Supplemental Materials for

Third vaccine doses could have indirectly averted >100,000 deaths in the USA by reducing transmission of the SARS-CoV-2 Delta variant

Billy J. Gardner*, A. Marm Kilpatrick*

Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, 95064 USA

*To whom correspondence should be addressed: <u>wjgytc14@gmail.com</u>; <u>akilpatr@ucsc.edu</u>

Supplemental Results Text

We estimated the effect of boosting doubly-vaccinated individuals with a third dose of mRNA vaccines on Rt for five scenarios, including the one presented in the main text, that had varying vaccination and infection rates and contact rates (Figure S2; see Methods for additional details). In countries or populations that had prevented most transmission (e.g. New Zealand) resulting in a very low cumulative fraction previously infected (~1%), and where vaccination was only partly underway (24.3% of the population) and where there was no social distancing (ND), resulting contact rates being at pre-pandemic levels, $(R_0 = 7)$, boosting with a third dose would have reduced Rt by only 5.3% from 5.68 to 5.38 and would have been insufficient to reduce Rt below 1 to prevent a surge (Figure S2: Scenario NZ/ND, blue line). Similarly if contact rates in the US had returned to pre-pandemic levels in September, 2021, without social distancing ($R_0 = 7$), and with the observed vaccine coverage (53.2%) and infection history (67.4%), then boosting all doubly vaccinated individuals would have reduced Rt by the same amount as the scenario in the main text, 18.4%, since the change in VE would be identical, but Rt would decrease from 2.57 to 2.10 (Figure S2: Scenario US/ND, purple line) rather than 1.17 to 0.96. This clearly would not have been sufficient to stop a huge surge in transmission (Figure S2: Scenario US/ND, purple line).

If the US population had originally achieved 100% vaccination coverage, but assuming the timing of vaccinations remained the same, and 67.4% had been previously infected, waning of vaccine and infection-derived immunity by late September 2021 would have led to a sizeable surge without boosting assuming pre-pandemic contact rates ($R_0 = 7$) (Figure S2: Scenario US/ND-100, left end of green line: R_t =1.14). However, boosting only 17.9% of this fully (100%) vaccinated population would have reduced R_t below 1 and thus could prevent a surge in cases (Figure S2 Scenario US/ND-100, green line crosses the $R_t = 1$ line at 17.9%). Boosting the entire population with a third dose would have reduced R_t by 69.8% from 1.14 to 0.34 which would have essentially stopped transmission (Figure S2: Scenario US/ND-100, right end of green line: R_t =0.34).

Supplemental Tables and Figures

Endpoint	Coefficient	Estimate	SE	Z value	p-value	
Susceptibility	C 0	-1.066698	0.029608	-36.027	< 2.2e-16	
	C1	-0.410926	0.021249	-19.339	< 2.2e-16	
Infectiousness	C 0	0.174254	0.057717	3.0191	0.002535	
	C1	-0.506766	0.047208	-10.7348	< 2.2e-16	

Table S1. Statistics for the model fitting relationship between neutralizing antibody titers and VE given by the equation $VE = 1 - \frac{1}{1 + e^{-(c_0 + c_1 \log_2(NATR_{tot}))}}$.

Table S2. Analysis of relative waning rates of neutralizing antibodies relative to peak (Figure 2B) for two vaccines (BNT162b2 and mRNA-1273) and infection-derived immunity. The best fitting model by AIC included variation in slopes between vaccines and differences in asymptote between the two vaccines and infection-derived immunity: $log_2(Antibody titer) = (c_0+c_1*Infection)*e^{(c2*Day+c3*Day*mRNA-1273)}-c_0+c_1*Infection, where BNT162b2 was the reference level. c_0 is the asymptote for long periods after vaccination for both vaccines. c_1 is the difference in asymptotes between infections and vaccines. We did not fit a separate asymptote for mRNA-1273 due to limited data > 6 months for waning in this vaccine. Hybrid waning rates have been shown to be similar to waning rates following two-dose vaccination ¹.$

Coefficient	Estimate	SE	t-value	P-value
c_0 (asymptote: time = ∞ , BNT162b2/mRNA-1273)	3.27	0.34	9.51	< 0.0001
c_1 (asymptote: time = ∞ , infection - c_0)	1.55	0.33	4.76	0.0003
c2 (slope: BNT162b2/infection)	-0.012	0.0027	-4.31	0.0006
c ₃ (slope: mRNA-1273 – c ₂)	0.043	0.0019	2.30	0.0364

Table S3.

Vaccine, Endpoint	VE waned (95% CI)	VE boosted	Ratio
BNT162b2, VE _s	46.8% (35.4% - 56.9%)	85.9% (80.4% - 90.1%)	1.8

BNT162b2, VE _I	16.3% (10.0% - 24.1%)	67.6% (56.6% - 77.1%)	4.1
mRNA-1273, VEs	54.3% (42.6% - 71.9%)	84.5% (74.9% - 90.9%)	1.6
mRNA-1273, VE _I	22.0% (13.7% - 41.7%)	of 64.7% (46.7% - 79.3%)	2.9

Table S4. Effective reproductive number, fraction vaccinated, fraction infected, and a fraction of the population in four subpopulations in Figure 3 and Figure S2 for each time-location scenario.

Scenario	Month	R ₀	Frac	Frac	Frac	Frac. vacc.	Frac. not	Frac.
			vacc.	inf.	vacc. and	and not	vacc. and	fully
					inf.	inf.	inf.	susc.
					(f _{PV} * f _V)	((1- f _{PV}) *	(f _{PU} * f _U)	((1-f _{PU})
						f_V)		* f _U)
US/D	Sept. 1	3.2	0.53	0.67	0.32	0.21	0.35	0.12
	Oct. 1	3.2	0.56	0.73	0.36	0.20	0.37	0.07
	Nov. 1	3.2	0.58	0.76	0.38	0.19	0.38	0.04
	Dec. 1	3.2	0.59	0.81	0.41	0.18	0.40	0.01
CA/D	Sept. 1	3.2	0.59	0.60	0.33	0.26	0.27	0.15
	Oct. 1	3.2	0.62	0.62	0.35	0.26	0.27	0.12
	Nov. 1	3.2	0.63	0.64	0.38	0.26	0.27	0.10
	Dec. 1	3.2	0.65	0.66	0.40	0.26	0.26	0.09
NZ/ND	Sept. 1	7	0.24	0.002	0.00	0.24	0.001	0.76
	Oct. 1	7	0.38	0.002	0.00	0.38	0.001	0.62
	Nov. 1	7	0.62	0.002	0.001	0.62	0.00	0.38
	Dec. 1	7	0.71	0.003	0.002	0.71	0.001	0.29
US/ND	Sept. 1	7	0.53	0.67	.32	0.21	0.35	0.12
	Oct. 1	7	0.56	0.73	0.36	0.20	0.37	0.07
	Nov. 1	7	0.58	0.76	0.38	0.19	0.38	0.04
	Dec. 1	7	0.59	0.81	0.41	0.18	0.40	0.01
US/ND- 100	Sept. 1	7	1.00	0.67	0.67	0.33	0	0

Oct. 1	7	1.00	0.73^{26}	0.73	0.27	0	0
Nov. 1	7	1.00	0.76	0.76	0.24	0	0
Dec. 1	7	1.00	0.81	0.81	0.19	0	0

Table S5. Estimated infections and deaths averted (95% CI) given third-dose boosting that takes full effect on September 1, October 1, November 1, or December 1.

Month	Infections averted (95% CI)	Deaths averted (95% CI)
September 2021	37,147,423 (34,530,588 - 38,860,029)	111,442 (103,592 – 116,580)
October 2021	24,503,688 (23,045,328 - 25,328,986)	73,511 (69,136 – 75,987)
November 2021	12,124,437 (11,014,685 - 12,788,302)	36,373 (33,044 - 38,365)
December 2021	1,984,987 (1,671,856 – 2,209,045)	5,955 (5,016 - 6,627)

Table S6. Delay distributions used for deconvoluting deaths to estimate the timing of infections.

Delay	Distribution
Infection to shedding	Gamma (shape = 5.983, scale = 1.455)
Shedding to symptom onset	Weibull (shape = 0.294 , scale = 0.14)
Symptom onset to hospitalization	Gamma (shape = 5.078 , scale = 0.765)
Hospitalization to death	Gamma (shape = 2.1 , scale = 6.524)

Figure S1. Number of people fully vaccinated in the USA².

Figure S2. Lines and 95% CIs show R_t for five scenarios (see legend) which vary in location (CA – California, NZ – New Zealand, US – United States) with location-specific vaccination and infection as of September 1, October 1, November 1, and December 1, 2021, distancing (D) or no distancing (ND) which determine contact rates and R₀ values. See Table S5 for time-location-specific R0, infection rates, and vaccination rates.

Figure S3. Reproductive number, R_t (blue line and ribbon) and daily COVID-19 (all and delta-specific) cases for the USA during the period when the Delta variant was prevalent, July 2021-January 2022. Dotted lines show four separate dates considered for third doses to take full effect.

Figure S4. Lines and 95% CI for the (A) ratio of relative risk (1 – VE) for susceptibility from Figure 1A to relative risk for symptomatic disease using estimates from ³ and (B) ratio of relative risk for transmission from Figure 1C to relative risk for symptomatic disease ³ plotted against neutralizing antibody titer ratios (NATR_{tot}).

Figure S5. Ratio of COVID-19 cases in unvaccinated individuals relative to vaccinated individuals in the USA in 2021 based on data from CDC (CDC, 2021d). Points show weekly values, and the line and ribbon shows a generalized additive model fit and 95% CI.

References

- 1 Jacobsen H, Sitaras I, Katzmarzyk M, *et al.* Systematic review and meta-analysis of the factors affecting waning of post-vaccination neutralizing antibody responses against SARS-CoV-2. *npj Vaccines* 2023; **8**: 159.
- 2 CDC. COVID-19 Vaccinations in the United States. 2021. https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-total.
- 3 Gardner BJ, Kilpatrick AM. Predicting Vaccine Effectiveness for Hospitalization and Symptomatic Disease for Novel SARS-CoV-2 Variants Using Neutralizing Antibody Titers. *Viruses* 2024; **16**: 479.