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Supplementary Note 1. Targeted NanoSeq and duplex sequencing protocols 
 
Development of targeted NanoSeq 
 
Duplex sequencing (DuplexSeq) is an error correction strategy for next generation sequencing that tags 
individual molecules of DNA with random barcodes and uses the consensus of reads derived from both 
strands of the original DNA molecule to remove sequencing and PCR amplification errors. The error 
rates of duplex sequencing protocols depend on the specific protocol used and the amount of pre-
existing DNA damage in the sample. Nanorate sequencing (NanoSeq) is a duplex sequencing protocol 
with several innovations to further reduce error rates to <5×10-9 errors/bp. As described before 1, key 
changes with respect to standard duplex sequencing include: (1) genome fragmentation that avoids the 
standard use of polymerases during end repair, thus reducing the copying of errors between strands, (2) 
use of ddBTPs to prevent nick extension during A-tailing, (3) a qPCR step to ensure optimal duplicate 
rates in any library, independent of DNA input, (4) key filters against alignment errors (particularly the 
AS-XS filter against ambiguous mapping) and DNA contamination. In the original version of NanoSeq 
1, blunt-end restriction enzymes were used for genome fragmentation without end repair, which ensured 
error rates <5×10-9 errors/bp but led to partial (~30%) coverage of the genome. In the current study, we 
introduce two alternative genome fragmentation methods that provide full genome coverage whilst 
retaining the original error rates.  
 
The potential to use sonication and exonuclease digestion in NanoSeq was briefly introduced in our 
original NanoSeq publication 1. However, the original proof-of-principle example protocol had very 
low library yields, approximately 2-10% of those obtained with the restriction enzyme method. We 
have carried out extensive R&D work to increase the yield of this approach. Amongst other changes 
detailed above, the mung bean nuclease concentration was increased to 5 units/reaction. The 
phosphorylation and A-tailing reactions were combined into a single reaction and the units of each 
enzyme were increased. T4 DNA ligase was substituted with NEB Ultra II and the adapter concentration 
was increased. Background noise in the qPCR reaction, resulting from adapter dimers, was reduced by 
diluting the ligation reaction prior to stringent SPRI clean-up. Yields (fmol/ng) for the sonication 
NanoSeq protocol introduced in the current study are now on par and often greater than those of the 
original restriction enzyme method. 
 
With the aim of further increasing yields, we developed enzymatic targeted NanoSeq. This utilises NEB 
UltraShear for DNA fragmentation, an enzymatic fragmentation mix that is formulated specifically to 
avoid error introduction during fragmentation. To ensure that the low error-rates of NanoSeq are 
achieved, we required further optimisation of the fragmentation conditions in alternative buffers. NEB 
Buffer r1.1 with NAD+ supplementation was determined to be the most suitable substitute, based on 
fragment size distribution and enzyme activity. For formalin-fixed samples, fmol/ng yield was found to 
be greater with the enzymatic approach than with sonication, although considerably lower than unfixed 
samples. Yield increases were less pronounced (~1.7×) in less damaged samples (e.g. frozen or 
PAXgene-fixed). However, we note that the current enzymatic protocol has some drawbacks, including 
a considerable percentage of improperly paired reads, seemingly caused by ligation of DNA fragments 
in the library leading to chimeric molecules. Development work is ongoing to optimise blunting and 
increase the percentage of properly paired reads. Choice of method must thus take into consideration 
the requirement for higher yields as well as the ability to tolerate improperly paired reads. We also note 
that whereas the avoidance of end repair and the use of ddBTPs ensures a much lower error rate of 
NanoSeq than standard duplex sequencing, strand dropouts can be higher, particularly in damaged DNA 
samples. 
 
Targeted NanoSeq and duplex sequencing library preparation 
 
A summary of the standard duplex sequencing and targeted NanoSeq protocols used in Fig. 1 is 
provided below. For these analyses, 30 ng of cord blood DNA and 50 ng of pancreas DNA were used 
per library. Bioinformatic analyses were identical for all protocols. All targeted NanoSeq data for buccal 
swabs and blood presented in the manuscript were generated using the sonication version of NanoSeq. 



 

  
Sonication DuplexSeq  
 
120 μL DNA was sheared using a Covaris ultrasonicator targeting a 450-bp insert size. DNA was 
purified using 300 μL AmpureXP beads (Beckman Coulter: A63882) and eluted in 51 μL 1× TE buffer. 
End repair was performed by adding 3 μL NEBNext Ultra II End Prep Enzyme Mix (NEB E7546S) and 
7 μL NEBNext Ultra II End Prep Reaction Buffer (NEB E7546S) to 50 μL DNA. The reaction was 
incubated at 20 °C for 30 minutes, followed by 65 °C for 30 minutes (hold at 4 °C), with the lid 
temperature set to 75 °C. Ligation mix consisting of 30 μL NEBNext Ultra II Ligation Master Mix 
(NEB E7595L), 1 μL NEBNext Ligation Enhancer (NEB E7595L), 1.25 μL NFW and 1.25 μL xGen 
CS Adapter (IDT 1080799) was added to the A-tailing reaction and ligation was performed by 
incubating at 20 °C for 15 minutes with the thermocycler lid temperature turned off. DNA was purified 
by adding 60.76 μL AmpureXP beads (Beckman Coulter: A63882) and eluted in 31 μL nuclease-free 
water (NFW). 
  
Enzymatic DuplexSeq  
 
DNA was concentrated by performing a 2.5× AmpureXP (Beckman Coulter: A63882) bead clean-up. 
DNA was eluted in 26 μL 1× TE buffer. Fragmentation was performed by adding 14 μL NEBNext 
UltraShear Reaction Buffer (M7634L) and 4 μL NEBNext UltraShear Enzyme (M7634L). The reaction 
was incubated at 37 °C for 20 minutes, followed by 65 °C for 15 minutes (hold at 4 °C), with the lid 
temperature set to 75 °C. A-tailing was performed by adding 2 μL 500 mM DTT and 3 μL NEBNext 
Ultra II End Prep Enzyme Mix (NEB E7546). The reaction was incubated at 20 °C for 30 minutes, 
followed by 65 °C for 30 minutes (hold at 4 °C), with the lid temperature set to 75 °C. Ligation was 
performed by adding 30 μL NEBNext Ultra II Ligation Master Mix (NEB E7595L), 1 μL NEBNext 
Ligation Enhancer (NEB E7595L), 12.25 μL NFW and 1.25 μL xGen CS Adapter (IDT 1080799) to 
the A-tailing reaction. Ligation was performed by incubating at 20 °C for 15 minutes (hold at 4 °C) 
with the thermocycler lid temperature turned off. DNA was purified by adding 60.76 μL AmpureXP 
beads (Beckman Coulter: A63882). DNA was eluted in 31 μL NFW. 
  
Sonication NanoSeq  
 
120 μL DNA was sheared using a Covaris ultrasonicator aiming for a 450 bp target insert size. DNA 
was purified using 96 μL AmpureXP beads (Beckman Coulter: A63882) and eluted in 26 μL NFW. 25 
μL DNA was taken into the end repair reaction; consisting of 3 μL 10× Mung Bean Nuclease Buffer 
(TAKARA 2420A), 1.875 μL NFW and 0.125 μL Mung Bean Nuclease (TAKARA 2420A). End repair 
was performed by incubating at 37 °C for 10 minutes with the thermocycler lid tracking 5 °C above the 
reaction temperature. DNA was purified by adding 75 μL AmpureXP beads (Beckman Coulter: 
A63882) and eluted in 11 μL NFW. 10 μL DNA was taken into the A-tailing reaction, consisting of 1.5 
μL T4 DNA Ligase Buffer (NEB B0202S), 1.5 μL 1 mM equimolar dATP/ddBTP (NEB N0440S; 
MERCK Life Science 3732738001), 1.5 μL Klenow fragment (3′ to 5′ exo-, NEB M0212L) and 0.5 μL 
T4 Polynucleotide Kinase (NEB, M0201L). A-tailing was performed by incubating at 37 °C for 30 
minutes with the thermocycler lid tracking 15 °C above the reaction temperature. Ligation mix 
consisting of 30 μL NEBNext Ultra II Ligation Master Mix (NEB E7595L), 1 μL NEBNext Ligation 
Enhancer (NEB E7595L), 12.75 μL NFW and 1.25 μL xGen CS Adapter (IDT 1080799) was added to 
the A-tailing reaction and ligation was performed by incubating at 20 °C for 20 minutes with the 
thermocycler lid temperature turned off. DNA was purified by adding 60 μL NFW and 78 μL 
AmpureXP beads (Beckman Coulter: A63882). DNA was eluted in 31 μL NFW. 
 
 
 
Enzymatic NanoSeq  
 
DNA was concentrated by performing a 2.5× AmpureXP (Beckman Coulter: A63882) bead clean-up. 
DNA was eluted in 24.6 μL 1× TE buffer. Fragmentation was performed by adding 14 μL NEBuffer 



 

r1.1 (NEB B7030S), 4 μL NEBNext UltraShear Enzyme (M7634L) and 1.4 μL 50 mM NAD+ (NEB 
B9007S). The reaction was incubated at 46 °C for 40 minutes, followed by 65 °C for 15 minutes (hold 
at 4 °C), with the lid temperature set to 75 °C. DNA was cleaned up by performing a 2.5× AmpureXP 
(Beckman Coulter A63882) bead clean-up. Beads were resuspended in 10 μL water. 10 μL resuspended 
beads were taken into the A-tailing reaction, consisting of 1.5 μL T4 DNA Ligase Buffer (NEB 
B0202S), 1.5 μL 1 mM equimolar dATP/ddBTP (NEB N0440S; MERCK Life Science 3732738001), 
1.5 μL Klenow fragment (3′ to 5′ exo-, NEB M0212L) and 0.5 μL T4 Polynucleotide Kinase (NEB 
M0201L). A-tailing was performed by incubating at 37 °C for 30 minutes, followed by 65 °C for 30 
minutes (hold at 4 °C) with the thermocycler lid tracking 15 °C above the reaction temperature. Ligation 
mix consisting of 30 μL NEBNext Ultra II Ligation Master Mix (NEB E7595L), 1 μL NEBNext 
Ligation Enhancer (NEB E7595L), 12.75 μL NFW and 1.25 μL xGen CS Adapter (IDT 1080799) was 
added to the A-tailing reaction and ligation was performed by incubating at 20°C for 60 minutes with 
the thermocycler lid temperature tuned off. DNA was purified by adding 60 μL NFW and 78 μL 
AmpureXP beads (Beckman Coulter A63882). DNA was eluted in 31 μL NFW.  
  
NB. For the data in Fig. 1, NAD+ was omitted from the fragmentation reaction and replaced with 1.4 
μL 1× TE buffer. We recommend adding NAD+ for optimal performance. 
 
Sequencing library quantification  
 
Library size was determined by running each sample on a Tapestation D5000 tape (Agilent 5067-5588) 
and by doing a region analysis spanning 150-3500 bp. DNA was quantified by qPCR using a KAPA 
library quantification kit. The supplied primer premix was first added to the supplied KAPA SYBR 
FAST master mix. In addition, 20 μL of 100 μM NanoqPCR1 primer (HPLC, 5′-
ACACTCTTTCCCTACACGAC-3′) and 20 μL of 100 μM NanoqPCR2 primer (HPLC, 5′-
GTGACTGGAGTTCAGACGTG-3′) were added to the KAPA SYBR FAST master mix. Samples 
were diluted 1:500 using NFW and reactions were set up in a 10 μL reaction volume (6 μL master mix, 
2 μL sample/standard, 2 μL water) in a 384 well plate. Samples were run on the Roche 480 Lightcycler 
and analysed using absolute quantification (second derivative maximum method) with the high 
sensitivity algorithm. The concentration (nM [fmol/μL]) was determined as follows: mean of sample 
concentration × dilution factor (500) × 452/library size/1,000 (where 452 is the size of the standard in 
bp), and multiplied by an adjustment factor of 1.5. Samples were diluted to the desired fmol amount in 
25 μL using NFW. 
 
NB. For routine use of the NanoSeq sonication protocol, we do not normally evaluate the size of each 
library. We use 573 bp as the average molecule size.  
 
Library bottleneck and sequencing efficiency 
 
To maximise the efficiency and cost effectiveness of targeted NanoSeq and other duplex sequencing 
methods, it is important to optimise duplicate rates to maximise the number of read bundles (defined as 
a family of PCR duplicates) with at least two duplicate reads from each original strand. Sequencing a 
library too deeply (resulting in excessive duplicate rates) leads to unnecessarily deep sequencing of 
fewer read bundles, whereas sequencing too shallowly (insufficient duplicate rates) leads to many read 
bundles not reaching the ≥2 reads per strand required for base calling. 
 
As previously described 1, to ensure optimal duplicate rates in all samples, we optimised the amount of 
sequencing reads that we devote per fmol of library, theoretically and empirically. If we assume 
negligible PCR biases, the number of reads expected per read family can be modelled with a zero-
truncated Poisson distribution. Let r (sequence ratio) be the ratio between the number of sequencing 
reads and the number of amplifiable molecules in the library. The mean number of reads per read family, 
m, can be estimated as the mean of a zero-truncated Poisson distribution (with λ = r): 𝑚	 = 	 !

"#$!"
. We 

can then estimate the duplicate rate of a library, d (defined as the fraction of reads that are duplicate 
copies, in practice identified as reads with the same barcode and mapping coordinates), as follows: 𝑑 =
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. We can then define the efficiency of a targeted NanoSeq library (or a duplex 

sequencing library), E, as the ratio between the duplex coverage (the number of base pairs with ≥2 reads 
per strand) and the raw sequencing coverage (the number of base pairs sequenced). This can be 
modelled as: 𝐸 = &(()*|!/*)#

!
. Here, the numerator is the probability of a read bundle having two or 

more reads from both strands (i.e. the probability of being a usable duplex bundle), where P is the 
Poisson probability, and the denominator is the average sequence investment in each molecule of the 
original library. Using this equation, we find that the optimal efficiency of targeted NanoSeq (which 
maximises the duplex coverage for a given amount of raw sequencing) is achieved for r ≈ 6.4 and d 
(duplicate rate) ≈ 84%, and that 80% of the maximum efficiency is obtained in the range r ≈ 3.9-11, 
and d ≈ 75-91%. Having estimated the theoretical optimal duplicate rates for NanoSeq, we then used a 
serial dilution experiment to obtain an empirical efficiency curve 1. This suggested that empirical 
duplicate rates ~75-85% maximise cost efficiency, which is also supported by the empirical efficiencies 
and duplicate rates obtained from the buccal swab samples in the study (Extended Data Fig. 2a-c). 
 
Knowing the concentration of a NanoSeq library in fmol/μL (measured using a qPCR reaction on a 
small aliquot of the unamplified library, as described below) and the desired amount of sequencing 
(number of read pairs), we can use ropt to calculate the volume of library that we need to take forward 
to amplification and sequencing, as follows: 𝑓𝑚𝑜𝑙./0 =

1
2	⋅	!$%&

. Here, f refers to the number of 

amplifiable DNA fragments per fmol in the library. To determine the value of f for our protocol and 
qPCR machines, we originally carried out a serial dilution experiment, and compared the empirical 
values of library complexity (estimated using the Picard software; 2) and the input fmols into sequencing 
1, resulting in an estimate of f = 108 – 3×108 sequenceable fragments per fmol. Using this equation, we 
can ensure optimal duplicate rates for any library, independently of the input DNA from each sample. 
For example, for a typical whole-genome NanoSeq experiment we often use 150 million read pairs per 
sample (equivalent to ~15× raw human genome coverage using 150-bp reads). With ropt ≈ 6.4 and f ≈ 
108 (based on 1, for the restriction enzyme NanoSeq protocol) this translates into fmolopt ≈ 0.23 (the 
estimated optimal fmol input per sample for amplification and sequencing). 
 
Conversely, if we want to sequence the entire available library, we can use the same equation to 
calculate the amount of sequencing required to ensure optimal duplicate rates, which was the approach 
used for the sequencing of buccal swabs, to maximise the duplex coverage per sample. When 
performing targeted or whole-exome capture, the amount of sequencing needed for a given sample 
needs to consider the size of the regions targeted and the capture efficiency (the fraction of reads on-
target for a given panel). We can use the equation below for this (p being the panel size, g being the 
genome size, and c being the on-target capture fraction): 
 

𝑁	 = 	 2%.5	⋅	!$%&⋅	2	⋅	/
6	⋅	7

  
 
Using ropt ≈ 6.4, f ≈ 2.6×108 (based on a calibration experiment for the sonication protocol), and c = 
0.70 (Extended Data Fig. 2a), this means that 750 Gb of sequencing, or 2.5 billion 150-bp read pairs 
(a common output for one S4 lane of Illumina NovaSeq 6000), should provide approximately optimal 
duplicate rates for ~90 fmol of library captured with a whole-exome panel of 35 Mb, or for ~3500 fmol 
of library captured with a targeted gene panel of 0.9 Mb. To apply targeted NanoSeq on other panels, 
we recommend using these equations to estimate the optimal amount of sequencing per fmol, and adjust 
the fmol/sequencing ratio based on performance.  
 
In practice, in the current study we multiplexed libraries aiming for ~4000 fmol per S4 lane for the 
targeted gene panel and ~85 fmol per lane for the exome panel, which typically yielded ~12,000 dx and 
~250 dx per lane, respectively. These yields can vary modestly as a function of strand dropout (affected 
by the amount of unamplifiable DNA lesions in the input DNA, as well as PCR biases; Extended Data 
Fig. 2b,c) and the actual output of each sequencing lane. 
  



 

Library amplification and sequencing (all methods) 
 
Having identified the appropriate amount of library to use for sequencing as described above, libraries 
were PCR-amplified in a 50 μL reaction volume comprising 25 μL sample, 25 μL NEBNext Ultra II 
Q5 Master Mix (NEB M0544L) and unique dual index (UDI) containing PCR primers (dried). Primer 
sequence: 
 
i5:AATGATACGGCGACCACCGAGATCTACAC[barcode]ACACTCTTTCCCTACACGACGCTC
TTCCGATC*T 
 
i7:CAAGCAGAAGACGGCATACGAGAT[barcode]GTGACTGGAGTTCAGACGTGTGCTCTTC
CGATC*T 
 
The reaction was cycled as follows, where X denotes the number of PCR cycles: step 1, 98 °C 30 s; step 
2, 98 °C 10 s; step 3, 65 °C 75 s; step 4, return to step 2 X times; step 5, 65 °C for 5 min; step 6, hold at 
4 °C. The number of PCR cycles (X) is dependent on the fmol input amount: 0.01-0.524 fmol, 16 cycles; 
0.525-1.049 fmol, 15 cycles; 1.05-2.099 fmol, 14 cycles; 2.1-4.199 fmol, 13 cycles; 4.2-8.424 fmol, 12 
cycles; 8.425-16.874 fmol, 11 cycles; 16.875-33.749 fmol, 10 cycles; 33.75-67.499 fmol, 9 cycles; 
67.5-134.999 fmol, 8 cycles; 135-269.999 fmol, 7 cycles; 270-539.999 fmol, 6 cycles; 540-1079.999 
fmol, 5 cycles; 1080-2159.999 fmol, 4 cycles.  
  
The PCR product was subsequently cleaned up using two consecutive 0.7× AMPure XP clean-ups 
(hereafter referred to as SPRI clean-up; Beckman Coulter A63882). Each sample was quantified as 
described above. 
 
Hybridization Capture 
 
We determined a maximum DNA input per hybe capture reaction of 2,500 ng. For small targeted panels 
e.g. 0.9 Mb in size, we input up to 2,500 fmol per hybe reaction. For larger panels, e.g. whole exome, 
we input up to 1,500 fmol per hybe reaction. 
 
To multiplex, we determined the fraction of the hybe pool that will be dedicated to each sample as 
follows: fmol of sample taken into PCR/total fmol in pool. We determined the ng of each sample that 
was taken into hybe capture as follows: fraction of the hybe pool × total ng of hybe pool. We determined 
the amount (μL) of each sample that was taken into hybe capture as follows: ng of sample into 
hyb/concentration of sample (ng/μL). For hybe capture we used Twist Bioscience Target Enrichment 
Standard Hybridisation v1 Protocol, with two rounds of capture to increase % on-target metrics. The 
following deviations were made to the protocol. 25 μL of an equimolar 200 μM pool of custom blocker 
sequences 
 
CAA GCA GAA GAC GGC ATA CGA GAT (N:25252525)(N)(N) (N)(N)(N) (N)(N)G TGA CTG 
GAG TTC AGA CGT GTG CTC TTC CGA T*/3ddC/ 
 
GAT CGG AAG AGC ACA CGT CTG AAC TCC AGT CAC (N:25252525)(N)(N) (N)(N)(N) 
(N)(N)A TCT CGT ATG CCG TCT TCT GCT TG*/3ddC/ 
 
AAT GAT ACG GCG ACC ACC GAG ATC TAC AC(N:25252525) (N)(N)(N) (N)(N)(N) (N)AC 
ACT CTT TCC CTA CAC GAC GCT CTT CCG AT*/3ddC/ 
GAT CGG AAG AGC GTC GTG TAG GGA AAG AGT GT(N:25252525) (N)(N)(N) (N)(N)(N) 
(N)GT GTA GAT CTC GGT GGT CGC CGT ATC AT*T /3ddC/ 
 
were added to the indexed library pool before dry down (as opposed to adding universal blockers in 
step 2.3 of the Twist protocol; these were substituted with water). In step 3.22 of the Twist protocol, 
elution was carried out in 27 μL, as opposed to 45 μL. In step 4.4 of the Twist protocol KAPA HiFi was 
used for PCR amplification as opposed to Equinox. In addition, 2.5 μL of an equimolar pool (100 μM) 



 

of P5: 5′-AAT GAT ACG GCG ACC ACC GA-3′ and P7: 5′-CAA GCA GAA GAC GGC ATA CGA 
-3′ primers were used for PCR amplification, as opposed to the provided amplification primers. In Step 
4.16 of the Twist protocol, elution was performed in 50 μL (as opposed to 32 μL) and all 50 μL were 
used to perform a second round of capture. The second capture was performed as the first, with the only 
deviation being the use of three PCR cycles. 
 
 
  



 

Supplementary Note 2. Selection analyses on single-molecule sequencing data 
 
To quantify the extent of selection and identify positively and negatively selected genes, we used several 
functions in the dNdScv R package (github.com/im3sanger/dndscv). Full details and reproducible code 
are provided in the supplementary files. 
 
To identify genes under positive and negative selection we used the dNdScv algorithm as implemented 
in the dndscv function of the package. This algorithm is described in detail in the original publication 3. 
Briefly, this is a maximum-likelihood implementation of dN/dS specifically developed for somatic 
mutation data. Mutations across genes are modelled using a context-dependent substitution model with 
192 rate parameters shared across all genes, with each gene having its own dN/dS estimates for 
missense, nonsense and essential splice site mutations. The rate of somatic mutations has been shown 
to vary considerably across genes, often associated with expression levels and chromatin states 4. The 
dNdScv algorithm models this variation using a negative binomial regression on the observed number 
of synonymous mutations per gene, using multiple epigenomic covariates, in practice modelling the 
unexplained variation in mutation rates across genes as being Gamma-distributed. Several likelihood 
ratio tests (LRTs) are used to detect selection on missense and truncating (nonsense and essential splice 
site) mutations, separately (pmis, pnon) and jointly (pall), and a separate negative binomial regression 
model is used to detect selection on indels (pind). A global P-value combining evidence from point 
mutations and indels is then calculated per gene using Fisher’s combined p-value (pglobal). P-values 
were adjusted for multiple testing using Benjamini and Hochberg’s false discovery rate. Below we 
describe several improvements introduced to the dndscv function in the present study. 
 
One-sided selection tests 
 
The original implementation of dNdScv was a two-sided test, which detects deviations from neutrality 
in any direction (ω ≠ 1, where ω is the symbol for dN/dS). One-sided tests for positive or negative 
selection could be done for independent mutation classes (e.g. missense or nonsense) by conditioning 
on dN/dS ratios being >1 or <1, but this was not possible for combined LRT P-values (pall) across 
mutation classes. As the dataset in the present study is large enough to enable negative selection tests 
at gene level, we have updated the dndscv function in the dNdScv package to include one-sided negative 
and positive selection tests (new optional argument onesided = T). In the two-sided implementation of 
LRTs the null hypothesis (H0) is ωmis = 1 and ωnon = 1, and the alternative hypothesis (H1) is ωmis ≠ 
1 and ωnon ≠ 1. Instead, in a one-sided positive selection test, the maximum likelihood estimates for 
dN/dS ratios can take values <1 under the null hypothesis. In other words, the null hypothesis for a one-
sided positive selection test is H0: ωmis≤1 and ωnon≤1, and for a one-sided negative selection test is 
H0: ωmis≥1 and ωnon≥1 5. 
 
To annotate essential genes based on CRISPR screens, we used a list of 2,023 essential genes from the 
DepMap database 24Q2 (CRISPRInferredCommonEssentials.csv file) 6, of which 17 overlap our target 
gene panel excluding genes under positive selection. 
 
Duplex coverage correction 
 
Since somatic mutations in targeted NanoSeq are called with single-molecule resolution, the density of 
detected somatic mutations per gene depends linearly on the duplex coverage achieved. To account for 
this additional source of variation in the mutation density per gene, we have modified the dndscv 
function to optionally use a vector of total duplex coverage per gene (summed across samples) (new 
optional argument dc). Internally, the expected mutation rate of each gene (the offset of the negative 
binomial regression in dndscv) is multiplied by the duplex coverage of each gene relative to the mean 
across genes. Although coverage affects mutation calling sensitivity in standard sequencing studies too, 
the relationship is non-linear and we only recommend using the optional dc argument in dndscv when 
working with targeted NanoSeq or other forms of single-molecule duplex sequencing, where detection 
sensitivity is directly proportional to duplex coverage. 
 



 

Custom reference database 
 
The ‘SNP+noise’ mask and the AS-XS filter used in the NanoSeq mutation calling pipeline result in 
the removal of mutations at these filtered sites. To ensure that the removal of common SNP and noisy 
sites did not introduce a small bias in dN/dS, these sites were also excluded from analysis in dNdScv 
by using a custom RefCDS object. 
 
Other arguments in dNdScv 
 
Additional non-default arguments used in the current study when running dndscv on the targeted data 
(Supplementary Code) include the following: (1) max_muts_per_gene_per_sample = Inf, 
max_coding_muts_per_sample = Inf; this disables the default cutoffs for the maximum number of 
mutations per gene or per sample that are only relevant for analysis of standard cancer genomic data. 
(2) mingenecovs = 0, maxcovs = 10; this ensures that the negative binomial regression in dndscv uses 
the first 10 epigenomic covariates (principal components), which is appropriate for a targeted 
sequencing study of this size. (3) onesided = T, (4) use_indel_sites = F; by default in dNdScv, only 
unique indel sites are counted to avoid a dominant effect of indel hotspots, such as microsatellites, but 
our filtering strategy (which excludes hypervariable sites, Methods) makes this unnecessary in the 
current dataset. Genes with significant evidence of selection on substitutions (as defined by 
qall_loc<0.01) were excluded from the fitting of the background indel model to avoid an inflation of 
the indel passenger rate by indel driver mutations (kc argument in dndscv).  
 
In total, 49 genes were found to be under positive selection using the gene-level selection test, based on 
qsubpos_cv<0.01 (the combined q-value for point mutations, including missense and truncating 
substitutions). Similar results were obtained by alternative metrics, such as qglobalpos_cv<0.01, which 
includes evidence from indels (Extended Data Fig. 5), or qpos_loc <0.01, which uses the dNdSloc 
algorithm. dNdSloc is normally less powerful than dNdScv, as it only uses the number of synonymous 
mutations observed in a gene to estimate its background (neutral) mutation rate. However, the size of 
the buccal swab dataset is large enough to make dNdSloc similarly powered as dNdScv. dNdSloc does 
not rely on a negative binomial regression, epigenomic covariates or duplex coverage correction across 
genes, providing additional evidence that our selection results are robust to these assumptions. 
 
Hotspot discovery with sitednds 
 
Oncogenes are typically mutated at specific hotspot sites. The dndscv function does not exploit this 
information but two other functions in the dNdScv package are designed to test for selection at the level 
of individual sites (sitednds) or codons (codondnds). To detect sites with evidence of positive selection 
in our data, we applied sitednds using a lognormal-Poisson background model (LNP option) to the 
buccal swab and blood datasets on all genes in the panel. Genes with 4 or more amino acid changes 
under selection are shown in Fig. 2l. To increase sensitivity on known cancer hotspots, we then ran 
sitednds under restricted hypothesis testing (RHT) on 1,200 known oncogenic hotspots found to be 
significant in cancer and provided by the dNdScv package. PIK3CA, ERBB2, KRAS and HRAS each 
contained at least two amino acid changes with RHT q-value <0.01. The full lists of significant sites 
with and without RHT are provided in Extended Data Table 4.  
 
Withingenednds 
 
The high density of somatic mutations per gene in the current dataset enables the study of selection in 
specific groups of sites within a gene. To enable such analyses, we have added a new function to the 
dNdScv package called withingenednds. This function uses the output of dndscv to create a table of all 
possible mutations within a gene, annotating for each site its trinucleotide context, duplex coverage, 
observed number of mutations in the dataset, expected mutation rate based on the substitution, and 
amino acid change. Additional annotations (0/1 columns) are added for intron and exon flanks, sites in 
the last exon (where nonsense mutations are potentially not subject to nonsense-mediated decay), core 
promoter, and for additional user-defined regions (e.g. specific domains, groups of sites, neoantigens, 



 

etc). The function then uses a negative binomial regression across sites to obtain a separate ω (dN/dS) 
estimate for each layer of annotation. The function can fit a new overdispersion parameter for the rate 
variation across synonymous sites or use the θ parameter estimated across genes by sitednds. Wald and 
LRT (recommended) p-values are then calculated for each ω parameter (testing against neutrality, ω≠1). 
In the present study, we ran withingenednds for all genes and q-values were calculated using the 
Benjamini–Hochberg procedure across genes for each functional class (shown in Fig. 3e). 
 
Estimation of the number of driver mutations 
 
To estimate the number of driver point mutations in the dataset, we used two alternative approaches 
(Supplementary Code). First, we used the global dN/dS ratios across all genes in the targeted panel to 
estimate the global excess of non-synonymous mutations in the targeted dataset. Briefly, the fraction of 
non-synonymous mutations predicted to be drivers (i.e. under positive selection) in a gene (or group of 
genes) can be estimated using: (ω–1)/ω 3,7. Using the global dN/dS ratio for all genes in the panel, this 
approach yielded an estimated number of driver point mutations of around 43,687 (CI95%: 42,458-
44,898). As an alternative method, for the 49 driver genes found under positive selection by dNdScv, 
we summed the differences between the observed and expected mutation counts per gene for missense, 
nonsense and essential splice site mutations separately, as provided by the dndscv function in the 
genemuts output table. This yielded an estimated number of driver point mutations of ~43,314. 
Applying the latter approach for indels yielded an estimate of ~18,972 indel drivers. Combining point 
mutations and indels, this leads to an estimated number of driver mutations in the targeted buccal swab 
data of over 62,000. 
 
Physical interpretation of dN/dS ratios using single-molecule calling 
 
Standard deep sequencing of normal tissues only detects mutations that reach a certain VAF. In that 
context, as we have described before, dN/dS ratios can be interpreted as measuring the relative 
probability of a cell with a non-synonymous mutation in a gene reaching a detectable clone size (or 
VAF) in the cell population, compared to a cell carrying a synonymous mutation in the same gene 8. 
 
In contrast, when using single-molecule (or single-cell) sequencing, the detection probability of a 
mutation is proportional to the frequency of the mutation in the sample or cell population. In that 
context, dN/dS ratios have a subtly different physical interpretation, measuring the relative increase in 
the number of cells affected by non-synonymous mutations in a gene compared to synonymous 
mutations as a result of clonal expansion or preferential survival, normalised by their respective 
mutation probability. As a result, dN/dS ratios obtained by single-molecule sequencing depend on the 
type and sizes of clonal expansions and (unlike standard sequencing) they should be unaffected by 
sequencing coverage. We note that this physical interpretation applies to dN/dS ratios obtained when 
counting mutations as many times as they are observed in a sample. In the current study, when running 
dNdScv, we have instead conservatively treated multiple mutant molecules reporting the same somatic 
mutation in a sample as a single mutational event. Since most mutations are only seen in a single read 
in the buccal swab data, this only leads to a slight underestimation of dN/dS ratios, but provides more 
robust P-values in dNdScv for the purpose of driver discovery by avoiding an undue influence of one 
or a few large clones on the substitution model and on dN/dS ratios. 
  



 

Supplementary Note 3. Whole-genome data and supplementary mutational signature analyses 
 
Whole-genome NanoSeq data 
 
Using the original restriction enzyme protocol 1, we performed whole-genome NanoSeq on 16 samples 
to better characterise the mutational processes acting on oral epithelium and to estimate genome-wide 
mutation rates. Of these samples, 12 were chosen to cover a wide age range, three donors were selected 
because of their strong Signature B (SigB) activity, and one donor was chosen because of their high 
mutation burden (associated with a history of chemotherapy) (Extended Data Fig. 4a). 
 
COSMIC SBS16 has been previously associated to alcohol-induced mutagenesis in normal oesophageal 
epithelium 9, oesophageal tumours 10, and liver cancer 11. The link between SBS16 and alcohol 
metabolism is further confirmed by its strong association with two risk alleles (ALDH2 rs671 and 
ADH1B rs1229984) particularly common in Asia 9. Previous studies have also shown that SBS16 has a 
characteristic pattern of transcription-coupled repair of the transcribed strand in expressed genes, and 
transcription-coupled damage of their untranscribed strand. This manifests as a lower rate of A>G 
mutations in the transcribed strand and a higher rate in the untranscribed strand compared to adjacent 
intergenic regions (or the opposite pattern when referring to these mutations as T>C changes).  
 
To evaluate whether the observed SigB in the buccal swabs shows the same phenomenon of 
transcription-coupled damage and repair, we estimated the rate of T>C substitutions in the transcribed 
(template) and untranscribed (coding) strands, comparing it to 30 Kbp upstream and downstream the 
transcription start site and polyadenylation site, respectively. T>C rates were corrected to account for 
trinucleotide composition variations by normalising to whole-genome trinucleotide frequencies. 
Compared to flanking regions, our results show an increase in T>C rates in the transcribed strand and 
a decrease in T>C rates in the untranscribed strand in transcribed regions (Extended Data Fig. 4b). 
This pattern of transcription-coupled repair of A>G mutations in the transcribed strand and A>G 
transcription-coupled damage of the untranscribed strand is consistent with previous studies on SBS16 
11, providing further evidence that SigB in the oral epithelium is the same mutagenic process previously 
reported in oesophagus and liver cancers.  
 
Next, we estimated mutation burdens for genomic regions with different chromatin states, using 15 
chromatin states from the original ENCODE manuscript with sufficient number of mutations for 
analysis 12 (Extended Data Fig. 4c,d). Specifically, we used the chromatin states for E057 (foreskin 
keratinocytes) as reference. All the observed burdens in these chromosomal segments were normalised 
by the trinucleotide composition of each region and extrapolated to whole-genome trinucleotide 
frequencies. Using the set of 12 samples selected for their age range (see above), we observed higher 
burdens in heterochromatic regions (states “Het” and “Quies”) and around transcription start sites 
(states “TssA” and “TssAFlnk”). Transcribed regions (“Tx” and “TxWk”) showed lower burdens in 
this sub-cohort. The latter contrasts with the pattern observed in the 3 SigB-rich samples, in which 
transcribed regions showed higher burdens, especially for T>C substitutions, consistent with the process 
of transcription-coupled damage described above. 
 
Mutational signature outliers 
 
With only two mutational signatures extracted from the cohort, we wanted to examine whether any 
outlier donors had a mutational spectrum poorly explained by these two signatures. To systematically 
identify potential outliers, we re-fitted signatures SigA and SigB to each sample and calculated the 
cosine similarity between the reconstructed and observed mutational spectra. Cosine similarities are 
highly dependent on the number of mutations due to sampling noise (sparser profiles tend to have lower 
cosine similarities), so we plotted the cosine similarities as a function of the number of mutations in 
each sample. This analysis revealed a single strong outlier (Extended Data Fig. 4e,f), corresponding 
to a donor with a history of CHOP chemotherapy (cyclophosphamide, doxorubicin hydrochloride, 
vincristine sulfate, and prednisolone), typically used for the treatment of non-Hodgkin lymphoma. 
 



 

Extended sequence context analysis of T>C mutations 
 
A high rate of T>C mutations at ApT dinucleotides is common to the COSMIC SBS5 and SBS16 
signatures. To explore whether T>C mutations in SBS5 and SBS16 are caused by similar mutagenic 
processes, we studied the extended (pentanucleotide) sequence context of T>C mutations in several 
datasets. Specifically, we obtained transcriptional-strand-wise pentanucleotide mutational spectra for 
T>C mutations in buccal swab samples, matched blood samples, and hepatocellular carcinoma (HCC) 
samples from the Pan-Cancer Analysis of Whole Genomes study 13 that presented an SBS16 exposure 
>0.2 (Methods). 
 
These pentanucleotide mutational spectra revealed that T>C mutations, especially those in ATN 
sequence contexts (i.e. at ApT dinucleotides), are the product of at least two distinct mutational 
processes with varying contributions across tissues (Extended Data Fig. 8b). In particular, T>C 
mutations in blood samples and buccal swab samples with low SigB exposure (<0.25, i.e. <25% of 
mutations attributed to SigB) are dominated by a process that largely matches the T>C component of 
SigA (resembling a combination of COSMIC SBS1 and SBS5). This component is characterised by a 
preponderance of T>C mutations at NATTG and NATAG contexts (and to a lesser extent NTTTG, 
NGTTG and NGTAG), with a bias towards mutations on the transcribed strand. On the other hand, 
T>C mutations in liver HCC samples and buccal epithelium samples with a SigB exposure >0.25 are 
dominated by the T>C component of SigB (resembling COSMIC SBS16), which is characterised by 
T>C mutations at NATAN and NATTN contexts (especially AATAN, TATAN and TATTT) and an 
extreme bias towards transcribed-strand mutations. 
 
Thus, while COSMIC SBS5 and COSMIC SBS16 show similar T>C peaks at ATA and ATT contexts 
in the trinucleotide spectra (with subtly different contributions of the two trinucleotides), their 
pentanucleotide context is very distinct (Extended Data Fig. 8b). These results indicate that the T>C 
components of SBS5 and SigB/SBS16 reflect two distinct underlying mutational processes, both of 
which are associated with T>C mutations at ApT dinucleotides. 
 
 
  



 

Supplementary Note 4. Further description of the blood and buccal driver landscapes 
 
Driver landscape in blood 

Aggregating the duplex VAFs of all mutations detected in driver genes, we can estimate the fraction of 
cells carrying driver mutations in a polyclonal sample, without the limitations of incomplete detection 
sensitivity of traditional bulk sequencing (Methods). This revealed that, on average across samples, ~1-
2% of blood cells in donors aged 65-85 carry DNMT3A or TET2 driver mutations, with values ranging 
0.1-0.5% for other driver genes. Although we note that this number varies widely across donors due to 
the presence of large clones in the blood of some individuals (clonal haematopoiesis). 

The genes under positive selection in blood are associated with the following biological processes: 
epigenetic modification and chromatin remodelling (DNMT3A, TET2, ARID2, ASXL1, KMT2E and 
KDM6A); DNA damage response and cell cycle control (ATM, CHEK2, TP53, PPM1D and CDKN1B); 
receptor tyrosine kinase signalling (NF1 and CBL); G-protein coupled receptor signalling (GNB1); 
inflammation mediation (JAK2, STAT3 and MYD88); transcription regulation (FOXP1); and mRNA 
splicing (SRSF2 and SF3B1). Specific genes are discussed in more detail below. 

DNMT3A encodes a DNA methyltransferase that modifies cytosine in CpG contexts to 5-
methylcytosine. Unlike DNMT1, which maintains genomic methylation patterns during DNA 
replication, DNMT3A is responsible for establishing de novo methylation. DNMT3A is the most 
frequently mutated driver of clonal haematopoiesis 14. As has previously been observed 15, the 
distribution of mutations in DNMT3A differs between cancer and clonal haematopoiesis. In acute 
myeloid leukaemia (AML), most DNMT3A mutations (~55%) occur at arginine 882, which is 
recurrently mutated to histidine or, less frequently, cysteine 16. By contrast, R882H/C accounts for only 
~10% of DNMT3A mutations in clonal haematopoiesis, with other mutations rarely seen in AML 
occurring instead, including Y735C, V657M and R736H/C missense mutations, essential splice site 
mutations and indels (Extended Data Fig. 3d). The R736 and Y735 mutations occur at the interface 
between the central and peripheral subunits in DNMT3A homotetrameric and DNMT3A/DNMT3L 
heterotetrameric complexes 17. 

TET2 is the second most common driver of clonal haematopoiesis. TET2 encodes an Fe(II) and α-
ketoglutarate-dependent dioxygenase that mediates DNA demethylation by converting 5-
methylcytosine to 5-hydroxymethylcytosine. Truncating mutations in TET2 are frequently seen in both 
clonal haematopoiesis and cancer 15. In addition to nonsense mutations and indels distributed throughout 
TET2, we observed a cluster of missense mutations affecting β strands 15 to 17 of the dioxygenase 
domain 18 (Extended Data Fig. 3e). Unlike most studies of clonal haematopoiesis conducted using 
standard sequencing, we observed more non-synonymous mutations in TET2 (n = 1,104) than DNMT3A 
(n = 800), which also corresponded to a higher estimated number of driver mutations in TET2 (n = 853 
and 743 respectively). However, we obtained substantially higher cumulative duplex coverage across 
TET2 (436,473 dx) than DNMT3A (177,102 dx). Correcting for this difference, the DNMT3A:TET2 
ratio of observed non-synonymous mutations or estimated driver mutations per duplex coverage (1.79 
and 2.15 respectively) is substantially closer to the DNMT3A:TET2 ratio of non-synonymous mutations 
observed in a large clonal haematopoiesis study (2.37) 14. The remaining discrepancy may reflect 
differences in the exponential growth of DNMT3A- and TET2-mutant clones (Fig. 4a), for example due 
to lower fitness coefficients for some TET2 mutations making them less likely to reach detectable clone 
sizes with standard bulk sequencing. 

CBL encodes a protein that acts as both a positive and negative modulator of receptor tyrosine kinases 
(RTKs). RTK signalling is downregulated by the E3 ubiquitin ligase activity of the RING domain of 
CBL, which targets the RTK for degradation. Upregulation of RTK signalling is mediated by the 
adaptor function of CBL, which recruits signalling molecules (such as phosphoinositide 3-kinase) to 
the RTK 19. As previously seen in cancers, we observed clustering of missense mutations within the 
RING domain, which abrogates the ubiquitin ligase activity of CBL while retaining its adaptor function 
(Extended Data Fig. 3f). 

MYD88 encodes an adaptor protein for interleukin-1 receptors and Toll-like receptors. MYD88 L265P 



 

mutations are frequently observed in diffuse large B-cell lymphoma, Waldenström macroglobulinemia 
and chronic lymphocytic leukaemia, resulting in NF-kB activation 20. Although MYD88 was not 
identified by gene-level selection analyses, this hotspot was found to be significantly recurrent by 
sitednds (Extended Data Fig. 3g, Supplementary Note 2, Extended Data Table 4). Similarly, known 
activating hotspots were identified in JAK2 (V617F), SF3B1 (Y765C and K700E), SRSF2 (P95H), 
GNB1 (K57E) and STAT3 (S614R, G618R, Y640F and D661Y). 
 
Driver landscape in oral epithelium 

Of the 49 genes identified as under significant positive selection in oral mucosa (Extended Data Fig. 
5a), 10 were also identified as driver genes in blood: TET2, DNMT3A, ATM, ARID2, ASXL1, KDM6A, 
CHEK2, PPM1D, TP53 and FOXP1. One potential explanation for this overlap could be that clonal 
haematopoiesis drivers are detectable in buccal swabs due to blood contamination. Using targeted 
enzymatic methylation sequencing, we estimated the median epithelial purity of the buccal swabs to be 
95.1% (Methods, Extended Data Fig. 1h). This was concordant with an estimate of 7-8% median 
blood contamination obtained by attempting to detect in the buccal swabs clonal haematopoiesis 
mutations that reached levels observable by standard sequencing approaches (VAF≥1%) in the matched 
blood (Methods). Despite this relatively high epithelial purity, the observed degree of contamination 
corresponds to ~34,000 dx of the 693,208 dx cumulative coverage in buccal swab samples being derived 
from blood. Therefore, we additionally calculated the buccal:blood driver density ratio for each of these 
genes (Extended Data Fig. 3c). For all of the genes apart from DNMT3A, TET2 and FOXP1, the 
estimated driver density was higher in the buccal swab samples than blood. This strongly suggests that 
the other 7 genes are bona fide drivers in oral mucosa. Additional evidence that the majority of these 
genes are drivers in squamous epithelium comes from the previous observation that TP53, PPM1D, 
CHEK2 and ARID2 are under significant positive selection in physiologically normal oesophagus and 
KDM6A is a known driver in oesophageal squamous cell carcinoma 9,21. 

Excluding the three genes where the signal of selection could be attributable to blood contamination 
(TET2, DNMT3A and FOXP1), the remaining 46 genes under positive selection in oral mucosa are 
associated with the following biological processes: Notch signalling pathway (NOTCH1, NOTCH2 and 
NOTCH3); DNA damage response and cell cycle control (TP53, ATM, CHEK2, PPM1D and CCND1); 
epigenetic modification and chromatin remodelling (KMT2C, KDM5C, KDM6A, ASXL1, ARID1A, 
ARID1B, ARID2, ARID5B, SETD2, EP300 and SMARCB1); regulation of transcription (MGA, 
BCORL1, CIC, TP63, ZNF750, FUBP1, KLF5, PAX9, ETV6 and RARG); RNA processing (ZFP36L2, 
ZFP36L1, RBM10 and SF3B1); receptor tyrosine kinase signalling (EPHA2, EGFR, FGFR3 and 
PIK3R1); cell adhesion and cytoskeletal organisation (FAT1, RAC1, RHOA and AJUBA); protein 
turnover (CUL3, SPOP and EIF1AX); sister chromatid separation (STAG2); and antigen presentation 
(HLA-B). Specific genes and pathways are discussed in more detail below. 
  
Notch signalling pathway genes 

As has previously been observed for other squamous epithelia 7,9,21, the most frequently mutated driver 
gene in oral mucosa is NOTCH1. NOTCH1 is a cell surface receptor with an extracellular domain 
(residues 19-1735) and a cytoplasmic domain (residues 1757-2555). The extracellular domain consists 
of 36 EGF-like repeats (residues 20-1426), three Lin-12-Notch repeats (residues 1442-1571) referred 
to as the Notch domain, a NOD domain (residues 1566-1622) and a NODP domain (residues 1670-
1732). The cytoplasmic domain consists of multiple ankyrin repeats (residues 1871-2126) and a C-
terminal domain (residues 2478-2541), which includes a PEST domain. Upon binding one of its ligands 
(JAG1, JAG2, DLL1 or DLL4) via EGF repeats 8-12 22, NOTCH1 undergoes a conformational change 
that exposes a cryptic proteolytic site. Subsequent cleavage of this site by a member of the ADAM 
protease family followed by cleavage of a second proteolytic site by 𝛾-secretase releases the 
intracellular domain of NOTCH1 from the plasma membrane. The liberated intracellular domain is 
imported into the nucleus and mediates expression of Notch target genes via association with RBPJ and 
MAML1. Degradation of the intracellular domain is accelerated by the presence of an intact PEST 
domain. 



 

Consistent with the pattern seen in other squamous epithelia, we observed nonsense mutations, essential 
splice site mutations, insertions and deletions distributed throughout the gene body of NOTCH1, as well 
as a cluster of missense mutations affecting the ligand binding region (EGF repeats 8-12, residues 295 
to 488) (Fig. 3c). Consistent with missense mutations in EGF repeats 8-12 altering protein function, 
this region also had a high proportion of deletions and insertions that are in-frame (66% and 37% 
respectively), whereas the vast majority of deletions and insertions in the rest of the gene result in a 
frameshift (92.5% and 98% respectively). These mutations are expected to impair Notch signalling, 
which mediates a program of cell cycle arrest and terminal differentiation in squamous epithelia 23. 

By contrast, Notch signalling promotes self-renewal of haematopoietic stem cells 24 and so activation 
of this pathway is a common feature of haematological malignancies. Therefore, the pattern of NOTCH1 
mutations in lymphomas and leukaemias is markedly different to squamous cell carcinomas, with 
recurrent missense mutations and in-frame insertions and deletions affecting the NOD domain and 
nonsense and frameshift mutations occurring immediately prior to the PEST domain. The latter 
mutations cause C-terminal truncation of the protein rather than nonsense-mediated decay of the 
mRNA, resulting in stabilisation of the intracellular domain due to loss of the PEST domain. Given the 
differential impact of nonsense mutations that occur after the final exon junction complex in a gene, we 
expected to observe comparatively few truncating mutations in the last exon of NOTCH1 in oral 
mucosa. Indeed, the dN/dS ratio for nonsense mutations in the final exon was substantially lower than 
across the rest of the gene (6.9 and 68.4 respectively). Of the 73 nonsense mutations present in the last 
exon of NOTCH1, 64 of them occurred in the 9 sites closest to the exon junction complex (out of 117 
possible nonsense sites). We observed no enrichment of nonsense mutations across the remaining 108 
sites (9 observed, 11.3 expected). 

Of the 599 amino acid changes in NOTCH1 found to be under significant positive selection by site-
level dN/dS (sitednds), 5 codons were affected by recurrent synonymous mutations (V199, G394, G472, 
T634 and C1528) (Extended Data Table 4). The mutations in two of these codons (C1528 and T634) 
occur extremely close (3 bp and 2 bp upstream respectively) to an exon-intron boundary and are 
predicted by SpliceAI 25 to disrupt the nearby splice donor site (donor gain 𝛥 score = 0.9 for 
9:139399764 G>A, donor loss 𝛥 scores = 0.95 and 0.93 for 9:139409936 T>A and T>C respectively). 
The other three sites (G472, G394 and V199) are located further away from existing exon-intron 
boundaries but are predicted with high confidence to generate novel splice donor sites by SpliceAI 
(donor gain 𝛥 scores = 1, 0.99 and 0.8 for 9:139412229 C>A, 9:139412662 G>A and 9:139417447 
G>T respectively). This pattern of synonymous mutations affecting splicing has previously been 
observed in TP53 (codons T125, E224 and Q331) 26 and two sites in codon T125 of TP53 (17:7579312 
C>T and C>A) were significantly recurrently mutated in our cohort. However, there were only 19 such 
recurrent synonymous mutations amongst the 1,220 amino acid changes under significant positive 
selection in oral mucosa, suggesting that this is a rare class of driver mutation in normal tissue, as well 
as in cancer 3, and so is less frequent than has previously been suggested 26. 

Both NOTCH1 and NOTCH2 (as well as TP53 and CHEK2) exhibited significant enrichment of 
mutations at sites in the 10 bp flanks of introns that are not classified as essential splice site mutations 
by dNdScv (Fig. 3e). For NOTCH1, 269 mutations were observed compared to ~86 mutations expected 
by chance under neutrality. Several of the most recurrent sites in NOTCH1 (9:139410175 C>T observed 
34 times, 9:139400339 C>T observed 14 times, 9:139400340 G>T observed 8 times, 9:139410554 C>T 
observed 7 times and 9:139396548 G>C observed 5 times) are all predicted to generate novel splice 
acceptor sites by SpliceAI (all have acceptor gain 𝛥 scores = 1). The mean and median acceptor gain 𝛥 
scores across all 1,452 intronic flanking sites in NOTCH1 were 0.049 and 0 respectively. Additionally, 
we observed high confidence examples of acceptor loss mutations (e.g. 17:7578292 A>C in TP53 
observed 7 times with acceptor loss 𝛥 score = 0.89) which introduced a guanine at the -3 position of the 
splice acceptor site, which is the only base not tolerated by typical U1- and U2-type splice sites 27. These 
results highlight the potential benefit of extending the definition of splice impacting mutations beyond 
specific positions in the splice acceptor and donor regions. 

It has previously been reported that the proportion of cells in histologically normal oesophagus that 
contain a NOTCH1 driver mutation by middle age (30-80%) is much higher than the proportion of 



 

oesophageal squamous cell carcinomas that bear NOTCH1 mutations (~10%) 21. This has led to the 
proposal that while NOTCH1 mutations are capable of driving clonal expansion in normal oesophageal 
epithelium, NOTCH1 clones have a lower risk of further evolving into cancers than wild-type cells 21 
and may even impair tumour growth by clonal competition 28. The same protective effect does not 
necessarily appear to be the case for oral mucosa as the frequency of NOTCH1 driver mutations in oral 
cancer (~16%) is comparable to the mutant cell fraction in normal oral mucosa (~10%) (Fig. 2h). 
However, the similar frequency of NOTCH1 mutations in normal oral epithelium and oral cancers still 
suggests that NOTCH1 mutations do not confer a considerably higher tumourigenic risk in oral 
epithelium. 

The distribution of mutations in NOTCH2 (Extended Data Fig. 6a) closely resembles that of NOTCH1 
with loss-of-function mutations distributed throughout the gene body, comparatively few truncating 
mutations in the final exon (dN/dS ratio of nonsense mutations in last exon and rest of gene are 17.1 
and 1.47 respectively) and a cluster of missense mutations in the ligand binding region. We were unable 
to call many mutations in the first four exons of NOTCH2 due to the high degree of homology in this 
region to another gene on chromosome 1q (NOTCH2NLA) 29, thus failing our AS-XS cut-off (Methods, 
Extended Data Fig. 2). Of note, several highly recurrent mutations are called in these exons in the 
COSMIC database (C19W, A3S/V/F, A21T, R5R, N46S and E38K) and so these should be treated with 
caution as potential alignment artefacts. 

DNA damage response and cell cycle control genes 

TP53 is the most frequently mutated driver gene across many cancer types 3 and has been extensively 
studied. The distribution of mutations across the gene body in oral mucosa is remarkably concordant 
with the pattern previously observed in squamous cell carcinoma (Fig. 2a), with truncating mutations 
distributed throughout the gene and missense mutations occurring at specific residues in the DNA 
binding domain (residues 100-288), which are known to have a dominant negative effect by forming 
tetramers with wild-type p53 that are unable to bind DNA with high affinity 30. 

There was a high degree of overlap between the sites identified as significant in oral mucosa without 
restricted hypothesis testing and previously known hotspots from The Cancer Genome Atlas (218/279; 
78%) and a similar proportion of coding substitutions occurring at the most frequently mutated hotspot 
codons in oral mucosa compared to squamous cell carcinoma (R273: 5.4% vs 3.7%; R175: 3.4% vs 
3.7%; R248: 3.2% vs 4.7%; R282: 2.5% vs 3.1%; H179: 2.4% vs 2.7%; H193: 2.1% vs 1.7%). However, 
one codon accounted for a strikingly different proportion of coding TP53 substitutions. P177 is the 7th 
most frequently mutated codon in oral mucosa (2.1%) but is rarely mutated in squamous cell carcinoma 
(0.08%). This difference was also observed in a meta-analysis of cancer and non-neoplastic tissue 
sequencing studies 31. Proline 177 is located in the short H1 𝛼 helix that lies within the L2 loop of p53 
and is situated between two of the four residues (C176, H179, C238 and C242) that tetrahedrally co-
ordinate the zinc ion 32. In an early site-directed mutagenesis assay of TP53, it was found that P177H 
only partially reduced the transcriptional activation activity of p53 across 8 assayed target promoters, 
whereas known hotspot mutations (such as R175H) almost completely inactivated p53 33. Another 
difference between the mutation distribution in oral mucosa and squamous cell carcinoma is the 
proportion of coding substitutions that are nonsense mutations (10.7% vs 19.1% respectively), 
potentially suggesting that dominant negative missense mutations provide a greater selective advantage 
in normal tissues than heterozygous truncating mutations. 

There was also noticeable enrichment of several mutations outside the coding region of TP53 (Fig. 3f). 
Non-coding drivers in TP53 affecting the transcription start site or donor splice site of the first non-
coding exon have been previously described by the Pan-Cancer Analysis of Whole Genomes (PCAWG) 
consortium 34. We also observed recurrent mutations affecting the canonical GGTAAG sequence 27 at 
the -1 to +5 positions of the splice donor site of the first non-coding exon (7:7590690-7590695), with 
64 substitutions observed compared to 0.8 expected. TP53 was one of the genes that exhibited 
significant enrichment of substitutions in its core promoter region (±200 bp of the transcription start 
site) compared to a background model of synonymous mutations within the gene (Fig. 3e). These 
substitutions were broadly distributed throughout the promoter region with a relatively low degree of 



 

recurrence (≤6 mutations) at any given site, apart from a single hotspot of 10 substitutions occurring 2 
bp upstream of the transcriptional start site (17:7590858). We note that several genes that were not 
classed as drivers by any other type of mutational enrichment had a similar diffuse pattern of 
substitutions in their core promoter (Fig. 3e) and across all genes there was an excess of substitutions 
in the 5’ UTR immediately after the transcription start site (Fig. 3f). This likely indicates that in many 
cases the observed excess of substitutions in the core promoter is due to increased mutability of this 
region rather than selection. However, unlike the other genes, TP53 had a large number of insertions 
and deletions (n = 43) within its core promoter, which is consistent with the enrichment previously 
described in cancer 34,35. 

Two other genes with markedly different patterns of mutations in their promoters were TERT and 
SRSF2. TERT promoter mutations are well-known drivers in cancer that create novel ETS transcription 
factor binding sites 36,37. In addition to the two canonical TERT promoter mutations (5:1295250 G>A 
observed 38 times; 5:1295228 G>A observed 23 times), we also observed several other highly recurrent 
sites (5:1295158 G>T observed 21 times; 5:1295161 T>G observed 16 times; 5:1295149 C>A observed 
10 times), which have previously been observed infrequently in cancer-derived specimens 38. SRSF2 
had a cluster of mutations within its core promoter (63 mutations observed vs 1.4 expected in 
17:74733377-1774733390, of which 37 occur at 17:74733380), the consequence of which is unclear. 

An additional non-coding region of TP53 that exhibited a striking enrichment of mutations was the 
polyadenylation signal (31 mutations observed vs 0.7 expected in 17:7571751-7571756, of which 25 
occur at 17:7571755). Germline variants that disrupt the polyadenylation signal (rs78378222; 
17:7571752 T>G) have previously been reported to confer increased susceptibility to cancer 39. Of note, 
we did not call somatic mutations at 17:7571752, as the population frequency of rs78378222 is 
sufficiently high (1.2% 40) that this site is excluded by our SNP mask (Methods). 

Saturation analysis 
 
As described in the main text, ultra-deep single-molecule sequencing of polyclonal samples has the 
potential to provide a form of in vivo saturation mutagenesis. In this section, we describe some 
supplementary analyses on the extent of saturation achieved in the current study. 
 
First, a valuable metric can be the density of mutations per site at neutral sites. This value depends on 
the mutability of each site, which is particularly affected by the trinucleotide sequence context of each 
base. The mean neutral mutation rate per site for each trinucleotide substitution is calculated in the 
substitution model of dNdScv (dndsout$mle_submodel). In the buccal swab dataset, the highest average 
neutral mutation rate per site was ~0.43-0.60 mutations/site for C>T changes in all four possible CpG 
contexts, and the lowest rates per site were ~0.007-0.008 mutations/site for A>C mutations at certain 
contexts (Supplementary Code). The mean rate across all 192 possible trinucleotide changes was 
~0.056 mutations/site. These rates refer to the neutral mutation rate for each possible trinucleotide 
change. When considering SNVs, each base can change to three other bases (e.g. A can change to C, G 
or T), and each codon can change to nine other codons, and so the average neutral mutation density per 
base pair or per codon will increase accordingly. This analysis reveals that ~2 or ~6 times higher 
aggregate depth than currently achieved will be required to obtain an average of one mutation per 
neutral codon or base pair, respectively. 
 
The description above refers to the neutral mutation density per base change, per base pair, or per codon 
(or amino acid). However, we note that lower aggregate depths will be needed to find the most important 
sites under strong positive selection (e.g. with site-dN/dS > 100), while much higher depths will be 
required to find individual sites under negative selection. To explore the extent to which the landscape 
of driver mutations is approaching saturation in our dataset, we carried out a downsampling exercise, 
studying the number of genes and sites under significant positive selection for progressively larger 
random subsets of our dataset (Extended Data Fig. 6j,k). At gene level, this analysis suggests that a 
dataset half the size of the current dataset is sufficient to find ~80% of the 49 driver genes reported here, 
and that these genes account for ~90% of all non-synonymous mutations in driver genes. At single-site 
level (sitednds), the pattern of saturation varies considerably across genes. For example, the discovery 



 

of sites under positive selection in RAC1 and PPM1D shows clear signs of saturation, where a dataset 
half the size of the current dataset is enough to find the hotspots responsible for >80% of the mutations 
at significant hotspots in the full dataset. A trend towards saturation is apparent but slower for NOTCH1 
and TP53, suggesting that larger datasets will identify additional relevant sites under positive selection. 
In contrast, other genes under weaker selection and where selection is spread across many sites, such 
as CHEK2 and NOTCH2, show no clear trend of saturation in subsamples of the current dataset. 
 
Overall, the current dataset represents an in depth description of the landscape of driver genes and driver 
sites in the oral epithelium, but larger studies are expected to continue to yield new sites under positive 
selection, particularly in genes under weaker positive selection. We also note that much larger datasets 
will be needed to comprehensively study the pattern of negative selection at the level of single genes, 
and particularly at the level of single sites. 
 
 
 
 
 
  



 

Supplementary Note 5. Multistage models linking mutation rates and clonal expansions to risk 
 
Systematic somatic mutation studies in large cohorts of individuals will help build mechanistic models 
of cancer risk. By performing bulk sequencing studies with single-molecule sensitivity it is now 
possible to measure mutation rates, mutational signatures and clonal frequencies across individuals with 
different risk factors (e.g. smoking or alcohol consumption), as well as in cases and controls (e.g. 
sampling normal tissue from individuals recently diagnosed with cancer). Regression models could then 
be used to establish quantitative relationships between risk factors (genetics, exposures, lifestyle…) and 
changes in mutation rates and clonal landscapes, and between these and cancer risk (Fig. 4j). 
 
In this context, a brief revision of classical multistage models of carcinogenesis can help understand 
how changes in mutation rates or clone sizes are expected to alter cancer risk under different 
assumptions. To this end, we summarise some classical multistage models of carcinogenesis with and 
without clonal expansions, and discuss them in light of recent discoveries from normal tissues, including 
those from the present study. Although these classical models are overly simplistic, they provide a 
framework to understand important features in carcinogenesis and can offer a starting point to build 
more realistic and empirical mechanistic risk models. 
 
Multistage models without clonal expansions 
 
The incidence rate of most cancers increases rapidly with age. For several major cancer types, the 
increase in incidence during the ages of 20-75 is approximately proportional to age to the power of 5 or 
6. In the early 1950s, Nordling (1953) 41 and Armitage & Doll (1954) 42 showed that this behaviour can 
be recapitulated by a simple model where stochastic somatic changes (mutations or other somatically-
heritable changes) occur in cells with a constant rate throughout life1 and cancer results when 6 or 7 key 
changes2 have accumulated in a single cell. If the probability of a driver mutation (p) is low enough, the 
incidence rate of cancer at age t follows equation (1): 
 

I(t) = k p1 p2 … pn t (n-1) 
 
n being the number of changes required to transform a normal cell into a cancer, and k being a constant 
term. Under this model, cancer incidence is proportional to t(n-1), that is: I(t) ~ t(n-1). Using a log 
transformation, we obtain: log(I(t)) ~ (n-1)*log(t), which allows estimation of n using the slope of a 
log(I)-log(age) plot. This led Armitage & Doll (1954) to predict that many cancers may be the result of 
6 to 7 somatic changes in a cell3. 
 
This early multistage model of carcinogenesis has been highly influential. Despite being too simplistic, 
this model explains two key aspects of carcinogenesis that still cause confusion among cancer 
researchers today. First, it provides a simple explanation for how cancer incidence is expected to 
increase rapidly with age, without needing to invoke tissue ageing or mutation rate acceleration with 
age. In fact, it may provide a simple conceptual model for other ageing processes, by showing how a 
linear accumulation of somatic changes in our tissues can lead to rapid (geometric) increases in 
morbidity if multiple changes in a cell or in separate cells are needed for disease. Second, the recent 

 
1 The assumption that somatic mutation rates are constant throughout life was unsupported at the time, and in fact 
some authors expected mutation rates to increase exponentially with age as a result of age-related loss of repair 
and control mechanisms (“error accumulation” models). However, recent sequencing studies across a range of 
somatic tissues have shown that somatic point mutations and indels accumulate linearly with age. 
2 Given the importance of somatic mutations in cancer development, the somatic changes in multistage models 
are often assumed to refer to somatic driver mutations, but can refer to epigenetic changes and other changes that 
are somatically heritable. Under some models, the equations hold if some of the changes occur in other cooperating 
cells too 43. 
3 The reason why the exponent is n-1 rather than n is because the incidence rate of a tumour in one particular day 
depends on the cumulative number of cells with n-1 events in the tissue (~ tn-1), multiplied by the probability of 
the nth event per cell (pn). 



 

discovery that human ageing tissues contain large numbers of cells with one or two cancer-driver 
mutations has led some to question whether these mutations truly contribute to carcinogenesis. 
Although the 1954 Armitage & Doll model did not incorporate clonal expansions, their equation 
predicts that for a tumour to appear with 6-7 changes, tissues may be expected to carry very large 
numbers of cells with 1 or 2 genuine cancer-driver mutations. 
 
The prediction that 6 or 7 somatic changes in a single cell might be required to explain cancer was 
controversial at the time, as it seemed an excessively complex model of carcinogenesis in the absence 
of any detailed mechanistic understanding. This led Armitage & Doll, and other contemporary authors, 
to propose alternative multistage models incorporating clonal expansions, which could explain human 
cancer incidence statistics with as few as 2 or 3 somatic changes (see the following section). In the past 
15 years, however, cancer genomic studies across cancer types have confirmed that most human 
tumours carry multiple driver mutations as well as extensive aneuploidy, suggesting that a multistage 
model of carcinogenesis is, at least, a reasonable conceptual framework 3,13. This is also supported by 
genomic studies of premalignant lesions in some cancer types with histologically distinct precursor 
lesions [e.g. 44–46]. 
 
Multistage models with clonal expansions 
 
In the last decade, advances in DNA sequencing have led to the discovery that clonal expansions are 
widespread in proliferating somatic tissues. By middle age, ~25% of all cells in normal skin 7, around 
40% of cells in normal oesophagus 21, >50% of all cells in endometrial glands 47, ~10-20% of cells in 
normal bladder urothelium 8,48 and ~10-20% of cells in oral epithelium (present study) carry a driver 
mutation due to positive clonal selection. In light of these discoveries, it is useful to revisit some 
classical multistage models that incorporated clonal expansions. These models change the predicted 
impact of mutagenic carcinogens on cancer risk, and they offer a starting framework for modelling the 
role of non-mutagenic carcinogens (promoters or selectogens). 
 
In the classical Armitage and Doll model (1954) 42 driver mutations accumulate in single cells without 
conferring a clonal advantage until the final (nth) change. Around the same time, in 1955, Platt suggested 
that carcinogens may induce changes to cells that make them proliferate faster 49 Motivated by this idea, 
in 1957 Armitage and Doll proposed a model where driver mutations lead to exponential clonal 
expansions, which increase the number of cells at risk of subsequent hits. With this model, they showed 
that the rapid increase of cancer incidence with age observed in multiple cancer types could be explained 
by a model with as few as two driver mutations, if mutations induce exponential clonal expansions 50. 
This led other authors to propose alternative models with different modes of clonal growth, showing 
that the epidemiological data could be fitted by quite disparate models. 
 
The models introduced by JC Fisher in 1958 51 are of particular relevance for modelling cancer risk as 
a result of mutation and clonal expansion in flat epithelia. Fisher argued that in a flat epithelium where 
clonal competition occurs at the edges of a clone, clones do not grow exponentially but quadratically. 
If the growth of a clone is quadratic, the number of cells in the clone after time t since the occurrence 
of the driver mutation is given by equation (2) (where C is a constant): 
 

clone size = C t2 

  
Introducing only one quadratic clonal expansion into the original Armitage & Doll 1954 model 
consequently predicts that the incidence of cancer should still increase geometrically with age, as 
follows (equation 3): 
 

I(t) = k p1 p2 … pn t2 t (n-1) 
 

I(t) ~ t(n+1) 
 
If every sequential driver mutation induces a quadratic clonal expansion, we obtain equation (4): 



 

 
I(t) ~ t3(n-1) 

 
This model still follows the simple power-law increase of cancer incidence with age (I ~ tk) reported by 
Armitage and Doll, but it requires considerably fewer driver mutations (or changes) for cancer 
development. For example, a cancer type that increases in incidence as a function of age to the power 
of 6 can be explained by 7 independent driver mutations without clonal expansions (1954 Armitage and 
Doll’s model), or by just 3 driver mutations where the first two events led to subsequent quadratic clonal 
expansions (Fisher 1958). 
 
This framework can be used to understand the impact of other types of clonal growth (see 
Supplementary Note 6). For example, let us imagine a tissue where clones expand to a typical 
maximum size (L) and do not grow beyond it. This could be due to spatial constraints (such as colonic 
crypts), cell-intrinsic mechanisms (e.g. telomere shortening or oncogene-induced senescence) or cell-
extrinsic mechanisms (e.g. immune surveillance). Under such a model, rapid clonal expansions increase 
the probability of subsequent hits by a factor L, but do not alter the exponent of the original Armitage 
and Doll model (equation 5): 
 

I(t) = k p1 p2 … pn L(n-1) t(n-1) 
 

I(t) ~ t(n-1) 
 
As discussed in Supplementary Note 6, the approximately linear increase in driver frequency with age 
that we observe in our buccal swab data suggests that clonal expansions are constrained in oral 
epithelium (Fig. 4a). Given that new mutations occur at an approximately constant rate throughout life 
(Fig. 4c), neither exponential nor quadratic clonal expansions seem consistent with the observed 
approximately linear increase in driver density with age, which instead appears more consistent with 
equation (5). In fact, the apparently sublinear increase in frequency of TP53-mutant clones with age, 
despite the continuous occurrence of new mutations in TP53, suggests a considerable decline in the 
relative fitness of these clones with age, a feature not captured by the models above. 
 
Hypermutation versus clonal expansion debate 
 
The discovery of the widespread existence of clones carrying cancer-driver mutations in normal tissues, 
and the multistage models above, are also relevant in clarifying a decades-long debate on the role of 
hypermutation versus clonal expansion in carcinogenesis [e.g. 52–56]. Estimates of the somatic mutation 
rate available in the 1980s-2000s, although inaccurate, suggested that normal somatic mutation rates 
were too low to explain the emergence of cancer under the classical Armitage and Doll 1954 model4. 
This led to two alternative hypotheses: (1) carcinogenesis may require the emergence of hypermutator 
cells, or (2) cancer may not require the evolution of hypermutation, but require intermediate clonal 
expansions. The role of both processes in increasing the probability of a cell acquiring the full 
complement of driver mutations required for transformation can be understood in the models above. 
Data from cancer genomics and from somatic mutation studies of normal tissues have now largely 
resolved this debate. They suggest that both hypermutation and intermediate clonal expansions are 
important factors in carcinogenesis. Clonal expansions have been observed in most mitotic tissues 
studied to date, and comparison of mutation rates and mutational signatures in cancer genomes and in 

 
4 Somatic mutation rates across most cell types are now known to be on the order of 2×10-7 to 4×10-7 
mutations/bp/cell by middle age 1,57. Most cell types have a modest number of genes that can act as drivers, 
typically tens of genes 3. If we assume that there are on the order of ~10,000 possible driver sites in a genome, 
and that 6-7 changes are needed to transform a cell, the fraction of cells in a tissue expected to carry one driver 
mutation (in the absence of selection and clonal expansion) could be as high as ~0.2-0.4%, whereas the probability 
of one cell acquiring 6 driver mutations by chance would be <1x10-14. This probability is orders of magnitude too 
low to explain the observed incidence of cancer given the estimated numbers of stem cells per tissue, highlighting 
the importance of hypermutation and/or intermediate clonal expansions to explain cancer incidence. 



 

normal tissues shows that increased mutation rates and new mutational processes, including 
chromosomal instability generating extensive aneuploidy, are common features of many tumours and 
some premalignant lesions. 
 
Carcinogenesis as somatic evolution 
 
Cancer development is best understood not as a result of somatic mutation but of somatic evolution; 
that is, the result of both somatic mutation and clonal selection. As is the case for natural selection in 
species evolution, clonal selection can change over time (it is context-dependent) and encompasses cell-
intrinsic changes (e.g. altering the rate of cell division, apoptosis, differentiation, etc) as well as 
ecological interactions with the cellular microenvironment (e.g. clonal competition, spatial constraints, 
immune surveillance, etc). 
 
The incorporation of clonal expansions in multistage models is important for several reasons. First, they 
offer a more complete model of carcinogenesis, where carcinogens can increase cancer risk/incidence 
by either inducing mutations (mutagens) or altering selection and clonal expansion 
(selectogens/promoters). Second, these multistage models show that clonal expansions can have a large 
impact on cancer incidence. For example, doubling clone sizes is expected to have a similar impact as 
doubling mutation rates in increasing cancer risk (i.e. in increasing the probability of a cell emerging 
with the full complement of somatic changes needed to form a tumour). In fact, under an exponential 
clonal expansion model, a small increase in the growth rate per year can cause a much larger increase 
in risk than a doubling of somatic mutation rates. Yet, whereas much effort has been devoted to 
understanding the many mechanisms behind hypermutation in cancer, much less is known about the 
forces that govern and constrain clonal growth in normal tissues. Finally, despite their simplicity, the 
models above illustrate how the mode of clonal growth has a large influence on the interpretation of 
epidemiological data, and how changes in both mutation and selection can alter cancer risk. 
 
The models described above can help understand how cancer risk may be expected to vary with changes 
in mutation rates, in clone sizes, or in the type of clonal growth. However, they lack several important 
features that will be needed to build more accurate quantitative models of carcinogenesis as we improve 
our understanding of the mutation rates and clonal dynamics of normal tissues and premalignant lesions. 
Some of these are listed below: 

1. Clonal competition. As clones grow and come to occupy significant fractions of the available 
space in the tissue, they can enter into competition. Clonal competition has important 
implications for cancer risk. First, if the fraction of cells carrying driver mutations in a tissue is 
high enough, clonal competition may lead to a slowdown of clonal expansions with age. This 
might contribute to the common but poorly understood slowdown of cancer incidence with age 
in old age, compared to the rapid increase predicted by multistage models without clonal 
competition 58. Second, there is mounting evidence from studies of normal tissues that not all 
mutations driving clonal expansions are equally carcinogenic, which can interfere with the 
emergence of cancer. For example, NOTCH1 mutations in squamous epithelia of the skin, 
oesophagus and mouth are a potent driver of clonal expansions in the normal epithelium but 
these clones are believed to be largely benign or even cancer-protective, by out-competing more 
carcinogenic TP53-mutant clones 59. 

2. Hypermutation. A common step in precancer evolution is the acquisition of hypermutation, for 
example in the form of DNA repair defects, APOBEC mutagenesis, high rates of chromosome 
missegregation, etc. This increase in mutation rates is not considered by the simple models 
above, but could be incorporated into more complex multistage models. 

3. Changes in selection: Selection is context dependent and affected by the microenvironment 
surrounding a clone. Changes in the tissue microenvironment due to environmental exposures 
60, injury 61, chronic inflammation, or tissue ageing 62 can alter the selective pressure on clones, 
accelerating or suppressing clonal expansions. 

4. Epistasis. Specific combinations of driver mutations will be more strongly selected than others, 
leading to different growth models for different combinations of driver mutations. Similarly, 
there is evidence in pre-leukaemic evolution that acquisition of second or third hits can lead to 



 

much larger fitness gains 63. And genetically advanced premalignant or non-invasive lesions 
carrying several driver mutations, such as Barrett's oesophagus or carcinomas in situ of the 
bladder can grow to centimetres, compared to the typically microscopic clonal expansions 
observed in histologically normal oesophagus or bladder epithelium 8,21,45. 

 
Mutagens and selectogens 
 
Understanding cancer development as a process of somatic evolution can help unify different models 
of carcinogenesis, including the somatic mutation theory, the initiation-promotion theory and the tissue 
organisation field theory (see 64). These models are often presented as different or even opposing 
models, but they can be understood as emphasising a different aspect of the somatic evolutionary 
process, namely somatic mutations, non-mutagenic changes to clonal selection, and the role of tissue 
architecture and the microenvironment in shaping selection, respectively. 
 
The somatic mutation theory has been the dominant paradigm of the last few decades, particularly since 
the discovery of oncogenes and tumour suppressor genes in the 1970s through to the current era of 
cancer genome sequencing. Although the theory acknowledges the role of clonal expansions and 
selection in the development of tumours (see for example Burnet, Cairns or Nowell, 65–68), it has likely 
underplayed the role of non-mutagenic influences on clonal selection during carcinogenesis5. 
 
In the last few years, several discoveries have led to a renewed interest in the initiation-promotion model 
of carcinogenesis 60,69. This model originated in the 1940s with animal studies demonstrating that 
tumours could be induced in animals by the successive application of an initiator (a mutagen) and a 
promoter (e.g. a non-mutagenic irritant that favours the growth of mutant cells). The renewed interest 
in this model stems from the need to recognise the importance of non-mutagenic carcinogens in 
carcinogenesis. However, we argue that the current understanding of carcinogenesis as a somatic 
evolution process offers a natural and mechanistic way of incorporating the role of promoters in a multi-
stage model of carcinogenesis, unifying the somatic mutation theory and the initiation-promotion 
theory. 
 
Under the paradigm of somatic evolution, most non-mutagenic carcinogens or promoters are expected 
to act by favouring the expansion of mutant clones, that is, by altering clonal selection 64. This can 
happen through a wide variety of mechanisms, such as increasing proliferation, inducing apoptosis of 
wild-type cells, causing injury and regeneration, altering interactions with the microenvironment, and 
enabling immune escape. If these processes lead to an increase in the number of cells with cancer-driver 
mutations, they are expected to increase the risk of cancer, as shown in the multistage models above. In 
that context, we argue that many (perhaps most) promoters can be referred to as “selectogens”, which 
we think is a more precise and mechanistic term than “promoter”, just as we currently use “mutagen” 
instead of “initiator”. We note that the term “selectogen” has already been coined for this purpose 64. 
 

 
5 Macfarlane Burnet summarised the somatic mutation theory of carcinogenesis in 1959 as follows (Burnet, 1959): 
"...cancer represents the development by a clone of cells (or more than one) of the capacity to multiply freely 
without regard to the normal controls which maintain cell relationships in the body. This state is reached by a 
series of mutational events, each of which either results in a selective survival advantage or brings the cell to such 
a state that a further mutation will endow it with an advantage. Some immediate implications of such a view are: 
(i) that the common forms of cancer will be in cell lineages which are subject to rapid turnover and in which there 
is scope for the exercise of selective survival advantage; (ii) that anything which abnormally accelerates turnover, 
such as chronic trauma or inflammation, will increase the likelihood of cancer...". However, he arguably 
underplayed the potential role of non-mutagenic carcinogens: "If the somatic mutation theory of cancer is correct, 
the words mutagen and carcinogen should be synonymous. Experimentally this is not quite the case, but there is 
sufficient number of agents with both types of action to allow us to retain the general hypothesis, with the 
reasonable qualification (...) that the manifestation of malignancy may require conditions beyond simple 
mutation". 



 

We think that the term “selectogen” can help reconcile the somatic mutation and the initiation-
promotion models of carcinogenesis under the umbrella of somatic evolution. This borrows the 
important notion of non-mutagenic influences on clonal growth from the initiation-promotion model, 
while avoiding its classical association with a two-stage model, incompatible with the genomics of most 
cancers and premalignant lesions. Instead, cancer development can be understood as a multi-stage 
process of somatic evolution where both increases in mutation rates and changes in selection can 
increase cancer incidence by increasing the number of cells at risk of transformation. 
 
The concept of mutagenesis and selectogenesis can also be formalised with the help of the multistage 
models with clonal expansions described above. Mutagens are expected to increase cancer incidence 
(I(t)) by increasing the number of mutations per cell. Selectogens will increase cancer incidence by 
increasing the number of cells with driver mutations through clonal expansion. Both mutagens and 
selectogens will therefore increase the likelihood of a single cell acquiring the full complement of driver 
mutations needed for transformation. These equations also suggest that an exposure that increased the 
rate of cell division, cell death or regeneration equally on wild-type and driver-mutant cells without 
increasing mutation rates (mutagenesis) or the fraction of cells with driver mutations (selection), would 
not be expected to increase cancer incidence. The equations also suggest that other ways of increasing 
cancer incidence could be an absolute increase in the number of cells (contained within the k parameter) 
or, more importantly, a reduction in the number of rate limiting steps needed for transformation (n). 
Examples of the latter may be some germline predisposition alleles (e.g. RB1 mutations in familial 
retinoblastoma), and potentially certain exposures (e.g. drug-induced immunosuppression could 
eliminate one barrier to transformation that may have otherwise required an immune-escape driver 
mutation). 
 
Finally, whereas carcinogens are often classed as either mutagens or promoters, this classification is 
simplistic as some carcinogens act simultaneously as both. For example, ultraviolet light acts as both a 
mutagen and a promoter/selectogen on the epidermis, by causing mutations and by favouring the 
expansion of TP53-mutated cells which are more resistant than wild-type cells to UV-associated 
apoptosis or differentiation 70. Similarly, several chemotherapies as well as ionising radiation are 
directly mutagenic while also favouring the expansion of certain mutant clones particularly resistant to 
cell death 15,71,72. The ability to separately quantify mutation rates and selection through genomic studies 
of normal or precancerous tissues exemplified in the current manuscript (see Fig. 4 and Supplementary 
Note 7) provides a framework to quantify the mutagenic and selectogenic effects of different 
carcinogens, in humans and in experimental models (in vitro or in vivo). 
 
 
  



 

Supplementary Note 6. Simple models of clonal growth in blood and oral epithelium 
 
Several studies have reported that driver-mutant clones in normal blood grow approximately 
exponentially with age 63,73,74. However, clonal growth in solid tissues is likely to be spatially 
constrained and several alternative growth models have been proposed. For example, colonic epithelium 
is organised into separate crypts, each maintained by a few stem cells. Clonal expansions are often 
constrained to single crypts, although certain drivers can lead to larger expansions through crypt fission 
75. In flat epithelia, some studies have assumed exponential growth, whereas others have argued that 
clonal growth may largely happen at the edges of a clone leading to quadratic growth (e.g. 51,76). 
 
Detailed modelling of clonal dynamics is beyond the scope of this study. However, a brief discussion 
here is useful for two reasons. First, as described in Supplementary Note 5, the mode of clonal growth 
is important to understand how changes in mutation rates or clonal expansions are expected to impact 
cancer risk. Second, the simplified models below highlight that the nature of the increase in aggregate 
driver density with age (i.e. the fraction of cells carrying a driver mutation, summed across clones) 
when using single-molecule sequencing can provide information about the underlying clonal dynamics, 
even in the absence of longitudinal samples or accurate clone size distributions. The models below are 
simplistic but provide a starting point to discuss these concepts. 
 
If clones grow exponentially, the size of a clone that occurred t years ago is given by equation (6) 
(where r is the exponential growth constant): 
 

𝑓(𝑡) = 𝑒!0 
 
If new driver mutations occur constantly throughout life, with a rate μ per cell per year, the increase 
with age in the number of cells with driver mutations, aggregated across all clones, can be approximated 
by equation (7) (where N0 represents the starting number of cells in the tissue). 
 

𝑁(𝑡) = 	𝑁8	𝜇 4 𝑓(𝑡)	𝑑𝑡
96$

8
 

 
Since the population size in an adult normal tissue is approximately constant, we can add a correction 
factor by dividing N(t) (the number of cells with a driver mutation) by the sum of mutant and wild-type 
cells. The number of wild-type cells can be approximated as: N0 e-μt ≈ N0(1 – μt) ≈ N0 (for low mutation 
rates, as μt<<1). Equation (8) then provides an estimated density (or fraction) of cells with driver 
mutations in the tissue: d(t). This correction provides a way of modelling clonal competition without 
modelling local interactions explicitly. 
 

𝑑(𝑡) =
𝑁(𝑡)

𝑁(𝑡) 	+	𝑁8
 

 
For clones growing exponentially, solving the integral in equation (7) yields equation (9): 
 

𝑁(𝑡) =
𝑁8𝜇
𝑟
(𝑒!0 − 1) 

 
Equations (8) and (9) imply that the sum of many exponentially growing clones occurring with a 
uniform rate per year throughout life leads to an exponential increase in the aggregated driver density 
with age in the absence of clonal competition. In the presence of clonal competition (d(t) instead of 
N(t)), a slower than exponential increase in aggregate driver density is expected, but the effect of clonal 
competition is limited when the frequency of cells carrying driver mutations in the tissue is modest (e.g. 
<20%, as is the case in the oral epithelium) (see Extended Data Fig. 7 for the predicted behaviour of 
d(t) under different growth models). Of note, if the rate of driver mutations per year is low enough and 
clones grow exponentially, the total fraction of cells with a driver mutation is expected to be dominated 



 

by one major clone (typically an old clone with a high growth rate), as it is commonly observed in 
clonal haematopoiesis (see Fig. 4a for DNMT3A and TET2). 
 
For clones growing quadratically, solving the integral in equation (7) yields equation (10): 
 

𝑁(𝑡) =
𝑁8𝜇𝑟
3

𝑡: 
 
This shows that even under a quadratic growth model, which accounts for some spatial constraints 
leading to clonal growth only at the edges of a clone 76, the aggregated driver fraction increases 
supralinearly with age (approximately as a function of age to the power of 3). 
 
In epithelia lining ducts or tubules that are narrow and non-branching (e.g. testicular tubules), growth 
at the edge of the clone occurs largely in one dimension (along the axis), leading to an expected linear 
growth of individual driver clones with age. Integrating this linear function would lead to a quadratic 
increase in the aggregated driver density with age (N(t) ~ t2). Analogously, clonal expansions in 
branching systems (e.g. ductal, vascular, or bronchial trees), under a model where positively-selected 
clones expand only at their edges, might be expected to follow a function of the type: f(t) ~ tk, with k 
taking an intermediate value between 1 and 3 depending on the fractal dimension of the tree. 
 
Finally, we can consider the case of highly constrained clonal growth, where clones grow to a maximum 
clone size and do not grow beyond it. This model could apply to clonal expansions constrained to single 
crypts or glands, or to clones growing under stringent cell-intrinsic or cell-extrinsic constraints. If we 
model individual clonal expansions as following a logistic growth function, the initial growth of a clone 
is exponential but slows down to zero as it approaches the clone’s maximum size (L). This model yields 
equations 11 and 12: 
 

𝑓(𝑡) =
𝐿	𝑒!0

𝐿 + 𝑒!0 − 1
 

 

𝑁(𝑡) =
𝑁8𝜇𝐿
𝑟

𝑙𝑛(𝐿	 − 	1 + 𝑒!0) 	−	
𝑁8𝜇𝐿
𝑟

𝑙𝑛(𝐿) 
 
Under this model, if clones grow relatively quickly to their maximum clone size, the increase in the 
aggregated driver density with age is approximately linear. This is easy to understand: as new driver 
mutations occur linearly with age and clones grow to their maximum sizes, the increase in driver density 
with age approaches the product of the driver mutation rate per cell and the (average) maximum clone 
size (equation 13) (see Extended Data Fig. 7 for a comparison of the predicted behaviour under 
equations 12 and 13): 
 

𝑁(𝑡) 	≈ 	𝑁8	𝜇	𝐿	𝑡 
 
Note that the normalising factor in d(t) ensures that the total population of cells in the tissue remains 
constant, and so the approximately exponential or cubic increase in aggregate driver density with age 
under the exponential and quadratic clonal growth models, respectively, are expected to slow down 
with age in tissues with a high driver density due to clonal competition. This is likely to be a dominant 
factor in the increase in driver density with age in tissues where the driver density is high, such as 
oesophagus, but not in tissues where only a minority of cells carry a driver mutation, such as oral 
epithelium (Extended Data Fig. 7). 
 
The models above are highly simplistic but can help interpret the increase in driver density with age 
observed in different tissues. In oral epithelium, where the estimated fraction of cells with a driver 
mutation is seemingly <25%, the approximately linear increase in the aggregated driver frequency with 
age (despite a continuous occurrence of new mutations with age) suggests that clonal expansions in 



 

normal oral epithelium are highly constrained. This is further supported by the slow (sublinear) increase 
with age of the largest clone (or maximum VAF) in a sample (Fig. 4a, Extended Data Fig. 7). 
  



 

Supplementary Note 7. Additional regression models 
 
As described in the Methods, to study the effect of different risk factors and other epidemiological 
variables on mutation rates, signatures, and drivers, we used multivariate linear mixed-effects 
regression (LMER) models. In this section, we describe several analyses that complement the results 
shown in the main text.  
 
Impact of outliers and normalisation 
 
Some variables in our dataset show a highly skewed distribution, such as the burden of Signature B or 
the fraction of cells with driver mutations in some genes. To ensure that the associations reported in the 
main text (Fig. 4e) are not driven by outliers, we used two alternative approaches. First, we compared 
the results in the main text, which used unnormalised values for all predictor and outcome variables, to 
the regression models using an inverse-normal transformation (INT) of all variables (Supplementary 
Code). Alternatively, we repeated the regression analyses in the main text excluding outliers from each 
outcome variable. We defined outliers as those values larger than 3 × IQR + Q3 (where IQR is the 
interquartile range and Q3 is the third quartile for each outcome variable). Both analyses revealed very 
similar regression results to those reported in the main text (Extended Data Fig. 9a). Despite some 
quantitative differences, most associations remained significant (q-value<0.05) with INT normalisation 
or outlier removal, despite the potential loss of information caused by the non-linear change in scale 
with INT and by the exclusion of genuinely informative data points. 
 
Dose-effects for smoking, alcohol and age 
 
To estimate the dose-effect relationship of different exposures on the acquisition of somatic mutations, 
we can look at the coefficients of the LMER models. Using the LMER model described in the main text 
(Fig. 4e) and SNV burden as the outcome variable, the estimated coefficients were: ~15.2 SNVs (per 
cell or diploid genome) per year of life, ~5.38 per pack-year, and ~0.798 per drink-year. At face value, 
this suggests that one extra year of life causes as many SNVs as ~2.8 pack-years or ~19.1 drink-years. 
 
This result highlights the considerable mutagenic effect of ageing, which seems qualitatively consistent 
with age being the largest risk factor for oral cancer. However, caution is needed when interpreting 
these results, for several reasons. First, it is likely that the slopes reported above for pack-years and 
drink-years are underestimated due to inaccurate self-reporting. Both systematic underreporting and 
imprecise reporting would tend to underestimate the slopes. Second, given that SBS5 appears 
responsible for most of the age-related mutations in the buccal swabs, and that SBS5 is often considered 
to be caused by endogenous mutational processes 1,77, it could be tempting to conclude that endogenous 
(and potentially unpreventable) sources of mutation dominate the accumulation of mutations in the oral 
epithelium and possibly cancer risk. While this might be the case, it is also possible that continuous or 
frequent exposure to common mutagens in the environment contributes to the age-related accumulation 
of SBS5 mutations and that a larger than expected fraction of cancer risk is due to preventable factors 
yet to be discovered. Indeed, differences in cancer incidence across countries or regions has been used 
to conclude that a large percentage of cancers may be preventable 78, and systematic somatic mutation 
studies could shed additional light on this question and on the underlying mechanisms. Third, the slopes 
reported here refer to the mutagenic effect of smoking and alcohol on the oral epithelium in the 
TwinsUK cohort, which is not necessarily representative of other cell types or populations. For 
example, much larger mutagenic dose-effects are expected for smoking on bronchial epithelium 79 and 
bladder urothelium 8, or for alcohol on oral epithelium in individuals with certain risk alleles 9. 
 
Finally, we note that the slopes inferred above assume a linear dose-effect for smoking and alcohol. A 
linear dose-response relationship may be a reasonable approximation and is often assumed in 
mutagenesis studies, although non-linear effects are known for some mutagens 80. We also note that 
effects of mutation rates on cancer risk can be non-linear 81 (Supplementary Note 5), that the effects 
of pack-years and drink-years on cancer risk can vary by duration and intensity of exposure 82, and that 
the period since exposure cessation may also be relevant 79; none of these factors are modelled here. 



 

However, to explore the possibility of non-linear dose-effects for smoking and alcohol, we repeated the 
LMER model shown in the main text binning pack-years and drink-years into intervals (Extended Data 
Fig. 9b) 83. This analysis suggests that the linearity assumption is not an unreasonable first 
approximation, but confidence intervals are too large for a more detailed analysis. Larger studies with 
more detailed exposure history could be conducted with the methods presented in the current study to 
address these questions. 
 
A discussion on the potential interaction effect of smoking and alcohol in causing Signature B is 
included below. 
 
Interaction effects between smoking and alcohol 
 
Multiple epidemiological studies have found significant synergistic interactions between smoking and 
alcohol consumption on the risk of multiple cancer types, including oral cancer, oesophageal cancer 
and head and neck cancers 84,85. In the absence of interaction terms, the regression model used in the 
main text found a significant association of the burden of Signature B (SBS16) with both smoking and 
alcohol consumption independently, with alcohol showing a stronger association. Somatic mutation 
studies of oesophageal squamous carcinomas 10 and normal oesophagus 9, have reported an association 
of SBS16 with germline polymorphisms in the ALDH2 gene (aldehyde dehydrogenase) supporting a 
mechanistic link between alcohol (and its metabolite acetaldehyde) and SBS16. However, the 
association between smoking and Signature B in our buccal swab data does not have a known 
mechanistic basis. This association could be explained by at least three complementary explanations: 

● A direct effect of smoking on Signature B, perhaps through acetaldehyde or other mutagens 
present in tobacco smoke or its metabolites 86. 

● An interaction effect between smoking and alcohol, where smoking increases the mutagenic 
effect of alcohol, consistent with epidemiological studies of cancer risk. 

● A possible confounder effect of inaccuracies in our estimates of alcohol intake, which are 
estimated by extrapolation of recent consumption. Since smoking and alcohol consumption 
habits are known to be strongly correlated (which is evident in our data: Spearman’s rho = 0.20, 
P-value = 0.0038), misreporting of alcohol consumption could lead to a residual correlation of 
Signature B with smoking. 

 
To explore these possibilities, we ran several analyses. First, we used a LMER model with an interaction 
term between pack-years and drink-years. To do so, we applied Z-score normalisation of the variables 
in the model (dependent and independent). This analysis revealed strong independent associations of 
Signature B with smoking (P-value=1.5×10-5) and alcohol consumption (P-value=6×10-14) with 
Signature B, with an almost non-significant effect for the interaction term (P-value=0.049, q-
value=0.136) (Supplementary Code). However, we note that this could be affected by the skewness 
of both variables, leading to a highly skewed interaction term, as well as by possible non-linear 
interaction effects. 
 
As an alternative analysis, less affected by skewness, extreme outliers and linearity assumptions, we 
binned smokers into three groups (never smokers: pack-years = 0, light smokers: (0-20], and 
moderate/heavy smokers: >20) and we tested the interaction of alcohol and this three-level variable on 
Signature B. This analysis found evidence of a significant interaction effect, where the increase in 
Signature B per drink-year is higher with an increased amount of smoking. This interaction is stronger 
when not including pack-years as an additional independent term, but is significant in both cases (P-
value=4.8×10-6 and P-value=0.006, respectively, Likelihood Ratio Tests, Supplementary Code).  
 
Model H0: sig_denovo_sigB ~ AGE + SEX + T2DM + BMI + missingteeth + ipaq_score + cancer + 
drink_years + (1 | twin) 
Model H1: sig_denovo_sigB ~ AGE + SEX + T2DM + BMI + missingteeth + ipaq_score + cancer + 
drink_years:smoking_group + (1 | twin) 
 



 

Finally, a limitation of our estimated “drink-years” is that they are extrapolated from self-reported recent 
consumption (Methods). Since most somatic mutations accumulate neutrally in somatic tissues 3, they 
provide a record of lifelong exposures to mutagens. We thus expect the amount of Signature B to be 
more closely related to the total lifetime exposure to alcohol than to recent intake, although we note that 
the burden of smoking-associated mutations in the bronchial epithelium has been shown to go down 
after smoking cessation 79. Individuals with a history of previous heavy drinking but low or zero recent 
alcohol intake could potentially have high rates of Signature B despite low extrapolated “drink-years” 
based on recent consumption. Given the correlation between alcohol consumption and smoking habits, 
this could lead to an indirect association of Signature B with smoking. To evaluate this possibility, we 
took advantage of the availability of self-reported “lifetime consumption” metadata for a minority of 
donors (only 302 had lifetime consumption information, compared to 1,034 donors with recent 
consumption data, which was used to calculate “drink-years” as described in Methods). 
 
We first repeated the LMER model used in the main text on donors with lifetime consumption 
information, including both drink-years (extrapolated from recent consumption data) and self-reported 
lifetime-consumption to explain Signature B. This revealed that “drink-years” estimated from recent 
consumption is a better predictor of Signature B than the available self-reported lifetime consumption 
(P-values = 7.5×10-10 and 0.42 in the joint model, respectively; Supplementary Code). This may reflect 
that self-reported lifetime consumption is less accurate than our extrapolated estimate based on recent 
consumption, but it is also possible that current consumption is a better predictor of Signature B. To 
reduce the risk of an apparent association between Signature B and smoking due to individuals with 
moderate or high lifetime alcohol consumption but zero recent consumption (estimated drink-years = 
0), we repeated the binned interaction analysis above restricting it to individuals with both recent and 
lifetime consumption data, and excluding those with a history of moderate/heavy drinking and zero 
recent consumption. This analysis is much less powerful as it is restricted to 202 donors with sufficient 
metadata, but still supports a significant interaction between smoking and alcohol in causing Signature 
B (likelihood-ratio test P-value = 0.014). 
 
Overall, these analyses provide some evidence of an interaction between smoking and alcohol in their 
association with Signature B, consistent with epidemiological evidence on their synergistic effect on 
cancer risk. These analyses offer some support to the hypothesis that smoking may increase Signature 
B by exacerbating the effects of alcohol. However, we cannot rule out the possibility that at least part 
of the association of smoking history with Signature B is indirect and due to inaccuracy in self-reported 
alcohol consumption.  
 
Regression models to detect putative selectogenic associations 
 
In the absence of changes on selection pressure, the frequency of driver mutations in the cell population 
is expected to increase linearly with an increase in mutation rates under a broad set of conditions. This 
is the case if driver mutations do not cause clonal expansions until the full complement of driver 
mutations is acquired 42, but also if driver mutations lead to exponential, quadratic, or logistic clonal 
expansions (Supplementary Note 6). However, this linearity assumption may be invalid under certain 
conditions, such as clonal competition or age-specific exposures. For example, in tissues where most 
cells already have a driver mutation, an increase in mutation rates can lead to a sublinear increase in 
driver density, as the relative fitness advantage of driver mutations decreases due to clonal competition. 
Also, a mutagenic exposure early in life may be expected to have a larger impact on the driver density 
than the same exposure late in life, as the former will have more time for clonal expansion. This is 
expected to be more relevant for continuous models of clonal growth (e.g. exponential or quadratic) 
than for constrained models (e.g. logistic) (Supplementary Note 6).  
 
While the limitations above are important to consider, they do not appear too relevant in the oral 
epithelium (as shown in Extended Data Fig. 7 and Supplementary Note 6). Given that the increase in 
driver density with age in the oral epithelium is approximately linear, with a small intercept, it is 
reasonable to accept the simplifying assumption that mutagenic exposures should increase the driver 
density proportionally to the increase in mutation rates. Purely mutagenic carcinogens (mutagens) may 



 

thus be expected to increase driver frequencies proportionally to the increase in mutation rates at driver 
sites, whereas pure selectogenic carcinogens (selectogens or promoters) may be expected to increase 
driver frequencies without altering mutation rates. Often, however, some carcinogens may be expected 
to act as both mutagens and selectogens, causing an increase in mutation rates, and an even larger 
increase in driver frequency. Below, we discuss two alternative ways to separately quantify mutagenic 
and selectogenic effects on our data. 
 
To disentangle selectogenic and mutagenic effects, we first repeated the multivariate LMER model 
described in the main text (Fig. 4e) normalising the driver density per gene per donor by the mutation 
burden in the donor. Given that Signature B (SBS16) is biased towards intronic sequences (Fig. 4g,h), 
for this analysis we used the estimated passenger mutation burden on exons. We then incorporated this 
as a correction in the LMER model in two alternative ways: (1) using the ratio of driver density and 
mutation burden as a new outcome variable for each driver gene, or (2) including the mutation burden 
as a covariate in the model described in the main text. The advantage of the latter is that it does not 
assume a zero intercept for the effect of mutation rates on the driver density. Both analyses yielded 
similar results (Extended Data Fig. 9d). They suggest that most of the increases in driver density with 
smoking, alcohol and oral health seem to be explained by (i.e. are approximately proportional to) the 
increase in mutation rates. However, a higher increase in driver frequency than expected from the 
increase in exonic mutation rates is observed for NOTCH1 with pack-years, which suggests that 
smoking may have both mutagenic and selectogenic effects in the oral epithelium. Other weak positive 
associations, some significant after multiple testing (q-value<0.05) and others nominally significant 
(uncorrected P-value<0.05), are observed between smoking or missing teeth and the driver density of 
several genes, corrected for exonic mutation burden, potentially suggesting modest selectogenic effects 
of these exposures in addition to their mutagenic effects. However, given the assumptions underlying 
these models and the weakness of these associations, larger or more focused studies (e.g. deeper 
sequencing of fewer genes) would be needed to confirm these associations and shed light on their 
underlying mechanisms. We also note that, in larger or deeper datasets, dN/dS ratios calculated per gene 
for each donor could also be used as outcome variables to test for selectogenic associations under the 
assumptions described above (see Supplementary Code for example code using dNdScv). However, 
the number of synonymous mutations per donor in the current study was too low to provide precise 
enough dN/dS estimates per gene. 
 
As a complementary analysis, dN/dS ratios per gene can be calculated for different groups of donors. 
As an example, and to validate the putative selectogenic associations found by the burden-corrected 
regressions above, we calculated dN/dS ratios for NOTCH1 and TP53 for never smokers (pack-years = 
0, age ≥50), light and moderate smokers (pack-years: 1-40, age ≥50), and heavy smokers (pack-years 
>40, age ≥50). The results are shown in the main text (Fig. 4f), confirming an increase in dN/dS ratios 
for NOTCH1 with increased smoking, and a weaker trend for TP53, consistent with the results in the 
burden-corrected LMER models above. 
 
Finally, we note that while the methods described here could help quantify the mutagenic and 
selectogenic effects of some carcinogens, the effects of some selectogens or promoters may not be 
easily detectable by studying the clonal landscape of normal tissues, particularly if they specifically act 
in later stages of carcinogenesis. We also note that some mutagens act by causing DNA breaks and 
other structural variants, which are not currently detectable by targeted NanoSeq. 
 
Regression models on extended medication metadata 
 
In the LMER analyses described in the main text and in the sections above, we included only some of 
the most important epidemiological variables in the regressions, including age, sex, BMI and the main 
risk factors of oral cancer for which we had sufficient information. Self-reported information on 
medication history was also available for a majority of the donors (n = 738), but it is expected to be 
incomplete and inaccurate as it relies on questionnaires. Nevertheless, for completion, here we describe 
an extended LMER model with an additional 25 covariates on self-reported medication history. Only 
medications reportedly taken by 25 or more donors were included in this analysis. Dosage or duration 



 

of treatment was not available and so medication history was recorded as binary variables (yes/no), 
further limiting the utility of this analysis. 

Results are shown in Extended Data Fig. 9c, with and without INT normalisation. This analysis 
revealed only a few weak potential correlations between self-reported medication history and mutation 
rates or driver frequencies. Importantly, these associations need to be interpreted with caution given the 
limitations of the available medication metadata. These associations are also likely not to be causal, as 
medication histories are confounded by the diseases treated by these medications, by other 
comorbidities, and by associated lifestyle factors and exposures. Nevertheless, we include this 
supplementary analysis to rule out the possibility that medications may have major confounding effects 
on the results shown in the main text. 

Whereas large cross-sectional studies on the impact of medications on the mutational and clonal 
landscape of normal tissues should be possible, they will be affected by interindividual heterogeneity 
and by confounding factors such as disease history and lifestyle. We note that more sensitive and better 
controlled studies on the impact of different medications on the mutation landscape may be possible 
using longitudinal sampling of non-invasive biopsies before and after an exposure, followed by whole-
genome or targeted NanoSeq. 

 
 
  



 

Supplementary Note 8. Heritability analyses and GWAS 
 
A recent study reanalysing standard bulk sequencing data from blood from 200,453 individuals in UK 
Biobank detected clonal haematopoiesis mutations in ~5% of them, identifying 11,697 putative driver 
mutations in 10,924 individuals. This study was able to perform a genome-wide association study, 
identifying seven genome-wide significant loci associated with clonal haematopoiesis 14. A subsequent 
study on 628,388 individuals identified 24 loci conferring predisposition to clonal haematopoiesis 87. 
Using these loci, both studies then used Mendelian randomisation analyses to make causal inferences 
between clonal haematopoiesis and a range of diseases. These and related studies exemplify how large 
cohort studies can start to be used to identify germline influences on somatic clonal selection. 
 
Although our dataset is much smaller, it has three features that motivated us to attempt to study 
heritability and germline influences on somatic mutation phenotypes. First, previous studies could not 
provide information on mutation rates, being only able to detect the presence or absence of an expanded 
clone. Our study is the first to be able to measure somatic mutation rates in a normal tissue in over 1000 
individuals, providing an initial opportunity to start investigating germline influences on somatic 
mutagenesis. Second, our sequencing strategy has yielded ~1000-times more driver mutations per 
individual than the studies above (on average ~60 driver mutations per donor compared to ~0.06) 
providing more information per donor to increase the power of epidemiological and genetic 
associations. Third, our twin design, including identical (monozygotic, MZ) and non-identical 
(dizygotic, DZ) twins, provides additional information to study germline influences and quantify 
heritability of somatic mutation rates and selection. 
 
Given the twin structure of our dataset and the fact that this is the largest dataset of its kind to date, we 
carried out exploratory heritability analyses and GWAS. We note, however, that these analyses have 
limited power and are only exploratory. Future studies with much larger sample sizes will be required 
to better address these questions and identify specific risk alleles associated with different somatic 
phenotypes. This may open the door to Mendelian randomisation studies to perform causal inference 
on the role of somatic mutations on a range of human diseases. 
 
For all analyses below, unless described otherwise, we excluded individuals with mean duplex coverage 
<200dx, individuals with evidence of HPV (Methods), and individuals with a self-reported history of 
chemotherapy. For analyses using genotyping information (GREML and GWAS), we used pre-existing 
genotyping array data from TwinsUK. We filtered for AF<1%, HWE p<1×10-10, and missingness>5%, 
and we inferred cohort-wide relatedness with KING 88. We used the relatedness information to generate 
a subset of 539 unrelated individuals to perform PCA with GCTA 89. After projecting the remaining 
individuals onto the PC1 vs PC2 space using the SNP loadings, 32 individuals were identified as outliers 
and were removed from other analyses. Overall, applying all the filters above resulted in a set of 590 
samples with genotyping information that were used for GREML and GWAS. 
 
Heritability analyses using the twin design 
 
We applied three complementary approaches to study heritability using twin information: (1) a 
comparison of the similarity in somatic variables between MZ and DZ twins using a residual analysis 
(Fig. 4i), (2) ACE models, and (3) genomic-relatedness restricted maximum likelihood (GREML) tests. 
To avoid testing too many somatic variables with limited statistical power, we restricted these analyses 
to four particularly informative variables in the buccal swab dataset: SigA mutation burden, SigB 
mutation burden, NOTCH1 driver density, and TP53 driver density. 
 
Paired analysis of residuals 
 
As an initial attempt to evaluate germline influences on these variables, we first quantified the similarity 
of somatic mutation rates and somatic driver densities in MZ twins, DZ twins and unrelated same-age 
pairs of individuals (randomly chosen among individuals of the same age in the cohort). We restricted 
this analysis to same-sex pairs to avoid a confounding effect for different sex in DZ and unrelated pairs. 



 

We also restricted the analysis to samples with mean duplex depth ≥50dx and those without evidence 
of HPV. 
 
Twins tend to have more similar exposures and lifestyles than unrelated individuals. To account for the 
effect of major known confounders, we regressed out the effects of age, sex, pack-years and drink-years 
using a multivariate linear regression model (see Supplementary Code). We then calculated the 
absolute difference in the residuals for each pair of individuals and used a Wilcoxon test to compare the 
medians of the resulting distributions for MZ (n=208 pairs used in this analysis), DZ (n=104 pairs) and 
unrelated individuals (Fig. 4i). Applying this approach to donor height as a positive control variable 
with known strong heritability revealed that the median difference in height was ~1.2cm between two 
MZ twins, ~4.2cm for DZ pairs (Wilcoxon P-value=4×10-17 for MZ vs DZ), and ~5.7cm for unrelated 
same-age pairs (Wilcoxon P-value=0.014 for DZ vs unrelated same-age pairs). Applied to the somatic 
mutation variables of interest, this analysis showed that MZ pairs are more similar to one another than 
DZ pairs in the burden of SigA (P-value=0.004), and in the density of NOTCH1 (P-value=0.02) and 
TP53 (P-value=0.016) drivers. No significant differences between MZ and DZ or DZ and unrelated 
pairs were found for SigB (whose variation in our dataset seems to be dominated by alcohol and 
smoking). 
 
GREML 
 
To formalise the analysis of germline influences on somatic mutation variables, we next estimated SNP 
heritability (h2

g) based on the subset of 590 individuals who had available genotyping data and passed 
additional quality controls. We used the variance components model y=g+c+e, where the phenotype (y) 
is assumed to be a sum of genetic (g), common-environment (c), and residual (e) effects, as suggested 
by previous studies 90,91. We used GCTA and 7.66 million SNPs (array and imputed) to build a genetic 
relatedness matrix (GRM) (for the g effect), and a custom binary matrix with 1s indicating twins and 
0s otherwise (for the c effect), which we gave as input to GCTA-REML. We estimated SNP-h2 for 
SigA somatic mutation burden, SigB somatic mutation burden, NOTCH1 density, and TP53 density, as 
well as weight and height as positive controls. We worked with both raw values and rank-inverse normal 
transformed (RINT) outcome values (to increase power and avoid false positives due to outliers). We 
also incorporated relevant covariates in the model, specifically age, sex, ethnicity, pack-years, drink-
years, and the top-10 eigenvectors from PCA. Predictors were standardised (mean = 0, and standard 
deviation = 1). The estimates are summarised in Extended Data Table 5. As a negative control, we 
repeated this analysis after permuting the phenotypes for all individuals and observed no significant 
estimates (P-value>0.30 for any permutation). 
 
We note that the number of samples used for this analysis (n=590) is smaller than the cohort used for 
the residuals analyses and the ACE models due to the availability of genotyping information for a subset 
of donors, and so lack of significant results need to be interpreted with caution. Despite this limitation, 
this analysis identified evidence of significant heritability for NOTCH1 (h2g=0.55; se=0.23; P=8.4×10-

3) and TP53 (h2g=0.44; se=0.22; P=1.8×10-2), as well as for the positive controls height (h2g=0.78; 
se=0.18; P =3.0×10-11) and weight (h2g=0.84; se=0.17; P=1.8×10-4). We also found indicative 
heritability for sigA (h2g=0.42; se=0.26; P=0.41), but no indication for sigB (h2g=0). These estimates 
were obtained using the INT-normalised outcome values, and similar trends were observed when using 
raw values (see Extended Data Table 5).  
 
ACE 
 
Finally, as a complementary test, we used ACE models, which is a classical approach for twin studies. 
ACE models partition the variance of a phenotype of interest (in this case the somatic mutation 
variables) into three components: additive genetic effects (A), common familial environment (C), and 
the environmental contribution unique to the individual (E). For a discussion of the underlying 
assumptions in ACE models see 92. We relied on the OpenMx R package 93 and fitted different models: 
Saturated, ACE, AE, CE, and E. Likelihood ratio tests were conducted to compare nested models, and 
we report P-values for the comparison between ACE and CE models (Extended Data Table 5), i.e. 



 

testing whether the addition of a genetic component provides a significantly better fit. To factor in 
potentially confounding covariates such as age, sex, pack-years and drink-years, we used regression 
residuals as input to the models, estimating the heritability of NOTCH1, TP53, signature A and B 
burdens, and, as positive controls, weight, height and BMI. Input data was either scaled to aid in the 
numerical optimization or transformed through RINT (Extended Data Table 5). With RINT, which 
we found to be more robust to outliers, we found significant heritability for NOTCH1 (h2=0.53, CI95% 
0.40-0.63; P-value=1.2×10-3), TP53 (h2=0.49, CI95% 0.15-0.60; P-value=7.2×10-3), BMI (h2=0.78, 
CI95% 0.71-0.83; P-value=5.12×10-9), height (h2=0.76, CI95% 0.49-0.93; P-value=6.31×10-16), and 
weight (h2=0.80, CI95% 0.55-0.85; P-value=1.18×10-9). Contrary to the direct comparison of residuals, 
we found no significant heritability for signature A and B burdens. Heritability estimates for the three 
positive controls (BMI, height and weight) are in line with studies done on larger twin cohorts (e.g.94) 
 
GWAS 
 
Given that we detected significant heritability for several somatic mutation phenotypes, we next 
performed a genome-wide association study (GWAS). To avoid confounding genetic effects with 
shared environmental effects given the twin relationships in our dataset, we used fastGWA [Jiang et al 
2019 NG, 95], a linear mixed model based on a sparse GRM to account for sample structure. We tested 
for association between the same set of phenotypes as in the h2 analysis and 7.66 million variants 
available, using the same samples and covariates, this time further conditioning on the type of zygosity. 
Using the standard threshold for genome-wide significance of 5×10-8 for significance, we detected two 
associations, both with SigB: an intron variant in FARP1 (rs145095522; P=2.92x10-8; MAF=14.7%), 
and another intron variant near GPC6 (P=3.76x10-8; MAF=1.2%). It is unclear whether these 
associations are meaningful, particularly as they are only borderline significant and would not reach 
genome-wide significance after Bonferroni adjustment of the P-value cutoff for the 4 GWAS tests 
performed (P>1.25×10-8). The two significant SNPs are also single outlier SNPs in their respective loci. 
For completion, we report the list of loci identified with P<5x10-6, after clumping with PLINK, in 
Extended Data Table 5.  
 
Overall, the lack of clear significant associations is probably unsurprising given the limited sample size. 
Larger studies will be needed to address these questions in the future. 
 
 
References 
 
1. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–

410 (2021). 
2. Picard: A Set of Command Line Tools (in Java) for Manipulating High-Throughput Sequencing 

(HTS) Data and Formats Such as SAM/BAM/CRAM and VCF. (Github). 
3. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 

1029-1041.e21 (2017). 
4. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated 

genes. Nature 499, 214–218 (2013). 
5. Nielsen, R. & Yang, Z. Likelihood models for detecting positively selected amino acid sites and 

applications to the HIV-1 envelope gene. Genetics 148, 929–936 (1998). 
6. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564-576.e16 (2017). 
7. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic 

mutations in normal human skin. Science 348, 880–886 (2015). 
8. Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human 

bladder. Science 370, 75–82 (2020). 
9. Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. 

Nature 565, 312–317 (2019). 
10. Chang, J. et al. Genomic analysis of oesophageal squamous-cell carcinoma identifies alcohol 

drinking-related mutation signature and genomic alterations. Nat. Commun. 8, 15290 (2017). 



 

11. Haradhvala, N. J. et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of 
DNA damage and repair. Cell 164, 538–549 (2016). 

12. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human 
epigenomes. Nature 518, 317–330 (2015). 

13. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole 
genomes. Nature 578, 82–93 (2020). 

14. Kar, S. P. et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes 
and consequences of clonal hematopoiesis. Nat. Genet. 54, 1155–1166 (2022). 

15. Pich, O., Reyes-Salazar, I., Gonzalez-Perez, A. & Lopez-Bigas, N. Discovering the drivers of 
clonal hematopoiesis. Nat. Commun. 13, 4267 (2022). 

16. Jawad, M. et al. DNMT3A R882 mutations confer unique clinicopathologic features in MDS 
including a high risk of AML transformation. Front. Oncol. 12, 849376 (2022). 

17. Kunert, S. et al. The R736H cancer mutation in DNMT3A modulates the properties of the FF-
subunit interface. Biochimie 208, 66–74 (2023). 

18. Hu, L. et al. Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation. 
Cell 155, 1545–1555 (2013). 

19. Tsygankov, A. Y., Teckchandani, A. M., Feshchenko, E. A. & Swaminathan, G. Beyond the 
RING: CBL proteins as multivalent adapters. Oncogene 20, 6382–6402 (2001). 

20. Ngo, V. N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–
119 (2011). 

21. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 
362, 911–917 (2018). 

22. Luca, V. C. et al. Notch-Jagged complex structure implicates a catch bond in tuning ligand 
sensitivity. Science 355, 1320–1324 (2017). 

23. Blanpain, C., Lowry, W. E., Pasolli, H. A. & Fuchs, E. Canonical notch signaling functions as a 
commitment switch in the epidermal lineage. Genes Dev. 20, 3022–3035 (2006). 

24. Duncan, A. W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell 
maintenance. Nat. Immunol. 6, 314–322 (2005). 

25. Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535-
548.e24 (2019). 

26. Supek, F., Miñana, B., Valcárcel, J., Gabaldón, T. & Lehner, B. Synonymous mutations frequently 
act as driver mutations in human cancers. Cell 156, 1324–1335 (2014). 

27. Sibley, C. R., Blazquez, L. & Ule, J. Lessons from non-canonical splicing. Nat. Rev. Genet. 17, 
407–421 (2016). 

28. Abby, E. et al. Notch1 mutations drive clonal expansion in normal esophageal epithelium but 
impair tumor growth. Nat. Genet. 55, 232–245 (2023). 

29. McDaniell, R. et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of 
the notch signaling pathway. Am. J. Hum. Genet. 79, 169–173 (2006). 

30. Willis, A., Jung, E. J., Wakefield, T. & Chen, X. Mutant p53 exerts a dominant negative effect by 
preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 23, 2330–
2338 (2004). 

31. Hoyos, D. et al. Fundamental immune-oncogenicity trade-offs define driver mutation fitness. 
Nature 606, 172–179 (2022). 

32. Cho, Y., Gorina, S., Jeffrey, P. D. & Pavletich, N. P. Crystal structure of a p53 tumor suppressor-
DNA complex: understanding tumorigenic mutations. Science 265, 346–355 (1994). 

33. Kato, S. et al. Understanding the function-structure and function-mutation relationships of p53 
tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl. Acad. Sci. U. 
S. A. 100, 8424–8429 (2003). 

34. Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. 
Nature 578, 102–111 (2020). 

35. Sherman, M. A. et al. Genome-wide mapping of somatic mutation rates uncovers drivers of 
cancer. Nat. Biotechnol. 40, 1634–1643 (2022). 

36. Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science 339, 
957–959 (2013). 



 

37. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–
961 (2013). 

38. Hurst, C. D., Platt, F. M. & Knowles, M. A. Comprehensive mutation analysis of the TERT 
promoter in bladder cancer and detection of mutations in voided urine. Eur. Urol. 65, 367–369 
(2014). 

39. Stacey, S. N. et al. A germline variant in the TP53 polyadenylation signal confers cancer 
susceptibility. Nat. Genet. 43, 1098–1103 (2011). 

40. Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. 
Nature 625, 92–100 (2024). 

41. Nordling, C. O. A new theory on cancer-inducing mechanism. Br. J. Cancer 7, 68–72 (1953). 
42. Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. 

Br. J. Cancer 8, 1–12 (1954). 
43. Fisher, J. C. & Hollomon, J. H. A hypothesis for the origin of cancer foci. Cancer 4, 916–918 

(1951). 
44. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 

(1990). 
45. Weaver, J. M. J. et al. Ordering of mutations in preinvasive disease stages of esophageal 

carcinogenesis. Nat. Genet. 46, 837–843 (2014). 
46. Makohon-Moore, A. P. et al. Precancerous neoplastic cells can move through the pancreatic ductal 

system. Nature 561, 201–205 (2018). 
47. Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 

640–646 (2020). 
48. Li, R. et al. Macroscopic somatic clonal expansion in morphologically normal human urothelium. 

Science 370, 82–89 (2020). 
49. Platt, R. Clonal ageing and cancer. Lancet 265, 867 (1955). 
50. Armitage, P. & Doll, R. A two-stage theory of carcinogenesis in relation to the age distribution of 

human cancer. Br. J. Cancer 11, 161–169 (1957). 
51. Fisher, J. C. Multiple-mutation theory of carcinogenesis. Nature 181, 651–652 (1958). 
52. Loeb, L. A., Springgate, C. F. & Battula, N. Errors in DNA replication as a basis of malignant 

changes. Cancer Res. 34, 2311–2321 (1974). 
53. Tomlinson, I. P., Novelli, M. R. & Bodmer, W. F. The mutation rate and cancer. Proc. Natl. Acad. 

Sci. U. S. A. 93, 14800–14803 (1996). 
54. Loeb, L. A. Cancer cells exhibit a mutator phenotype. Adv. Cancer Res. 72, 25–56 (1998). 
55. Cairns, J. Mutation and cancer: the antecedents to our studies of adaptive mutation. Genetics 148, 

1433–1440 (1998). 
56. Tomlinson, I. & Bodmer, W. Selection, the mutation rate and cancer: ensuring that the tail does 

not wag the dog. Nat. Med. 5, 11–12 (1999). 
57. Moore, L. et al. The mutational landscape of human somatic and germline cells. Nature 597, 381–

386 (2021). 
58. Harding, C., Pompei, F. & Wilson, R. Peak and decline in cancer incidence, mortality, and 

prevalence at old ages. Cancer 118, 1371–1386 (2012). 
59. Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. 

Nature 598, 510–514 (2021). 
60. Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023). 
61. Gallini, S. et al. Injury prevents Ras mutant cell expansion in mosaic skin. Nature 619, 167–175 

(2023). 
62. Rozhok, A. I. & DeGregori, J. The evolution of lifespan and age-dependent cancer risk. Trends 

Cancer Res. 2, 552–560 (2016). 
63. Watson, C. J. et al. Evolutionary dynamics in the decades preceding acute myeloid leukaemia. 

bioRxiv (2024) doi:10.1101/2024.07.05.602251. 
64. Vineis, P., Schatzkin, A. & Potter, J. D. Models of carcinogenesis: an overview. Carcinogenesis 

31, 1703–1709 (2010). 
65. Burnet, F. M. The clonal selection theory of acquired immunity. (1959). 
66. Cairns, J. Mutation selection and the natural history of cancer. Nature 255, 197–200 (1975). 



 

67. Nowell, P. C. The clonal evolution of tumor cell populations: Acquired genetic lability permits 
stepwise selection of variant sublines and underlies tumor progression. Science 194, 23–28 (1976). 

68. Yates, L. R. & Campbell, P. J. Evolution of the cancer genome. Nat. Rev. Genet. 13, 795–806 
(2012). 

69. Balmain, A. The critical roles of somatic mutations and environmental tumor-promoting agents 
in cancer risk. Nat. Genet. 52, 1139–1143 (2020). 

70. Klein, A. M., Brash, D. E., Jones, P. H. & Simons, B. D. Stochastic fate of p53-mutant epidermal 
progenitor cells is tilted toward proliferation by UV B during preneoplasia. Proc. Natl. Acad. Sci. 
U. S. A. 107, 270–275 (2010). 

71. Hsu, J. I. et al. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic 
chemotherapy. Cell Stem Cell 23, 700-713.e6 (2018). 

72. Fernandez-Antoran, D. et al. Outcompeting p53-mutant cells in the normal esophagus by redox 
manipulation. Cell Stem Cell 25, 329-341.e6 (2019). 

73. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. 
Science 367, 1449–1454 (2020). 

74. Fabre, M. A. et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature 
606, 335–342 (2022). 

75. Snippert, H. J., Schepers, A. G., van Es, J. H., Simons, B. D. & Clevers, H. Biased competition 
between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO 
Rep. 15, 62–69 (2014). 

76. Lynch, M. D. et al. Spatial constraints govern competition of mutant clones in human epidermis. 
Nat. Commun. 8, 1119 (2017). 

77. Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 
1402–1407 (2015). 

78. Brennan, P. & Davey-Smith, G. Identifying novel causes of cancers to enhance cancer prevention: 
New strategies are needed. J. Natl. Cancer Inst. 114, 353–360 (2022). 

79. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 
578, 266–272 (2020). 

80. Guérard, M. et al. Assessment of mechanisms driving non-linear dose-response relationships in 
genotoxicity testing. Mutat. Res. - Rev. Mut. Res. 763, 181–201 (2015). 

81. Tomasetti, C., Marchionni, L., Nowak, M. A., Parmigiani, G. & Vogelstein, B. Only three driver 
gene mutations are required for the development of lung and colorectal cancers. Proc. Natl. Acad. 
Sci. U. S. A. 112, 118–123 (2015). 

82. Lubin, J. H. et al. Total exposure and exposure rate effects for alcohol and smoking and risk of 
head and neck cancer: a pooled analysis of case-control studies. Am. J. Epidemiol. 170, 937–947 
(2009). 

83. Steenland, K. & Deddens, J. A. A practical guide to dose-response analyses and risk assessment 
in occupational epidemiology. Epidemiology 15, 63–70 (2004). 

84. Hashibe, M. et al. Interaction between tobacco and alcohol use and the risk of head and neck 
cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. 
Cancer Epidemiol. Biomarkers Prev. 18, 541–550 (2009). 

85. Pelucchi, C., Gallus, S., Garavello, W., Bosetti, C. & La Vecchia, C. Cancer risk associated with 
alcohol and tobacco use: focus on upper aero-digestive tract and liver. Alcohol Res. Health 29, 
193–198 (2006). 

86. Salaspuro, M. Interrelationship between alcohol, smoking, acetaldehyde and cancer. Novartis 
Found. Symp. 285, 80–9; discussion 89-96, 198–9 (2007). 

87. Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis 
phenotypes. Nature 612, 301–309 (2022). 

88. Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. 
Bioinformatics 26, 2867–2873 (2010). 

89. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex 
trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011). 

90. Zaitlen, N. et al. Using extended genealogy to estimate components of heritability for 23 
quantitative and dichotomous traits. PLoS Genet. 9, e1003520 (2013). 



 

91. Nolte, I. M. et al. A comparison of heritability estimates by classical twin modeling and based on 
genome-wide genetic relatedness for cardiac conduction traits. Twin Res. Hum. Genet. 20, 489–
498 (2017). 

92. Barry, C.-J. S. et al. How to estimate heritability: a guide for genetic epidemiologists. Int. J. 
Epidemiol. 52, 624–632 (2023). 

93. Neale, M. C. et al. OpenMx 2.0: Extended Structural Equation and Statistical Modeling. 
Psychometrika 81, 535–549 (2015). 

94. Dubois, L. et al. Genetic and environmental contributions to weight, height, and BMI from birth 
to 19 years of age: an international study of over 12,000 twin pairs. PLoS One 7, e30153 (2012). 

95. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. 
Nat. Genet. 51, 1749–1755 (2019). 


