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1 Epidemic-behavior models

1.1 Baseline epidemic model

We adopt a SEIR compartmentalization setup to model COVID-19 disease progression. We assume the

population to be stratified into 10 different age groups k ([0− 9, 10− 19, 20− 24, 25− 29, 30− 39, 40−

49, 50−59, 60−69, 70−79, 80+]), each with population Nk representing the demographic structure of the

population of interest (see Tab. 1 for sources of demographic and epidemiological in different locations).

For each geographical locations we also consider the contact matrix C ∈ RK×K , whose element Ci,j is

the average number of daily effective contacts that an individual in age group i has with individuals in

age group j [1].

The rate at which healthy and susceptible individuals S transition to the exposed E state, namely

the force of infection, is:

λ(k, t) = βs(t)

K∑
k′=1

Ckk′
Ik′(t)

Nk′
, (1)

where the rate of infection is assumed to be proportional to the fraction of infectious individuals in

each age group and β is the infection trasmissibility. The expression also accounts seasonality modu-

lation s(t) to account for variations in humidity, temperature, and other factors that may impact both

transmissibility and contact patterns [2, 3]. This term is equal to:

si(t) =
1

2

[(
1− smin

smax

)
sin

(
2π

365
(t− tmax,i) +

π

2

)
+ 1 +

αmin

αmax

]
(2)

where i refers to the hemisphere, and tmax,i is the time which corresponds to the maximum of si(t). In

the northern hemisphere, we set it to January 15th, and six months later in the southern hemisphere.

We assume no typical seasonality in the tropical region. We set smax = 1 and consider smin as a free

parameter [3, 4].

Exposed individuals in the state E progress to the infectious stage I at a rate ϵ inversely proportional

to the latent period, and infectious individuals progress to the removed stage R at a rate µ inversely

proportional to the infectious period. Removed individuals are those who can no longer infect others.

We simulate the disease progression by using stochastic chain binomial processes with the number of

individuals transitioning on day t from compartment Xk to Yk is sampled from a binomial distribution

Bin(Xk(t), pXk→Yk,t), where pXk→Yk,t is the transition probability at time t. This yields the following

stochastic processes that can be conveniently iterated computationally:
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Sk(t+ δt) = Sk(t)−Bin(Sk(t), λr(k, t)) (3)

Ek(t+ δt) = Ek(t) +Bin(Sk(t), λr(k, t))−Bin(Ek(t), ϵr)

Ik(t+ δt) = Ik(t) +Bin(Ek(t), ϵr)−Bin(Ik(t), µr)

Rk(t+ δt) = Rk(t) +Bin(Ik(t), µr),

where λr(k, t), ϵr, and µr, are the transition probability obtained by transforming rates into risk with

risk = 1 − exp (−rate× δt). We set the unitary time scale δt equal to 1 day and we run simulations

with a smaller integration step of δt = 1/12 (approximately 2 hours) to have that risk ≃ rate.

For the above contagion process, the basic reproduction number is R0 = ρ(C̃)β/µ, where C̃ij =

CijNi/Nj , ρ(·) is the spectral radius [5], and the generation time of the disease is TG = ϵ−1 + µ−1. It

is important to note that, in the settings considered here, the R0 in all behavioral models studied is the

same as in the baseline which does not include behavioral changes.

In order to model the outcome of the disease and more specifically COVID-19 deaths, we consider the

daily transition from Ik to Rk. A fraction of this, regulated by age-stratified estimates of the Infection

Fatality Rate (IFR) from Ref. [6], transitions to the compartment Dk that accounts for individuals

that die. To account for delays between the transition Ik → Rk and actual death due to isolation,

hospitalization, and reporting delays we introduce the parameter ∆. Deaths computed on the number of

recovered of day t are recorded at day t+∆ in our simulations. In practice, we use ∆ to move individuals

from compartment Dk to a new compartment Dk,rep (where the superscript rep stands for reported) that

accounts for deaths on the day of reporting. Finally, we also consider a deaths under-reporting factor α.

This implies that the number of simulated deaths is multiplied by α to account for the fraction of deaths

that are reported. In the following, when we refer to a compartment by name without the age subscript

k, we denote the total count across all age groups. For example Drep =
∑K

k′=1Dk′,rep.

1.2 Data-Driven Behavioral (DDB) model

In the Data-Driven Behavioral (DDB) model we integrate Community Mobility Report published by

Google LLC [7] to define an effective parameter that we use to modulate the force of infection. This

dataset reports percentage changes in mobility/visits to specific locations on a given day and geography.

Our models do not consider multiple locations (i.e., contexts), so we introduce an overall parameter m(t)

defined as the average percent reduction of visits towards all locations (we only exclude mobility towards

parks due to its anomalous behavior). Finally, m(t) is turned into an effective contact reduction param-

eter rmobility(t) = (1− |m(t)|/100)2. The intuition behind this formula is that, under the homogeneous

mixing assumption, the number of potential contacts C is proportional to the square of the number of

4



Location Demographic Data Source Epidemiological Data Source

Bogotá Observatorio de Salud de Bogotá,
Población de Bogotá [8]

Gov.co Datos Abiertos, Casos positivos
de COVID-19 en Colombia [9]

Chicago Census Reporter, ACS 2022 1-year, To-
tal Population [10]

Chicago Data Portal, Daily Chicago
COVID-19 Cases, Deaths, and Hospi-
talizations - Historical [11]

Gauteng Coronavirus COVID-19 (2019-nCoV)
Data Repository for South Africa,
Provincial projection by sex and
age [12]

Coronavirus COVID-19 (2019-nCoV)
Data Repository for South Africa [13]

Jakarta Population by Age Group and Sex in
DKI Jakarta Province, 2020 [14]

Daily Update Data Agregat Covid-19
Jakarta [15]

London Office for National Statistics, Esti-
mates of the population for the UK,
England, Wales, Scotland, and North-
ern Ireland [16]

Coronavirus (COVID-19) Weekly
Update, Greater London Authority
(GLA) [17]

Madrid Instituto Nacional de Estadis-
tica, Población por comunidades,
edad (grupos quinquenales),
Españoles/Extranjeros, Sexo y
Año [18]

Ministerio de Sanidad, COVID-19
Deaths [19]

New York United States Census Bureau, Age and
Sex [20]

NYC Health COVID-19 Data [21]

Rio de Janeiro Instituto Brasileiro de Geografia e Es-
tat́ıstica, Population Projection [22]

Ministério da Saúde, Coronavirus
Brazil [23]

Santiago de Chile Instituto Nacional de Estadisticas,
Proyecciones de población [24]

Departamento de Estad́ısticas e In-
formación de Salud, COVID-19 Open
Data [25]

Table 1: Demographic and epidemiological data sources in the nine geographical areas considered in the
modeling study.

individuals; i.e. C = N(N − 1)/2 ∼ N2. The reduction N ′(t) = (1 −m(t)/100)N of individuals in a

location thus lead to a number of contacts be C ′(t) = N ′(t)(N ′(t)− 1)/2 ∼ N ′(t)2 = (1−m(t)/100)2N2

that define the contact reduction parameter rmobility(t) = C ′(t)/C. The contact reduction parameter is

acting on the the force of infection as a factor accounting for the change of contact rate as:

λDDB(k, t) = rmobility(t)βs(t)

K∑
k′=1

Ckk′
Ik′(t)

Nk′
. (4)

The DDB model thus uses the very same set of equations described above (see Eq. 3) with mobility data

to modulate in time the rate at which susceptible becomes infected, as a consequence of behavior change.

1.3 Effective Force of Infection Behavioral Feedback (EFB) model

In the Effective Force of Infection Behavioral Feedback (EFB) model, we follow an approach similar to

the one presented in Ref. [26]. More precisely, We consider the function

f(t) =
1

1 + ξDrep(t− 1) + ψ
∑t−1

t′=1Drep(t′)
, (5)
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where Drep(t− 1) is the number of new reported deaths at time t− 1,
∑t−1

t′=1Drep(t
′) is the cumulative

number of reported deaths up to t − 1, and ξ, ψ are parameters that set the behavioral reactivity of

individuals. This function modulates as a multiplier the force of infection and serves as a proxy for the

effects of behavior change, yielding

λEFB(k, t) = f(t)βs(t)

K∑
k′=1

Ckk′
Ik′(t)

Nk′
. (6)

More precisely, f(t) accounts for both recent reported deaths, capturing the impact of current epidemi-

ological conditions on behavior (i.e., short-term effect), and cumulative reported deaths, reflecting the

influence of past epidemiological conditions on current behavior (i.e., long-term effect). This results in

an asymmetry in individuals’ behavioral responses, where the same current number of reported deaths

may trigger different behaviors depending on the historical context. Also this model uses the very same

set of equations reported above (see Eq. 3) with the only difference that the force of infection includes

the f(t) term.

1.4 Compartmental Behavioral Feedback (CBF) model

In the Compartmental Behavioral Feedback (CBF) model we introduce an additional state SB
k identifying

susceptible individuals that have decided to adopt a risk aversion behavior. The force of infection acting

on individuals in this state is therefore reduced by a factor r < 1 which encapsulates the effects of the

behavioral changes [27], so that

λCBF (k, t) = rβs(t)

K∑
k′=1

Ckk′
Ik′(t)

Nk′
. (7)

The transition from Sk to SB
k can be modeled through different mechanisms that can provide more

importance to local or global information processes [27]. Local mechanisms are modeled via a mass-

action law assuming that susceptibles adopt protective behaviors proportionally to the fraction of people

affected by the disease. Global mechanisms are instead modelled via a pseudo mass-action law. Hence

even a small number of infections or reported deaths can influence the behavior. This mimic effects

due to information acquired through media or mandated government changes. Here, we adopt a global

mechanism where the transition Sk → SB
k happens at rate ω(t) = βB

(
1− e−γDrep(t−1)

)
, where the

two parameters βB and γ govern the rate and time scale of behavioral changes, and Drep(t − 1) is the

number of new reported deaths at time t − 1. Finally, we can imagine that SB
k individuals can relax

their risk aversion behavior and transition back to Sk, once the epidemic conditions improve. This can

be achieved in practice by introducing a transition SB
k → Sk regulated by the number of non-infected

individuals through the following rate ωB(t) = µB

(∑K
k′=1 Sk′(t) +Rk′(t)

)
/N , where µB set the rate
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for susceptibles to return to the regular behavior. In this general setting, the equations describing the

epidemic model can be solved using the same chain binomial process approach by extending the equations

reported above (see Eq. 3) to include the compartmental transitions related to SB
k , obtaining

Sk(t+ δt) = Sk(t)−Mult1(Sk(t), λr(k, t), ωr(t))−Mult2(Sk(t), λr(k, t), ωr(t)) +Mult2(S
B
k , λ

CBF
r (k, t), ωB

r (t))

SB
k (t+ δt) = Sk(t) +Mult2(Sk(t), λr(k, t), ωr(t))−Mult1(S

B
k , λ

CBF
r (k, t), ωB

r (t))−Mult2(S
B
k , λ

CBF
r (k, t), ωB

r (t))

Ek(t+ δt) = Ek(t) +Mult1(Sk(t), λr(k, t), ωr(t)) +Mult1(S
B
k , λ

CBF
r (k, t), ωB

r (t))−Bin(Ek(t), ϵr)

Ik(t+ δt) = Ik(t) +Bin(Ek(t), ϵr)−Bin(Ik(t), µr)

Rk(t+ δt) = Rk(t) +Bin(Ik(t), µr),

(8)

where λr(k, t), λ
CBF
r (k, t), ωr(t), ω

B
r (t), ϵr, and µr, are the transition probability obtained by transform-

ing rates into risk with a small δt integration step. Furthermore, Mult1(m, p1, p2) and Mult2(m, p1, p2)

indicate a draw from the random variable 1 occurring with probability p1 and the random variable 2

occurring with probability p2, respectively, when there are m trials. It is worth remarking that the

multinomial distribution has to be normalized by considering the events with probability 1− p1 − p2.

1.5 Calibration parameters and priors

The above models share a common set of parameters. In addition, the CBF and EFB models have

additional parameters that characterize their dynamic. In the calibration procedure, for each of these

parameters, we explore a flat prior informed by the natural history of the COVID-19 disease. In the

Table 2 we report the full set of parameters that are used in the calibration of the models together with

the assumed priors. We note how we consider two separate prior distributions for deaths detection rate.

Based on data from Ref. [28] we categorize regions into high (Bogotá, Chicago, London, Madrid, New

York, Rio de Janeiro, Santiago de Chile) and low (Jakarta and Gauteng) reporting ones. We provide a

detailed description of the calibration procedure in the following section.

2 Model calibration

The models are calibrated using an Approximate Bayesian Computation Sequential Monte Carlo (ABC-

SMC) method [29, 30]. The ABC-SMC algorithm is an extension of the simpler ABC rejection algorithm.

In the rejection algorithm, the modeler needs to choose prior distribution π(θ) for the set of free pa-

rameters θ of the model, a distance metric d(·), a tolerance δ, and a population size P . Then, the

model is run iteratively sampling at each step a parameters set θi from the prior distribution π(θ).
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Parameter Symbol Prior Distribution

Common parameters

Basic reproductive
number

R0 Unif(1.5, 6.0)

Deaths delay ∆ ˆUnif(7, 35)

Initial infected I0 ˆUnif(10, 10000)
Detection rate (High) αH Unif(50%, 100%)
Detection rate (Low) αL Unif(5%, 70%)
Seasonality parameter smin Unif(0.6, 1.0)

CBF model

Behavior change adop-
tion rate

βB Unif(0, 3)

Behavior change relax-
ation rate

µB Unif(0, 3)

Behavioral sensitivity
to infected

γ LogUnif(−3, 3)

Efficacy of behavior
change

r Unif(0.1, 0.7)

EFB model
Short-term behavior
coefficient

ξ LogUnif(10−4, 100)

Long-term behavior co-
efficient

ψ LogUnif(10−5, 100)

Table 2: Prior distributions. We report the prior distributions for the free parameters used in the
ABC-SMC calibration. Unif(·) indicates a uniform prior for continuous variables, ˆUnif(·) for discrete
ones, and LogUnif(·) indicates a logarithmic uniform prior. We present both the parameters shared
across all models and those specific to each model. The Data-Driven Behavioral (DDB) model does not
have any additional parameters beyond the common ones.

An output quantity produced by the model yi (i.e., simulated deaths) at each iteration is compared to

the corresponding real quantity yobs using the distance metric d(yi, yobs). According to the rejection

algorithm, if d(yi, yobs) < δ then θi is accepted, otherwise it is rejected. This process continues until

P parameter sets are accepted. The distribution of accepted θi will approximate the true posterior

distribution of the parameters. This approach has the advantage of being straightforward and easily

parallelizable, nonetheless, it also has several limitations. Indeed, we often do not know, a priori, what

is a good tolerance δ. Small tolerance values will lead to more accurate results but the calibration will be

very slow. On the other hand, higher tolerance values will lead to faster convergence but less accurate

results. Furthermore, the prior distribution is never updated to reflect the knowledge acquired from

previous iterations. The ABC-SMC algorithm extends the rejection framework to overcome these issues.

We report in Algorithm 1 the pseudocode for the ABC-SMC algorithm.

The algorithm consists of T generations. The first one is equal to the rejection algorithm with a very

high tolerance value. At the next generation, the tolerance value is decreased and the prior distribution

will be constituted by the parameter sets accepted in the previous generation perturbed through a kernel

function. This process is repeated for the following generations using increasingly lower tolerances and

updating the prior distribution based on parameters accepted in the previous step. The particle sets

accepted in the last generation will be the approximation of the posterior of the parameters. This

approach has clear advantages, since modelers do not need to define the right tolerance a priori, and
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Algorithm 1 ABC-SMC Algorithm

1: Input:
2: P : Number of particles
3: δ: Sequence of tolerance levels δ1 > δ2 > · · · > δT
4: π(θ): Prior distribution
5: f(·|θ): Simulator model
6: d(·, ·): Distance function
7: yobs: Observed data

8: Output: Posterior distribution approximations {θ(t)
i }Pi=1 for each t = 1, . . . , T

9: for t = 1 to T do
10: if t = 1 then
11: for i = 1 to P do
12: repeat

13: Sample θ
(1)
i ∼ π(θ)

14: Simulate yi ∼ f(·|θ(1)
i )

15: until d(yi, yobs) ≤ ϵ1
16: Set weight w

(1)
i = 1

P
17: end for
18: else
19: for i = 1 to P do
20: repeat

21: Sample θ
(t−1)
i ∼ {θ(t−1)

j }Nj=1 with weights w
(t−1)
j

22: Perturb θ
(t)
i ∼ K(θ|θ(t−1)

i )

23: Simulate yi ∼ f(·|θ(t)
i )

24: until d(yi, yobs) ≤ ϵt
25: Compute weight w

(t)
i =

π(θ
(t)
i )∑N

j=1 w
(t−1)
j K(θ

(t)
i |θ(t−1)

j )

26: end for
27: end if

28: Normalize weights: w
(t)
i ←

w
(t)
i∑N

j=1 w
(t)
j

for i = 1, . . . , P

29: end for
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information from past iterations is included in the sampling process to speed up the calibration and lead

to more accurate results.

Here, we calibrate all models using the ABC-SMC with T = 10 generations, a generation population

size P = 1000, the weighted mean absolute percentage error (wMAPE) as distance metric, and weekly

deaths as output quantity. For continuous parameters, we consider a multivariate normal transition

kernel with a covariance matrix estimated on previous generation particles, while we consider a discrete

transition jump with a transition probability of 0.3 for discrete parameters. Instead of predefining

a sequence of tolerances, we begin with δ1 = ∞. The tolerance for subsequent generations is then

dynamically set as the median of the distances of the accepted particles from the previous generation.

In Table 2 we report the prior distributions used for different models. We use the python library pyabc

to implement the ABC-SMC calibration [31].

For forecasting, instead of the ABC-SMC algorithm, we adopt a modified version of the ABC rejection

algorithm where, instead of setting a predefined tolerance, we calibrate models by selecting top 1000

simulations out of a total of 1M simulations obtained through sampling from the prior distributions. In

the case of forecasting, we also consider as distance metric a generalized version of the wMAPE which

gives more importance to more recent data points defined as
∑tn

t=1

(
w(t) |yobs(t)−yi(t)|

|yobs(t)|

)
/
∑tn

t=1 w(t), where

w(t) = 1/((tn + 1)− t).

3 Comparison of models performance in retrospective modeling

task: peak intensity and timing

In Fig. 1, we compare the simulated peak intensity of weekly deaths from the three epidemic-behavior

models with the reported data. Interestingly, we find that the Data-Driven model most accurately

reproduces the peak intensity in 4 regions, the Effective Force of Infection Behavioral Feedback model

in 3, and the Behavioral Compartmental model in the remaining 2. This highlights how the definition

of the best model is a function of the metric under scrutiny.

In Fig. 2, we compare the simulated peak timing of weekly deaths from the three epidemic-behavior

models against the reported data. Overall, all models demonstrate accuracy in predicting peak timing,

with a median deviation of no more than 2 weeks. In Santiago de Chile and New York all models

perform equally well in terms of median timing. In Bogotá, Gauteng, Madrid the Data-Driven and the

Compartmental Behavioral Feedback model are tied, while in Jakarta and London the Data-Driven and

the Effective Force of Infection Behavioral Feedback model are similarly accurate. Finally, in Chicago

and Rio de Janeiro the Effective Force of Infection Behavioral Feedback model most closely replicates

the observed peak timing.
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Figure 1: Median and 90% predictive intervals of weekly death peak intensity, estimated from 1, 000
stochastic trajectories across three epidemic-behavior models. The horizontal dashed lines represent the
observed peak intensity in reported weekly deaths. The model with the median peak intensity closest
to the observed data is marked with a dot outlined in black. As described in the text, DDB stands
for Data-Driven Behavioral model, CBF for Compartmental Behavioral Feedback model, and EFB for
Effective Force of Infection Behavioral Feedback model.

4 R0 posterior distributions

In Fig. 3A we show the posterior distributions for the basic reproductive number R0 estimated via ABC-

SMC calibration for the three models across the nine geographies considered during the retrospective

analysis. Additionally, we report median and 90% predictive intervals of these posterior distributions in

Tab. 3

In Fig. 3B we show the Wasserstein distance among R0 posterior distributions estimated by each

pair of models. We display, the average distance across the nine geographies, for a given pair of models.

Overall, we observe that the posterior distributions derived from the Compartmental and the Effective

Force of Infection Behavioral Feedback models exhibit greater similarity to each other (i.e., lower distance)

compared to those estimated by the Data-Driven Behavioral model utilizing mobility data.

5 Forecasting performance: Mean Absolute Error

Here, we report the forecasting performance results considering the Mean Absolute Error (MAE) of the

median instead of the Weighted Interval Score as the evaluation metric. The findings are consistent with

the analysis presented in the main text. We use the Wilcoxon signed-rank test to statistically compare

the performance of different models. The null hypothesis of this test is that the two groups come from
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Figure 2: Median and 90% predictive intervals of the difference between simulated and reported weekly
death peak timing, based on 1, 000 stochastic trajectories from three epidemic-behavior models. The
horizontal dashed line at 0 indicates perfect alignment with the observed peak timing. Models with
peak timing closest to the reported data are highlighted with a dot outlined in black. As detailed in the
text, DDB refers to the Data-Driven Behavioral model, CBF to the Compartmental Behavioral Feedback
model, and EFB to the Effective Force of Infection Behavioral Feedback model.
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Figure 3: A) Posterior distributions for R0 estimated via Approximate Bayesian Computation calibration
for the three models across the nine geographies considered (1, 000 stochastic posterior samples). B)
Pairwise Wasserstein distance among R0 posterior distributions estimated by different models. For a
given pair of models, the average distance across the nine geographies is displayed.

the same distribution. In Fig. 4 we report the statistical significance of the tests comparing different

pairs of models as follows: ****: pvalue ≤ 10−4, ***: 10−4 < pvalue ≤ 10−3, **: 10−3 < pvalue ≤ 10−2,

*: 10−2 < pvalue ≤ 0.05, and otherwise blank if pvalue > 0.05

From Fig. 4A we observe heterogeneous forecasting performance among the geographies under consid-
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Table 3: Posterior distributions (median and 90% confidence intervals from 1, 000 posterior samples) for
basic reproductive number R0 estimated by the three models across nine geographies considered.

Region DDB Model CBF Model CBF Model

Bogotá 3.36 [3.24, 3.45] 1.56 [1.51, 1.67] 1.56 [1.51, 1.66]
Chicago 2.37 [2.15, 2.63] 1.64 [1.52, 1.89] 1.58 [1.52, 1.70]
Gauteng 2.83 [2.65, 3.01] 1.58 [1.51, 1.71] 1.57 [1.51, 1.69]
Jakarta 1.80 [1.58, 2.08] 1.75 [1.58, 2.05] 1.67 [1.54, 1.84]
London 2.54 [2.29, 2.90] 2.77 [2.43, 3.20] 2.38 [2.09, 2.68]
Madrid 3.13 [2.73, 3.63] 3.27 [2.76, 3.91] 2.62 [2.26, 3.01]
New York 3.00 [2.60, 3.46] 3.01 [2.57, 3.46] 2.52 [2.26, 2.85]
Rio de Janeiro 2.73 [2.62, 2.85] 1.71 [1.53, 2.01] 1.55 [1.50, 1.63]
Santiago de Chile 4.20 [3.96, 4.42] 1.87 [1.69, 2.04] 1.77 [1.59, 1.97]

eration. Notably, in London, Madrid, and New York all models exhibit a median relative MAE smaller

than 1, indicating better performance compared to the baseline. On the other hand, we note lower

performance in other cases such as the Data-Driven Behavioral model in Bogotá and all three models, to

different extents, in Rio de Janeiro, which generally have worse performance with respect to the baseline.

In terms of median MAE, the Data-Driven model outperforms the others in 5 locations, with a statisti-

cally significant difference from the second-best model in only 2 of those locations. The Compartmental

Behavioral model outperforms the others in the remaining 4 locations, with a statistically significant

difference from the Data-Driven model in 3 of them.

Similar to what we found for the WIS, in Fig. 4B we see that, among the three epidemic-behavior

models considered in this study, the Compartmental Behavioral Feedback model generally emerges as

the top performer, followed by the Data-Driven and the Effective Force of Infection Behavioral Feedback

model.

6 Forecasting performance by Horizon

We extend the forecasting performance analysis by dividing the forecasts by horizon, ranging from 1 to 4

weeks ahead. In Fig. 5A, we present the relative WIS by horizon for the three epidemic-behavior models

across the nine locations. In Fig. 5B, we show the overall relative WIS by horizon for the three models,

pooling all locations together.

Generally, we observe that forecasting performance improves with longer horizons (i.e., the relative

WIS decreases for higher horizons). While this may seem counterintuitive at first, it is important to note

that this performance is relative to a baseline model. Although absolute performance may decline over

longer horizons, relative performance can still improve. However, as seen in Fig. 5A, this pattern does

not hold uniformly across all location/model combinations.

Regarding model comparison, Fig. 5B shows that the Compartmental Behavioral Feedback model

consistently outperforms the others across all forecasting horizons, confirming the findings from the
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Figure 4: Forecasting performance (MAE). A) Relative MAE computed over all forecasting rounds for the
three epidemic-behavior models across the nine geographical regions considered. Values below 1 indicate
better performance with respect to baseline forecasting model. Each data point underlying the boxplot
represents the relative MAE over the four-week horizon of the corresponding forecasting round. In the
bottom right of each plot, we report the number of forecasting rounds for each location. B) Boxplot and
swarmplot of relative MAE for different models pooling together results from all rounds and geographies.
The box boundaries represent the interquartile range (IQR) between the first and third quartiles (Q1
and Q3), the line inside the box indicates the median and the upper (lower) whisker extends to the last
datum less (greater) than Q3+1.5IQR (Q1−1.5IQR). DDB stands for Data-Driven Behavioral model,
CBF for Compartmental Behavioral Feedback model, and EFB for Effective Force of Infection Behavioral
Feedback model. In both panels we report the statistical significance of the Wilcoxon test comparing
different forecasting performances as follows: ****: pvalue ≤ 10−4, ***: 10−4 < pvalue ≤ 10−3, **:
10−3 < pvalue ≤ 10−2, *: 10−2 < pvalue ≤ 0.05, and otherwise blank if pvalue > 0.05.

main text.

In Fig. 6, we repeat the analysis using the Absolute Error (AE) as the evaluation metric by horizon,

finding similar overall results.

7 Forecasting performance of ensemble models

We consider two ensemble models that combine the forecasts of each individual epidemic-behavior model.

In several epidemiological forecasting contexts, ensemble forecasts have consistently demonstrated greater

accuracy and reliability over time compared to individual models [32, 33]. In both approaches discussed

here, the prediction intervals of the ensemble are calculated as a weighted average of the intervals from

individual models. That is, the nth quantile of the ensemble is defined as: qens.n =
∑

m wmq
m
n , where qmn

is the nth quantile of individual model m and wm is its weight. In the first approach, referred to as the

simple ensemble, we assign wsimple
m = 1/3 to each of the three epidemic-behavior models m, meaning
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Figure 5: Forecasting performance (WIS) by horizon. Relative WIS computed over all forecasting rounds
for the three epidemic-behavior models across the nine geographical regions considered divided by horizon
(1 to 4 weeks ahead). Values below 1 indicate better performance with respect to the baseline forecasting
model. Each data point underlying the boxplot represents the relative WIS for a given horizon of the
corresponding forecasting round. B) Boxplot of relative WIS for different models pooling together results
from all rounds and geographies divided by horizon (1 to 4 weeks ahead). The box boundaries represent
the interquartile range (IQR) between the first and third quartiles (Q1 and Q3), the line inside the
box indicates the median and the upper (lower) whisker extends to the last datum less (greater) than
Q3+ 1.5IQR (Q1− 1.5IQR). As described in the text, DDB stands for Data-Driven Behavioral model,
CBF for Compartmental Behavioral Feedback model, and EFB for Effective Force of Infection Behavioral
Feedback model.

all models are equally weighted. Consequently, the weighted average simplifies to a basic arithmetic

mean. In the second approach, referred to as the weighted ensemble, models are weighted based on

their past forecasting performance. Specifically, the weight assigned to model m at time t is the inverse

of its average forecasting performance γ, computed over the last three forecasting rounds. This means

that the weight for model m is computed as wweighted
m =

(∑3
k=1 γm

t−k

3

)−1

. Forecasting performance is

assessed using either the WIS or the MAE of the median, depending on the metric used to evaluate

the weighted ensemble. In Fig. 7 and Fig. 8, we present the weights of the epidemic-behavior models

used to construct the weighted ensemble across different forecasting rounds, with the past performance

of individual models evaluated using either the WIS or the MAE.

In Fig. 9A, we present the ratio, for all forecasting rounds, between the average WIS (over the

4-week horizon) of each model epidemic-behavior and the two ensembles and the average WIS of a

baseline model. Across the board, we observe that the weighted ensemble consistently outperforms the

baseline at all locations in terms of the median (i.e., median relative WIS is less than 1). The simple

ensemble generally performs better than the baseline at all locations, except for Rio de Janeiro, where
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Figure 6: Forecasting performance (AE) by horizon. Relative AE computed over all forecasting rounds
for the three epidemic-behavior models across the nine geographical regions considered divided by horizon
(1 to 4 weeks ahead). Values below 1 indicate better performance with respect to the baseline forecasting
model. Each data point underlying the boxplot represents the relative AE for a given horizon of the
corresponding forecasting round. B) Boxplot of relative AE for different models pooling together results
from all rounds and geographies divided by horizon (1 to 4 weeks ahead). The box boundaries represent
the interquartile range (IQR) between the first and third quartiles (Q1 and Q3), the line inside the
box indicates the median and the upper (lower) whisker extends to the last datum less (greater) than
Q3+ 1.5IQR (Q1− 1.5IQR). As described in the text, DDB stands for Data-Driven Behavioral model,
CBF for Compartmental Behavioral Feedback model, and EFB for Effective Force of Infection Behavioral
Feedback model.

its relative WIS median is slightly greater than 1. The weighted ensemble achieves the lowest median

relative WIS in Gauteng, Rio de Janeiro, and Santiago de Chile, while the simple ensemble only in

Bogotá. In Fig. 9B we show the distribution of the relative WIS with respect to the baseline model for

the three epidemic-behavior models and the two ensembles, combining results from all geographies and

all forecasting points to provide an overall view of models’ performance. Interestingly, both ensembles

achieve an overall relative WIS median significantly lower than that of the individual models, specifically

0.45 for the simple ensemble and 0.44 for the weighted ensemble. The performance distributions of the

two ensembles are also statistically different (pval < 0.05) according to the Wilcoxon signed-rank test.

For the weighted ensemble, nearly 80% of forecasts outperform the baseline, compared to around 75%

for the simple ensemble.

In Fig. 10, we repeat the analysis of ensemble performance using the MAE of the median as the perfor-

mance metric. The findings obtained with the WIS are confirmed. The weighted ensemble outperforms

the baseline in median terms at all locations, while the simple ensemble does so at all locations except

Rio de Janeiro. The weighted ensemble achieves the lowest relative MAE median in three locations
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Figure 7: Weights of the epidemic-behavior models used to construct the weighted ensemble across
different forecasting rounds, based on the WIS to evaluate the past performance of individual models.
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Figure 8: Weights of the epidemic-behavior models used to construct the weighted ensemble across
different forecasting rounds, based on the MAE to evaluate the past performance of individual models.
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(Bogotá, Rio de Janeiro, and Santiago de Chile), while the simple ensemble does so in two (Gauteng

and London). When examining overall model performance across all locations in Fig. 10B, both the

weighted and simple ensembles achieve a median relative MAE of 0.57. In this case, their performance

distributions are not statistically different, according to the Wilcoxon signed-rank test (pval > 0.05).

Finally, in Tab. 4, we present the differences in forecasting performance between the ensemble and

individual forecasting models. Specifically, we report the percentage difference between the median

ensemble model performance and that of each individual model, both in terms of WIS and MAE. Negative

percentages indicate that the ensemble improves performance (i.e., achieves a lower median WIS or

MAE), while positive values indicate poorer performance relative to the individual model (i.e., achieves

a higher median WIS or MAE). The table also includes the statistical significance of the differences

in forecasting performance, as measured by the Wilcoxon signed-rank test. For the WIS, both the

simple and weighted ensembles lead to improved forecasting performance in 78% of cases (location/model

combinations). When considering the MAE, the simple ensemble improves forecasting performance in

81% of cases, while the weighted ensemble does so in 74%. When examining the overall difference between

the ensemble and individual models, we find that both the simple and weighted ensembles significantly

outperform each individual model across both metrics. However, the improvements achieved by the

weighted ensemble are very similar to those of the simple ensemble.

8 Posterior distributions in time

We report the posterior distributions of key behavioral parameters obtained in different forecasting

rounds. More detail, Fig. 11, 12, 13, 14 show posterior distribution of behavioral parameters (r, βB , µB ,

γ) for the Compartmental Behavioral Feedback model, and 15, 16 for the Effective Force of Infection

Behavioral Feedback model (ξ, ψ). The Data-Driven Behavioral model does not have any additional

free parameters beyond the ones common to all models. In each figure, we also report the posterior

distribution (median and 95% predictive intervals) obtained in the retrospective modeling exercise as a

horizontal grey line and shaded area. We observe that posterior distributions resulting from forecasting

are similar to those resulting from retrospective modeling, especially for the last forecasting rounds,

where models were trained on more data.

To further analyze the evolution and stability of the estimated posterior distributions over time, we

track the cosine similarity of the median posterior distribution. For two forecasting rounds, t1 and t2,

this similarity is defined as:

SC(t1, t2) =
θ̂(t1) · θ̂(t2)
||θ̂(t1)|| ||θ̂(t2)||

(9)

where θ̂(t) is a vector representing the median posterior distribution of each free parameter estimated

18



10 1

100

101

W
IS
m
od
el

/ W
IS
ba
se
lin
e

n=20

Bogotá

n=20

Chicago

n=27

Gauteng

10 1

100

101

W
IS
m
od
el

/ W
IS
ba
se
lin
e

n=7

Jakarta

n=11

London

n=13

Madrid

DDB
Model

CBF
Model

EFB
Model

Simple
Ens.

Weighted
Ens. (WIS)

10 1

100

101

W
IS
m
od
el

/ W
IS
ba
se
lin
e

n=15

New York

DDB
Model

CBF
Model

EFB
Model

Simple
Ens.

Weighted
Ens. (WIS)

n=28

Rio de Janeiro

DDB
Model

CBF
Model

EFB
Model

Simple
Ens.

Weighted
Ens. (WIS)

n=33

Santiago de Chile

A

10 1 100 101

WISmodel / WISbaseline

DDB
Model

CBF
Model

EFB
Model

Simple
Ens.

Weighted
Ens. (WIS)

n=174

B

Figure 9: Forecasting performance (WIS) of ensemble and individual epidemic-behavior models. Relative
WIS computed over all forecasting rounds for the three epidemic-behavior models and the two ensemble
models across the nine geographical regions considered. Values below 1 indicate better performance with
respect to baseline forecasting model. Each data point underlying the boxplot represents the relative
WIS over the four-week horizon of the corresponding forecasting round. In the bottom right of each
plot, we report the number of forecasting rounds for each location. B) Boxplot and swarmplot of relative
WIS for different epidemic-behavior and ensemble models pooling together results from all rounds and
geographies. The box boundaries represent the interquartile range (IQR) between the first and third
quartiles (Q1 and Q3), the line inside the box indicates the median and the upper (lower) whisker
extends to the last datum less (greater) than Q3+1.5IQR (Q1−1.5IQR). DDB stands for Data-Driven
Behavioral model, CBF for Compartmental Behavioral Feedback model, and EFB for Effective Force of
Infection Behavioral Feedback model.

during forecasting round t. To prevent the scale of some parameters from dominating the similarity, each

parameter is normalized to its maximum value.

In Fig. 17, we show the evolution of SC(t, t − 1), which represents the cosine similarity between

the median posterior distributions estimated in round t and the previous round. Across all locations,

the posterior distributions in successive steps are highly similar, with the lowest values exceeding 0.9,

observed mainly at the beginning of the iterative forecasting process when less data is available for

calibration.

In Fig. 18, we show the evolution of SC(t, t0), representing the cosine similarity between the posterior

distributions estimated in round t and the initial round. Here, we observe a decrease in similarity early

on, although the values never fall below 0.7. This indicates that the posterior distributions remain stable

even with respect to the initial estimates, despite the limited data available initially.
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Figure 10: Forecasting performance (MAE) of ensemble and individual epidemic-behavior models. Rel-
ative MAE computed over all forecasting rounds for the three epidemic-behavior models and the two
ensemble models across the nine geographical regions considered. Values below 1 indicate better perfor-
mance with respect to baseline forecasting model. Each data point underlying the boxplot represents the
relative MAE over the four-week horizon of the corresponding forecasting round. In the bottom right
of each plot, we report the number of forecasting rounds for each location. B) Boxplot and swarmplot
of relative MAE for different epidemic-behavior and ensemble models pooling together results from all
rounds and geographies. The box boundaries represent the interquartile range (IQR) between the first
and third quartiles (Q1 and Q3), the line inside the box indicates the median and the upper (lower)
whisker extends to the last datum less (greater) than Q3 + 1.5IQR (Q1 − 1.5IQR). DDB stands for
Data-Driven Behavioral model, CBF for Compartmental Behavioral Feedback model, and EFB for Ef-
fective Force of Infection Behavioral Feedback model.

9 N-week ahead forecasts

Here, we show one to four week ahead forecasts for the DDB model (Fig. 19, 25, 31, 37), the CBF model

(Fig. 20, 26, 32, 38), the EFB model (Fig. 21, 27, 33, 39), the simple ensemble (Fig. 22, 28, 34, 40), the

ensemble weighted according to past WIS performance (Fig. 23. 29, 35, 41), and the ensemble weighted

according to past MAE performance in the nine locations (Fig. 24. 30, 36, 42).
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Figure 11: Posterior distributions in time. Compartmental Behavioral Feedback model - r. Median and
95% predictive intervals in different forecasting rounds obtained from 1, 000 posterior samples. Posterior
distribution (median and 95% predictive intervals) obtained from retrospective modeling are also reported
in grey.
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Figure 12: Posterior distributions in time. Compartmental Behavioral Feedback model - βB . Median and
95% predictive intervals in different forecasting rounds obtained from 1, 000 posterior samples. Posterior
distribution (median and 95% predictive intervals) obtained from retrospective modeling are also reported
in grey.
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Figure 13: Posterior distributions in time. Compartmental Behavioral Feedback model - µB . Median and
95% predictive intervals in different forecasting rounds obtained from 1, 000 posterior samples. Posterior
distribution (median and 95% predictive intervals) obtained from retrospective modeling are also reported
in grey.
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Figure 14: Posterior distributions in time. Compartmental Behavioral Feedback model - γ. Median and
95% predictive intervals in different forecasting rounds obtained from 1, 000 posterior samples. Posterior
distribution (median and 95% predictive intervals) obtained from retrospective modeling are also reported
in grey.

22



1 3 5 7 9 11 13 15 17 19

102

104

D
c

Bogotá

1 3 5 7 9 11 13 15 17 19

Chicago

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Gauteng

1 3 5 7

102

104

D
c

Jakarta

1 3 5 7 9 11

London

1 3 5 7 9 11 13

Madrid

1 3 5 7 9 11 13 15
Forecast Round

102

104

D
c

New York

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Forecast Round

Rio de Janeiro

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Forecast Round

Santiago de Chile

Effective Force of Infection Behavioral Feedback model (EFB) - Parameter: 

Figure 15: Posterior distributions in time. Effective Force of Infection Behavioral Feedback model - ψ.
Median and 95% predictive intervals in different forecasting rounds obtained from 1, 000 posterior sam-
ples. Posterior distribution (median and 95% predictive intervals) obtained from retrospective modeling
are also reported in grey.
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Effective Force of Infection Behavioral Feedback model (EFB) - Parameter: 

Figure 16: Posterior distributions in time. Effective Force of Infection Behavioral Feedback model - ξ.
Median and 95% predictive intervals in different forecasting rounds obtained from 1, 000 posterior sam-
ples. Posterior distribution (median and 95% predictive intervals) obtained from retrospective modeling
are also reported in grey.
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Figure 17: Cosine similarity between median posterior distributions estimated at forecasting round t
with respect to previous forecasting round t − 1. DDB stands for Data-Driven Behavioral model, CBF
for Compartmental Behavioral Feedback model, and EFB for Effective Force of Infection Behavioral
Feedback model.
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Figure 18: Cosine similarity between median posterior distributions estimated at forecasting round t
with respect to first forecasting round t0. DDB stands for Data-Driven Behavioral model, CBF for Com-
partmental Behavioral Feedback model, and EFB for Effective Force of Infection Behavioral Feedback
model.
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∆% MAE ∆% WIS
DDB CBF EFB DDB CBF EFB

Simple
Ensemble

-73.2%
(**)

-20.4% () -43.9%
(****)

-78.9%
(***)

-21.3% () -55.2%
(****)

Bogotá
Weighted
Ensemble

-77.1%
(**)

-31.9% () -52.0%
(****)

-77.1%
(***)

-14.5% () -51.4%
(****)

Simple
Ensemble

85.2% () 4.2% (**) -32.7%
(**)

26.8% () -24.9%
(**)

-40.2%
(**)

Chicago
Weighted
Ensemble

77.2% () -0.2%
(***)

-35.6%
(**)

31.3% () -22.3%
(**)

-38.0%
(**)

Simple
Ensemble

-49.2% () -1.8% () -32.8%
(****)

-33.2%
(***)

-5.6% () -18.2%
(***)

Gauteng
Weighted
Ensemble

-39.1% () 17.6% () -19.5%
(***)

-37.4%
(***)

-11.5% () -23.3%
(**)

Simple
Ensemble

10.5% () -67.2% () -23.9% () 38.4% () -37.8% (*) -8.3% ()

Jakarta
Weighted
Ensemble

79.1% () -46.8% () 23.2% () 38.4% () -37.8% (*) -8.3% ()

Simple
Ensemble

-12.4% () -40.1% () -64.3% (*) 4.2% () -14.6% () -50.3%
(**)

London
Weighted
Ensemble

32.1% () -9.7% () -46.2% (*) 2.0% () -16.5% (*) -51.4%
(**)

Simple
Ensemble

-11.0% (*) 49.5% (*) -8.6% () -44.6%
(***)

68.2% () -21.0% ()

Madrid
Weighted
Ensemble

-6.8% () 56.4% () -4.3% () -50.8%
(***)

49.3% () -29.8% ()

Simple
Ensemble

47.4%
(***)

-8.6% () -40.9%
(***)

50.2%
(***)

28.8% () -55.8%
(***)

New York
Weighted
Ensemble

25.8%
(**)

-22.1% () -49.6%
(***)

45.9%
(***)

25.1% () -57.1%
(**)

Simple
Ensemble

-29.8% () -43.5%
(****)

-63.9%
(****)

-30.1% () -44.5%
(****)

-74.6%
(****)

Rio de Janeiro
Weighted
Ensemble

-37.5%
(**)

-49.7%
(****)

-67.9%
(****)

-45.6%
(**)

-56.8%
(****)

-80.2%
(****)

Simple
Ensemble

-39.1% () -28.8%
(***)

-38.0%
(****)

-32.1% (*) -42.0%
(****)

-51.5%
(****)

Santiago de Chile
Weighted
Ensemble

-48.0% () -39.2%
(****)

-47.1%
(****)

-36.6% (*) -45.8%
(****)

-54.7%
(****)

Simple
Ensemble

-46.7% (*) -31.4%
(****)

-46.1%
(****)

-32.4%
(***)

-29.1%
(****)

-45.5%
(****)

Overall
Weighted
Ensemble

-46.6%
(**)

-31.1%
(****)

-45.9%
(****)

-33.2%
(****)

-29.9%
(****)

-46.2%
(****)

Table 4: Forecasting performance improvements of ensemble models with respect to in-
dividual epidemic-behavior models. The table shows the percentage improvements in forecasting
performance metrics (MAE and WIS) with respect to each individual model’s performance in each lo-
cation and over all of them. Negative percentages denote an improvement in forecasting performance,
while positive values indicate a decline in performance. We consider a simple ensemble where each model
is weighted equally, and a weighted ensemble where each model is weighted according to its past fore-
casting performance. Table also reports the statistical significance of the difference in performance of
ensembles’ and individual models’ performance measured via Wilcoxon signed rank test. In particular:
****: pvalue ≤ 10−4, ***: 10−4 < pvalue ≤ 10−3, **: 10−3 < pvalue ≤ 10−2, *: 10−2 < pvalue ≤ 0.05,
and otherwise blank if pvalue > 0.05.
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DDB Model: 1-Week Ahead Forecasts

Figure 19: One-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Data-Driven Behavioral model (DDB).
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CBF Model: 1-Week Ahead Forecasts

Figure 20: One-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Compartmental Behavioral Feedback model (CBF).
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EFB Model: 1-Week Ahead Forecasts

Figure 21: One-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Effective Force of Infection Behavioral Feedback model (EFB).
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Simple Ensemble: 1-Week Ahead Forecasts

Figure 22: One-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the simple ensemble.
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Weighted Ensemble (WIS): 1-Week Ahead Forecasts

Figure 23: One-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the ensemble weighted according to past WIS performance.
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Weighted Ensemble (AE): 1-Week Ahead Forecasts

Figure 24: One-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the ensemble weighted according to past MAE performance.
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DDB Model: 2-Week Ahead Forecasts

Figure 25: Two-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Data-Driven Behavioral model (DDB).
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CBF Model: 2-Week Ahead Forecasts

Figure 26: Two-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Compartmental Behavioral Feedback model (CBF).
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EFB Model: 2-Week Ahead Forecasts

Figure 27: Two-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Effective Force of Infection Behavioral Feedback model (EFB).
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Simple Ensemble: 2-Week Ahead Forecasts

Figure 28: Two-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the simple ensemble.
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Weighted Ensemble (WIS): 2-Week Ahead Forecasts

Figure 29: Two-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the ensemble weighted according to past WIS performance.
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Weighted Ensemble (AE): 2-Week Ahead Forecasts

Figure 30: Two-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the ensemble weighted according to past MAE performance.
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DDB Model: 3-Week Ahead Forecasts

Figure 31: Three-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Data-Driven Behavioral model (DDB).
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Figure 32: Three-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Compartmental Behavioral Feedback model (CBF).
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Figure 33: Three-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Effective Force of Infection Behavioral Feedback model (EFB).
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Figure 34: Three-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the simple ensemble.
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Figure 35: Three-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the ensemble weighted according to past WIS performance.
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Figure 36: Three-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the ensemble weighted according to past MAE performance.
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Figure 37: Four-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Data-Driven Behavioral model (DDB).
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Figure 38: Four-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Compartmental Behavioral Feedback model (CBF).
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Figure 39: Four-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the Effective Force of Infection Behavioral Feedback model (EFB).
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Figure 40: Four-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the simple ensemble.
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Figure 41: Four-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the ensemble weighted according to past WIS performance.
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Figure 42: Four-week ahead forecasts (median, 50%, and 90% predictive intervals obtained from 1, 000
stochastic trajectories) of weekly deaths during the COVID-19 initial wave across nine geographies for
the ensemble weighted according to past MAE performance.
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