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Appendix A. Supplementary Mobility Model

Here, we provide the values for the location types T
(i)
from, T

(i)
to ; the values for the location

transition probabilities pi; and the formulas for the binary-valued functions δ(i)(t, α) for

every mobility rule mi from Section 2.2.1 in the main manuscript. The mobility rules used

for this study are

1. Go to school

2. Return from school

3. Go to work

4. Return from work

5. Go to shop

6. Return from shop
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7. Go to recreation

8. Return from recreation

9. Go to hospital

10. Go to ICU

11. Return home when recovered

12. Get buried

The mobility rules are executed at discrete time points t0, ..., tmax with tk+1 = tk+∆t. Hence,

for every t ∈ [t0, tmax], there are time points tk and tk+1 such that t ∈ [tk, tk+1). The time

is modeled in steps of hours, i.e. ∆t = 1 [hour]. A description of all parameters used in the

mobility rules and their values is given in Table C.3.

1. Go to school

T
(1)
from = Home

T
(1)
to = School

p1 = SchoolRatio(A(α))

δ(1)(t, α) =

1, if t
(α)
ToSchool ∈

[
tk − 24 · ⌊ tk

24
⌋; tk+1 − 24 · ⌊ tk+1

24
⌋
)
∧ ⌊ t

24
⌋(mod 7) < 5

0, else

t
(α)
ToSchool ∼ U (MinSchoolHour,MaxSchoolHour) is the day time in hours agent α

goes to school.

2. Return from school

T
(2)
from = School

T
(2)
to = Home

p2 = 1

δ(2)(t, α) =

1, if t
(α)
FromSchool ∈

[
tk − 24 · ⌊ tk

24
⌋; tk+1 − 24 · ⌊ tk+1

24
⌋
)

0, else

t
(α)
FromSchool ∼ U (MinReturnSchoolHour,MaxReturnSchoolHour) is the day time in

hours agent α returns from school.
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3. Go to work

T
(3)
from = Home

T
(3)
to = Work

p3 = WorkRatio(A(α))

δ(3)(t, α) =

1, if t
(α)
ToWork ∈

[
tk − 24 · ⌊ tk

24
⌋; tk+1 − 24 · ⌊ tk+1

24
⌋
)
∧ ⌊ t

24
⌋(mod 7) < 5

0, else

t
(α)
ToWork ∼ U (MinWorkHour,MaxWorkHour) is the day time in hours agent α goes

to work.

4. Return from work

T
(4)
from = Work

T
(4)
to = Home

p4 = 1

δ(4)(t, α) =

1, if t
(α)
FromWork ∈

[
tk − 24 · ⌊ tk

24
⌋; tk+1 − 24 · ⌊ tk+1

24
⌋
)

0, else

t
(α)
FromWork ∼ U (MinReturnWorkHour,MaxReturnWorkHour) is the day time in

hours agent α returns from work.

5. Go to shop

T
(5)
from = Home

T
(5)
to = Shop

p5 = 1− exp
(
−∆t · ShopRate(A(α))

)
δ(5)(t, α) =

1, if ⌊ t
24
⌋(mod 7) < 6 ∧ t− 24 · ⌊ t

24
⌋ ∈ (7; 22)

0, else

6. Return from shop

T
(6)
from = Shop

T
(6)
to = Home

p6 = 1

δ(6)(t, α) =

1, if τ
(α)
loc ≥ 1

0, else

τ
(α)
loc is the time in hours agent α is at its current location.
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7. Go to recreation

T
(7)
from = Home

T
(7)
to = Recreation

p7 = 1− exp
(
−∆t ·RecreationRate(A(α))

)
δ(7)(t, α) =


1, if

(
⌊ t
24
⌋(mod 7) < 5 ∧ t− 24 · ⌊ t

24
⌋ ∈ [19; 22)

)
∨(

⌊ t
24
⌋(mod 7) ≥ 5 ∧ t− 24 · ⌊ t

24
⌋ ∈ [10; 22)

)
0, else

8. Return from recreation

T
(8)
from = Recreation

T
(8)
to = Home

p8 = 1

δ(8)(t, α) =

1, if τ
(α)
loc ≥ 2 ∧ t− 24 · ⌊ t

24
⌋ ≥ 20

0, else

9. Go to hospital

T
(9)
from = {Home, School,Work, Shop,Recreation}

T
(9)
to = Hospital

p9 = 1

δ(9)(t, α) =

1, if s(α)(t) = Isev

0, else

10. Go to ICU

T
(10)
from = {Home, School,Work, Shop,Recreation,Hospital}

T
(10)
to = ICU

p10 = 1

δ(10)(t, α) =

1, if s(α)(t) = Icri

0, else
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11. Return home when recovered

T
(11)
from = {Hospital, ICU}

T
(i)
to = Home

p11 = 1

δ(11)(t, α) =

1, if s(α)(t) = R

0, else

12. Get buried

T
(12)
from = ICU

T
(12)
to = Cemetery

p12 = 1

δ(12)(t, α) =

1, if s(α)(t) = D

0, else
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Appendix B. Supplementary Figures

Figure B.1: Overview of Infection States and Mobility in the ABM. (a) All potential courses of the

disease. The Exposed state always leads to an infectious, non-symptomatic state while for all subsequent

infection states (except Recovered or Dead) recovery or worsening of symptoms is possible. (b) Possible

location transitions for three agents. The next location transition depends on the agent – i.e. its current

location, its age group and infection state – and on time.
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(a)

(b)

Figure B.2: Viral Load and Infectiousness Curve. The (logarithmic) viral load vα(t) (left) and the

infectiousness curve λα(t) (right) are shown for a generic agent (a) and for six example agents with differing

courses of infection (b). vα(t) is given on the log10 scale.
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network, hydraulic and substance information

calculation of viral load

calculation of
 

calculation of boundary conditions
(manholes, water in- and outflow, friction)

calculation of flow velocities
(based on 1D Saint-Venant equations)

initialization of the 
hydraulic surface runoff

store calculation results

NoYes

Figure B.3: Pipeline of Hydrodynamic Calculations. Based on detailed sewage network information,

the hydraulic initial and boundary conditions, and information of the substance of interest, the hydraulic

runoff is initialized for the simulation start tsim = 0. Iteratively, the time step of the hydraulic calculations

∆t, new boundary conditions, and the corresponding flow velocities of the time step are calculated until tsim
reaches the simulation end time point tmax. Based on the calculated flow rates, the viral load is simulated

over time and per location before all simulation results are stored.
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Figure B.4: Prevalence Simulated by the ABM. The mean prevalence (E + Ins + Isy + Isev + Icri) over

time of 250 simulations is shown by a solid line; 95% percentiles are shown by the shaded area.

(a) (b)

Correlation of means (for supplement)

Figure B.5: Cross-Correlations Between Mean Wastewater Samples and Prevalence. (a) Trajec-

tory of the mean RNA copies per liter in wastewater (averaged across 250 simulations) for sampling location

16 and the corresponding mean total prevalence shifted with lags -36, 0, and 36 hours. (b) Pearson cross-

correlations between the mean RNA copies per liter in wastewater (averaged across 250 simulations) and the

corresponding mean prevalence over time for the 16 different locations. The time lag describes the shift in

prevalence.
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Appendix C. Supplementary Tables

Parameter Description Default value (per age group)

µ
Isy
Ins

Proportion of symptomatic cases per non-

symptomatic case

0.79

µIsev
Isy

Proportion of severe cases per symptomatic

case

0.08

µIcri
Isev

Proportion of critical cases per severe case 0.18

µD
Icri

Proportion of dead cases per critical case 0.1

τE Duration (in days) of exposed, non-infectious

state before transition to non-symptomatic in-

fectious state. Is log-normally distributed.

mean: 3; sd: 1.2

τ
Isy
Ins

Duration (in days) of non-symptomatic infec-

tious state before transition to symptomatic in-

fectious state. Is log-normally distributed.

mean: 2.2; sd: 0.5

τRIns
Duration (in days) of non-symptomatic infec-

tious state before recovery. Is log-normally dis-

tributed.

mean: 9.2; sd: 2

τ IsevIsy
Duration (in days) of symptomatic infectious

state before transition to severe infectious state.

Is log-normally distributed.

mean: 10.5 (1-3), 6 (4-6); sd: 1.1

τRIsy Duration (in days) of symptomatic infectious

state before recovery. Is log-normally dis-

tributed.

mean: 7; sd: 2

τ IcriIsev
Duration (in days) of severe infectious state be-

fore transition to critical infectious state. Is

log-normally distributed.

mean: 5; sd: 2

τRIsev Duration (in days) of severe infectious state be-

fore recovery. Is log-normally distributed.

mean: 5 (1-2), 6 (3), 8 (4), 10 (5),

12 (6); sd: 2 (1-5), 3 (6)

τDIcri Duration (in days) of critical infectious state

before death. Is log-normally distributed.

mean: 6 (1-3), 16.5 (4-5), 11 (6);

sd: 2

τRIcri Duration (in days) of critical infectious state

before recovery. Is log-normally distributed.

mean: 7 (1-3), 17.5 (4-5), 12.5 (6);

sd: 3

τinfected Total duration of infection (in days) for a par-

ticular agent, i.e. τE + τ
Isy
Ins

+ τ IsevIsy
+ τ IcriIsev

+

τRIcri
nA Number of age groups 6

Table C.1: ABM transmission parameters.
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Parameter Description Default Value

vsymax Peak viral load value in log10 units for symptomatic infections 8.1

a The viral load value in log10 units at which the sigmoid func-

tion ζ of an agent’s viral load changes from concave up to

concave down

-7.0

b The slope of the sigmoid function ζ relative to the change in

viral load at the boundary determined by a

1.0

κλ Scaling factor applied to the sigmoid function ζ of an agent’s

viral load to transform it to a transmission rate

0.075

κγ Scaling factor (in RNA copies per day) applied to the sigmoid

function ζ of an agent’s viral load to transform it to an RNA

shedding rate

107.1

Table C.2: Shedding and Infectiousness Curve Parameters.
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Parameter Description Default value (per age group)

T
(i)
from Start location type for mobility rule mi

T
(i)
to End location type for mobility rule mi

SchoolRatio(A) Proportion of persons in age group A that go to school 0 (1, 3-6), 1 (2)

MinSchoolHour Earliest day time (in hours) a person can go to school 6

MaxSchoolHour Latest day time (in hours) a person can go to school 9

t
(α)
ToSchool Day time (in hours) agent α goes to school Uniformly distributed

in MinSchoolHour

and MaxSchoolHour

MinReturnSchoolHour Earliest day time (in hours) a person can return from school 14

MaxReturnSchoolHour Latest day time (in hours) a person can return from school 17

t
(α)
FromSchool Day time (in hours) agent α returns from school Uniformly distributed

in MinReturnSchoolHour

and MaxReturnSchoolHour

WorkRatio(A) Proportion of persons in age group A that go to work 0 (1-2, 5-6), 1 (3-4)

MinWorkHour Earliest day time (in hours) a person can go to work 6

MaxWorkHour Latest day time (in hours) a person can go to work 9

t
(α)
ToWork Day time (in hours) agent α goes to work Uniformly distributed

in MinWorkHour

and MaxWorkHour

MinReturnWorkHour Earliest day time (in hours) a person can return from work 15

MaxReturnWorkHour Latest day time (in hours) a person can return from work 18

t
(α)
FromWork Day time (in hours) agent α returns from work Uniformly distributed

in MinReturnWorkHour

and MaxReturnWorkHour

ShopRate(A) Parameter for exponential distribution to decide whether a per-

son of age A goes to a shop

1

RecreationRate(A) Parameter for exponential distribution to decide whether a per-

son of age A goes to a recreation location

1

ταloc Duration (in hours) agent α is at its current location l(α)

Table C.3: ABM Mobility Parameters.
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Id Rain Scenario Viral Degradation Post-Processing

1a No precipitation None None

1b No precipitation None 24-hour compound sampling

1c No precipitation None Daily grab sampling

2a Moderate gentle rain None None

2b Moderate gentle rain None PMMoV normalization

2c Moderate gentle rain None Flow rate normalization

3a Moderate rain None None

3b Moderate rain None PMMoV normalization

3c Moderate rain None Flow rate normalization

4 No precipitation linear (k1 = −0.1) None

5 No precipitation exponential (k2 = −0.001) None

6a Moderate rain linear (k1 = −0.1) None

6b Moderate rain linear (k1 = −0.1) PMMoV normalization

7a Moderate rain exponential (k2 = −0.001) None

7b Moderate rain exponential (k2 = −0.001) PMMoV normalization

Table C.4: Overview of Seven Hydraulic Scenarios. Simulations using the same 250 ABM output

simulations and ++SYSTEMS settings. Some hydraulic scenarios were post-processed in multiple forms to

analyze different characteristics.

degradation setting rain scenario MAE MAE MAE difference

(normalized) (unnormalized)

no degradation moderate gentle 1.39 9.09 -7.71

moderate 17.06 161.71 -144.65

exponential degradation moderate 140.83 228.27 -87.44

linear degradation moderate 178.91 210.19 -31.28

Table C.5: Effect of PMMoV Normalization. The mean absolute error (MAE) across all simulations and

time points relative to the no-rain, no-decay reference scenario, with versus without PMMoV normalization.

13


	Supplementary Mobility Model
	Supplementary Figures
	Supplementary Tables

