mutation; ABS: absence; PRS: presence; LG: low-grade; HG: high-grade.
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Table S1: Detailed classification performance of Chinese RoBERTa and the image-based models on DT-
IDH-2, DT-IDH-3, DT-IDH-4, DT-CI-2, DT-WHO-2, and DT-BTC-2 for patients with missing image
contrasts. The best result is highlighted in bold.

4



Table S2: Detailed comparison of the four language models for patients with missing image contrasts
based on DT-IDH-2, DT-IDH-3, DT-IDH-4, DT-CI-2, DT-WHO-2, and DT-BTC-2. The best result is
highlighted in bold.
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Table S3: Detailed classification performance of Chinese RoBERTa and the image-based models for the
external datasets DX-IDH-1 and DH-IDH-1. The best result is highlighted in bold.
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Table S4: Detailed comparison between our language model, the image-based models, and three radiol-
ogists in terms of the AUC, ACC, and F1-score. The best result is highlighted in bold.
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Table S5: Examples of the radiological reports from different hospitals. Note that the original radiological
reports are in Chinese and the presented ones are translated versions. The image contrasts mentioned
in each report are highlighted in bold.
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