Supplemental Materials for

Third vaccine doses could have indirectly averted >100,000 deaths in the USA by reducing transmission of the SARS-CoV-2 Delta variant

Billy J. Gardner*, A. Marm Kilpatrick*

Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, California, 95064 USA

**To whom correspondence should be addressed: [wjgytc14@gmail.com;](mailto:wjgytc14@gmail.com) akilpatr@ucsc.edu*

Supplemental Results Text

We estimated the effect of boosting doubly-vaccinated individuals with a third dose of mRNA vaccines on R_t for five scenarios, including the one presented in the main text, that had varying vaccination and infection rates and contact rates (Figure S2; see Methods for additional details). In countries or populations that had prevented most transmission (e.g. New Zealand) resulting in a very low cumulative fraction previously infected (-1%) , and where vaccination was only partly underway (24.3% of the population) and where there was no social distancing (ND), resulting contact rates being at pre-pandemic levels, $(R₀ = 7)$, boosting with a third dose would have reduced R_t by only 5.3% from 5.68 to 5.38 and would have been insufficient to reduce R_t below 1 to prevent a surge (Figure S2: Scenario NZ/ND, blue line). Similarly if contact rates in the US had returned to pre-pandemic levels in September, 2021, without social distancing $(R₀ = 7)$, and with the observed vaccine coverage (53.2%) and infection history (67.4%) , then boosting all doubly vaccinated individuals would have reduced R_t by the same amount as the scenario in the main text,18.4%, since the change in VE would be identical, but R^t would decrease from 2.57 to 2.10 (Figure S2: Scenario US/ND, purple line) rather than 1.17 to 0.96. This clearly would not have been sufficient to stop a huge surge in transmission (Figure S2: Scenario US/ND, purple line).

If the US population had originally achieved 100% vaccination coverage, but assuming the timing of vaccinations remained the same, and 67.4% had been previously infected, waning of vaccine and infection-derived immunity by late September 2021 would have led to a sizeable surge without boosting assuming pre-pandemic contact rates $(R_0 = 7)$ (Figure S2: Scenario US/ND-100, left end of green line: $R_t=1.14$). However, boosting only 17.9% of this fully (100%) vaccinated population would have reduced R_t below 1 and thus could prevent a surge in cases (Figure S2 Scenario US/ND-100, green line crosses the $R_t = 1$ line at 17.9%). Boosting the entire population with a third dose would have reduced R_t by 69.8% from 1.14 to 0.34 which would have essentially stopped transmission (Figure S2: Scenario US/ND-100, right end of green line: $R_t = 0.34$).

Supplemental Tables and Figures

and VE given by the equation $VE = 1 - \frac{1}{4 \cdot 10^{-10}}$

Endpoint	Coefficient Estimate		SE	Z value	p-value
Susceptibility	C ₀	-1.066698	0.029608	-36.027	$< 2.2e-16$
	C ₁	-0.410926	0.021249	-19.339	$< 2.2e-16$
Infectiousness	C ₀	0.174254	0.057717	3.0191	0.002535
	C ₁	-0.506766	0.047208	-10.7348	$< 2.2e-16$

Table S1. Statistics for the model fitting relationship between neutralizing antibody titers

Table S3.

BNT162b2, VE	\mid 16.3% (10.0% - 24.1%) 67.6% (56.6% - 77.1%)		4.1
mRNA-1273, VES	\mid 54.3% (42.6% - 71.9%) 84.5% (74.9% - 90.9%)		1.6
mRNA-1273, VEI		22.0% $(13.7\% - 41.7\%)$ of 64.7% $(46.7\% - 79.3\%)$ 2.9	

Table S4. Effective reproductive number, fraction vaccinated, fraction infected, and a fraction of the population in four subpopulations in Figure 3 and Figure S2 for each timelocation scenario.

Oct. 1	$\overline{ }$	1.00	$\vert 0.73^{26} \vert 0.73$		0.27	
Nov. 1		1.00	\mid 0.76	$\sqrt{0.76}$	0.24	
Dec. 1		1.00	0.81	0.81	0.19	

Table S5. Estimated infections and deaths averted (95% CI) given third-dose boosting that takes full effect on September 1, October 1, November 1, or December 1.

Table S6. Delay distributions used for deconvoluting deaths to estimate the timing of infections.

Figure S1. Number of people fully vaccinated in the USA² **.**

Figure S2. Lines and 95% CIs show R^t for five scenarios (see legend) which vary in location (CA – California, NZ – New Zealand, US – United States) with location-specific vaccination and infection as of September 1, October 1, November 1, and December 1, 2021, distancing (D) or no distancing (ND) which determine contact rates and R⁰ values. See Table S5 for time-location-specific R0, infection rates, and vaccination rates.

Figure S3. Reproductive number, R^t (blue line and ribbon) and daily COVID-19 (all and delta-specific) cases for the USA during the period when the Delta variant was prevalent, July 2021-January 2022. Dotted lines show four separate dates considered for third doses to take full effect.

Figure S4. Lines and 95% CI for the (A) ratio of relative risk (1 – VE) for susceptibility from Figure 1A to relative risk for symptomatic disease using estimates from ³ **and (B) ratio of relative risk for transmission from Figure 1C to relative risk for symptomatic disease** ³ **plotted against neutralizing antibody titer ratios (NATRtot).**

Figure S5. Ratio of COVID-19 cases in unvaccinated individuals relative to vaccinated individuals in the USA in 2021 based on data from CDC (CDC, 2021d). Points show weekly values, and the line and ribbon shows a generalized additive model fit and 95% CI.

References

- 1 Jacobsen H, Sitaras I, Katzmarzyk M, *et al.* Systematic review and meta-analysis of the factors affecting waning of post-vaccination neutralizing antibody responses against SARS-CoV-2. *npj Vaccines* 2023; **8**: 159.
- 2 CDC. COVID-19 Vaccinations in the United States. 2021. https://covid.cdc.gov/covid-datatracker/#vaccinations_vacc-total-admin-rate-total.
- 3 Gardner BJ, Kilpatrick AM. Predicting Vaccine Effectiveness for Hospitalization and Symptomatic Disease for Novel SARS-CoV-2 Variants Using Neutralizing Antibody Titers. *Viruses* 2024; **16**: 479.