
Supplementary note 2: Statistical
analysis and error estimation
Our statistical methods for quantifying estimation uncertainty capture both Poisson sampling error as
well as uncertainty propagated from imperfect knowledge of average classification error rates, as
expressed in the confusion matrix. Final uncertainty estimates are expressed in units of parasitemia – the
relative fraction of parasitized red blood cells in the sample.

Glossary of vector symbols. The following symbols refer to vectors used throughout this
supplementary note.

The -th element of a vector is referenced with the notation . Note that each value in the vector𝑖 𝑥 [𝑥]
𝑖

corresponds to a prediction class.

The following are all row vectors, in units of absolute class counts:
True class counts𝑛

𝑎𝑐𝑡𝑢𝑎𝑙
Raw YOGO class count𝑛
Unbiased (compensated) YOGO class count𝑛
Total class count uncertaintyσ

𝑛

Glossary of matrix symbols. The following symbols refer to unitless matrices used throughout this
supplementary note, where the element in row i and column j of matrix is referenced with the notation𝑋

:[𝑋]
𝑖𝑗

Confusion matrix𝑀
Inverse confusion matrix𝑀−1

Uncertainty of each confusion matrix valueσ
𝑀

Uncertainty of each inverse confusion matrix valueσ
𝑀−1

Data compensation. The neural network has average rates of misclassification with respect to human
annotation, defined by the confusion matrix . Here we define the rows of the confusion matrix to𝑀
represent ground truth and the columns to represent model-predicted classes.

When evaluating the predicted counts for each class, the raw count is biased by the average rates𝑛
defined in :𝑀

(CMC-1) 𝑛
𝑎𝑐𝑡𝑢𝑎𝑙

 𝑀 =  𝑛

We can generate unbiased estimates of the true class counts by solving for . Given a row vector of𝑛
𝑎𝑐𝑡𝑢𝑎𝑙

predicted class counts , the unbiased estimates are given by𝑛 𝑛
(CMC-2) 𝑛 = 𝑛𝑀−1 



YOGO confusion matrix.We have two modalities for data compensation. The first directly uses the 7 x
7 confusion matrix that includes all YOGO prediction classes, such that the i-th element of a vector or𝑀
matrix corresponds with

(YC-1) 𝑖 ∈  {ℎ𝑒𝑎𝑙𝑡ℎ𝑦,  𝑟𝑖𝑛𝑔,  𝑡𝑟𝑜𝑝ℎ𝑜𝑧𝑜𝑖𝑡𝑒,  𝑠𝑐ℎ𝑖𝑧𝑜𝑛𝑡, 𝑔𝑎𝑚𝑒𝑡𝑜𝑐𝑦𝑡𝑒,  𝑊𝐵𝐶,  𝑚𝑖𝑠𝑐𝑒𝑙𝑙𝑎𝑛𝑒𝑜𝑢𝑠} 

To ensure is representative of the average misclassification rate, we used k-fold validation such that𝑀 𝑀
is the mean of every confusion matrix generated by partitions of YOGO’s test dataset.𝑘 = 5

Since is generated by averaging confusion matrices element-wise, we generate each element’s𝑀 𝑘 = 5
standard deviation by individually inverting each confusion matrices and taking the[σ

𝑀−1]𝑖, 𝑗
𝑘 = 5

standard deviation across all inverses.

Fitted aggregate confusion matrix.We can also use an aggregated confusion matrix that is based on
fitting our clinical Uganda data to corresponding PCR results. We only consider RBCs in this case, such
that

(FAC-1) 𝑖 ∈  { ℎ𝑒𝑎𝑙𝑡ℎ𝑦 (ℎ),  𝑝𝑎𝑟𝑎𝑠𝑖𝑡𝑒𝑠 (𝑝) } 
where parasites include all asexual parasite stages (ring, trophozoite, and schizont). The resulting
confusion matrix is 2 x 2 and can be understood as

(FAC-2) 𝑀 =  [ [𝑇𝑁,  𝐹𝑃] ,  [𝐹𝑁,  𝑇𝑃] ]
where , , , and are true negative, false positive, false negative, and true positive respectively.𝑇𝑁 𝐹𝑃 𝐹𝑁 𝑇𝑃

We compare Remoscope’s parasitemia output to the PCR value to solve for and𝑃
𝑅𝑒𝑚𝑜𝑠𝑐𝑜𝑝𝑒

𝑃
𝑃𝐶𝑅

𝑚 𝑏

using a weighted least squares regression:
(FAC-3) 𝑃

𝑅𝑒𝑚𝑜𝑠𝑐𝑜𝑝𝑒
 =  𝑚 * 𝑃

𝑃𝐶𝑅
 +  𝑏 

Applying the inverse of this fit to estimate compensated parasitemia from Remoscope’s output yields𝑃

(FAC-4)  𝑃 = (𝑃
𝑅𝑒𝑚𝑜𝑠𝑐𝑜𝑝𝑒

− 𝑏) / 𝑚 

We express this linear operation as a matrix multiplication by conserving the total RBC count 𝑁
according to

(FAC-5) 𝑁 =  [𝑛]
ℎ

+ [𝑛]
𝑝
 = [𝑛]

ℎ
 + [𝑛]

𝑝

and linearly expanding equation (CMC-2) as

(FAC-6) [𝑛]
ℎ 

 = [𝑛]
ℎ
 [𝑀−1]

11
 +  [𝑛]

𝑝
 [𝑀−1]

21
  

(FAC-7) [𝑛]
𝑝 

 = [𝑛]
ℎ
 [𝑀−1]

12
 +  [𝑛]

𝑝
 [𝑀−1]

22
  

Substituting the definition of parasitemia
(FAC-8) 𝑃 = [𝑛]

𝑝 
 / 𝑁

into equation (FAC-4), results in the equality

(FAC-9) [𝑛]
𝑝 

 / 𝑁 =  [𝑛]
𝑝 

 / (𝑁 * 𝑚) −  𝑏

Multiplying equation (FAC-9) by and substituting in equations (FAC-7) and (FAC-5) for and yields𝑁 [𝑛]
𝑝

𝑁

(FAC-10) [𝑛]
ℎ
 [𝑀−1]

12
 +  [𝑛]

𝑝
 [𝑀−1]

22
 =  [𝑛]

𝑝 
 / 𝑚 − [𝑛]

ℎ
 +  [𝑛]

𝑝( ) * 𝑏

We match terms to determine two matrix elements



(FAC-11) [𝑀−1]
12

=  − 𝑏

(FAC-12) [𝑀−1]
22

=  1/𝑚 − 𝑏

and the other matrix elements are constrained by normalization to satisfy equation (FAC-5):

(FAC-13) [𝑀−1]
11

= 1 − [𝑀−1]
12

=  1 + 𝑏

(FAC-14) [𝑀−1]
21

= 1 − [𝑀−1]
22

= 1 −  1/𝑚 + 𝑏

The standard deviation of each matrix element can be computed by error propagation

(FAC-15) [σ
𝑀−1] =  σ

𝑏
 ,  σ

𝑏[ ] ,   σ
𝑏

2 +  σ
𝑚

2  ,  σ
𝑏

2 +  σ
𝑚

2⎡
⎢
⎣

⎤
⎥
⎦
 ⎡

⎢
⎣

⎤
⎥
⎦

where and can be derived from the covariance matrix output by the linear fitting algorithm.σ
𝑏

σ
𝑚

Class count error estimation methods.

We estimate the error in the unbiased estimates by linearly expanding equation (CMC-2) asσ
𝑛

𝑛

(CCU-1) [𝑛]
𝑗
 =  

𝑖
∑  [𝑛]

𝑖
 [𝑀−1]

𝑖𝑗

and applying general error propagation:

(CCU-2) [σ
𝑛
]

𝑗
2 =

𝑖
∑  

∂[𝑛]
𝑗

∂[𝑀−1]
𝑖𝑗

( )2

 [σ
𝑀−1]𝑖𝑗

2 +  
𝑖

∑  [σ
𝑛
]

𝑖
2 ∂[𝑛]

𝑗

∂[𝑛]
𝑖( )2

 

The first error term is the uncertainty of each element in the inverse confusion matrix. Since is[σ
𝑀−1]𝑖𝑗

𝑀

generated by averaging confusion matrices element-wise, we generate by inverting each𝑘 = 5 σ
𝑀−1

individual confusion matrix and taking the standard deviation across all inverses.𝑘 = 5

The second error term comes from the fundamental random sampling uncertainty of the raw class[σ
𝑛
]

𝑗

counts, which can be computed using the equality of mean and variance in the Poisson distribution:

(CCU-3) [σ
𝑛
]

𝑗
= [𝑛]

𝑗

Substituting equations (CCU-1) and (CCU-3) into equation (CCU-2) yields

(CCU-4) [σ
𝑛
]

𝑗
2 =

𝑖
∑   [𝑛]

𝑖
2 [σ

𝑀−1]𝑖𝑗
2 +  [𝑛]

𝑖
 [𝑀−1]

𝑖𝑗
2( ) 

Parasitemia error estimation methods.

We provide a clinically relevant output by computing the parasitemia from the class counts .𝑛
Parasitemia is computed from the ratio of asexual parasitized red blood cells to all red blood cells. We
include the following classes in the parasite and red blood cell counts, respectively:

(PEM-1) ℙ =  {𝑟𝑖𝑛𝑔,  𝑡𝑟𝑜𝑝ℎ𝑜𝑧𝑜𝑖𝑡𝑒,  𝑠𝑐ℎ𝑖𝑧𝑜𝑛𝑡}
(PEM-2) ℝ =  {ℎ𝑒𝑎𝑙𝑡ℎ𝑦,  𝑟𝑖𝑛𝑔,  𝑡𝑟𝑜𝑝ℎ𝑜𝑧𝑜𝑖𝑡𝑒,  𝑠𝑐ℎ𝑖𝑧𝑜𝑛𝑡}

The total parasite count and red blood cell count can thus be defined as𝑛
ℙ

𝑛
ℝ



(PEM-3)  𝑛
ℙ

=
𝑗 ∈ ℙ 

∑ [𝑛]
𝑗

(PEM-4) 𝑛
ℝ

=
𝑗 ∈ ℝ 

∑ [𝑛]
𝑗

and parasitemia can be computed as𝑃

(PEM-5) 𝑃 =  𝑛
ℙ

 / 𝑛
ℝ

The relative parasitemia uncertainty can be derived from the absolute parasite count uncertaintyδ
ℙ

σ
𝑛

ℙ

by dividing by the total RBC count and total parasitemia 𝑃
(PEM-6) δ

ℙ
= σ

𝑛
ℙ

 / (𝑛
ℝ

 × 𝑃)

Substituting equation (PEM-5) into equation (PEM-6) yields the simplified form

(PEM-7) δ
ℙ

= σ
𝑛

ℙ

 /  𝑛
ℙ

where can be computed from the individual class uncertainties in equation (CCU-4) asσ
𝑛

ℙ

[σ
𝑛
]

𝑗

(PEM-8) σ
𝑛

ℙ

 =  
𝑗 ∈ ℙ 

∑ [σ
𝑛
]

𝑗
2 

Note that for negative samples, so equation (PEM-7) is undefined. In this case, we use the rule 𝑛
ℙ

 =  0
of three to compute :δ

ℙ

(PEM-9) δ
ℙ

=   𝑛
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

 / 3
Given , we use the known area of a normal distribution, to compute the 95% confidence bound asδ

ℙ
(PEM-10) 𝑏𝑜𝑢𝑛𝑑𝑠 =  [ 𝑚𝑎𝑥(0,  𝑃 −  1. 96 * δ

ℙ
) ,   𝑚𝑖𝑛(𝑃 +  1. 96 * δ

ℙ
,  1) ]

Early termination condition.We optionally terminate the experiment once the parasite count
uncertainty falls below 5%. Since the parasitemia uncertainty is computed according to equationδ

ℙ

(PEM-8), we terminate the experiment once the following condition is met:
(ETC-1) δ

ℙ
 <  5%

Computing compensation parameters. Parasitemia can be compensated for the known recall and
false positive rate by . Compensation factors were computed by weighted𝑌

𝑐
=  ( 𝑌

𝑟𝑎𝑤
 −  𝐹𝑃𝑅) / 𝑟𝑒𝑐𝑎𝑙𝑙 

linear regression using the inverse of the PCR value as weights. PCR-0 values were clipped to 1 to
prevent exploding weights. We find that fit values are assay-dependent: recall was higher and FPR was
lower for undiluted blood than for diluted blood. This is hypothesized to be due to an increase in RBC
morphological defects, caused by diluent reconstitution issues.


