1 Clinical Trial Report

2 Muyan Zuo et al

3 Esketamine rapid antidepression combined with

4 dexmedetomidine sleep modulation for patients with

5 depression and insomnia

- 6 Muyan Zuo¹, Yaozu Li¹, John P Williams², Yongxiang Li³, Lina Sun³, Ruoguo Wang³,
- 7 Guoqiang Ren⁴, Qinyan Xu^{5*}, Jianxiong An^{123*}
- 8

9 ¹ Medical School, University of Chinese Academy of Sciences, Beijing,	China
--	-------

- ² Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh,
- 11 USA
- 12 ³ Institute for Innovation Diagnosis & Treatment in Anesthesiology, Rapid Antidepression
- 13 Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
- ⁴ Department of Anesthesiology, Shandong Mental Health Center, Jinan, China
- ⁵ Imaging Center, Affiliated Hospital of Shandong Second Medical University, Weifang,
- 16 China
- 17
- 18 *These authors contributed equally to this work
- 19
- 20 Correspondence: Jianxiong An, University of Chinese Academy of Sciences, Chaoyang
- 21 District, Beijing, China, Tel +86-13801281750, Email anjianxiong@yeah.net; Qin-Yan Xu,

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

22 Imaging Center, Affiliated Hospital of Shandong Second Medical University, Weifang,

23 China, Tel +86-13801281750, Email xu15065635583@163.com.

24

25 ABSTRACT:

26 **Purpose:** Depression combined with insomnia is a complex bidirectional relationship that

27 is more difficult to treat versus a single disorder, and there is a lack of effective treatments

available. In this study, we carried out a novel way to simultaneously intervene in

29 depression combined with insomnia and examined functional magnetic resonance imaging

30 (fMRI) to help further elucidate the mechanisms.

31 Patients and methods: A total of 105 patients with depression and insomnia were

32 included in this observational and prospective study. 17-item Hamilton Depression Scale

33 (HAMD-17), Pittsburgh Sleep Quality Index (PSQI) were collected from medical records at

34 baseline (T0), 24 hours (T1), 7 days (T2), 14 days (T3), 21 days (T4), one month (T5), two

35 months (T6), three months (T7) follow-up. fMRI scans were performed at baseline and two

36 hours after treatment.

37 **Results:** Compared with baseline, the symptoms of depression in T1-T7 were significantly

38 reduced. At two hours after treatment, the left amygdala, the left hippocampus, the left

39 superior temporal gyrus, the left anterior cingulate gyrus, and the left paracingulate gyrus

40 showed a consistent reduction in spontaneous neural functional activity. In contrast, the

- 41 right dorsolateral superior frontal gyrus, middle frontal gyrus, infraorbital frontal gyrus,
- 42 middle orbital frontal gyrus and right caudate nucleus showed increased consistency of

- 43 spontaneous neural function. No unanticipated safety issues were detected, and the rate
- 44 of side effects was equivalent to those reported in RCTs.
- **Conclusion:** Our findings support the efficacy and safety of esketamine combined with
- 46 dexmedetomidine (Dex) in patients with depression and insomnia, which provides a new
- 47 approach to clinical improvement of depression combined with insomnia.
- **Keywords:** antidepressant, sleep quality, mental disorder, functional magnetic resonance
- 49 imaging

- -

64 Introduction

65	Depression is the most common mental disorder worldwide, accounting for 17.3% of the
66	global burden of mental illness and is characterized by a variety of symptoms such as
67	depressive mood, anhedonia, somatization, cognitive disturbance, and sleep disorder. ¹
68	Sleep disorder is always the primary complaint and the first symptom of depressed
69	patients, suicidal ideation, treatment response, relapse risk, and the intensity of
70	depression are all correlated with the severity of insomnia. ² Numerous studies have
71	demonstrated that insomnia and depression have a complex bidirectional link rather than a
72	simple cause-and-effect one. ^{3,4} Additionally, sleep disorders linked to depression are
73	persistent and troublesome conditions that significantly impair patients' social functioning
74	and quality of life. ^{5,6}
75	Sleep disorder was traditionally seen as being simply affiliated with depression thus,
76	insomnia was rarely the target of treatment because it was widely assumed that insomnia
77	will resolve with treatment for depression. ⁷ Currently however, sleep disorder is recognized
78	as a distinct diagnostic category that can potentially contribute to episodes of depression,
79	and enhancing sleep quality has been found to have a positive impact on the outcomes of
80	depression. ⁸ The main treatment modalities currently available include medication and
81	cognitive behavioral therapy (CBT). Sedative antidepressants shorten sleep latency and
82	improve sleep officiency however, there are issues such as drug dependence and
	improve sleep enciency, nowever, there are issues such as drug dependence and
83	tolerance, and approximately 30% of people diagnosed with major depression do not

85	medications.9 Although CBT is a significant non-pharmacological treatment for insomnia
86	and has been demonstrated to be useful in reducing depression, there are still limits due
87	to a shortage of specialist psychiatrists and geographic distance from providers. ¹⁰
88	Furthermore, both pharmacological and CBT are slow to work, especially as many
89	depressed patients are at imminent risk of suicide.
90	In clinical practice, depressed patients with insomnia are prone to encounter more
91	serious symptoms and difficulties in therapy. ¹¹ If only depression is treated, the core
92	symptoms may be in remission, but persistent insomnia remains a common residual
93	symptom in depressed patients, and if an intervention for insomnia occurs without
94	concomitant treatment for depression, it is difficult to cure due to relapse and may
95	contribute to unpleasant clinical outcomes.
96	Depression and insomnia share a common biological mechanism. Functional
97	magnetic resonance imaging (fMRI) studies have found that 39 brain regions, including the
98	amygdala, hippocampus, dorsolateral prefrontal cortex, anterior and posterior cingulate
99	cortices, are associated with insomnia and depression. ¹² In addition, inflammatory markers
100	such as IL-6 and TNF were elevated in both insomnia and depression patients, ^{13,14} the
101	combined action of cholinergic and monoaminergic neurons modulates sleep rhythms but
102	are also one of the well-known pathophysiological mechanisms of depression. ⁹ The
103	substantial correlation between insomnia and depression is evident, but the exact
104	interaction between them is still uncertain, which is also the reason for the lack of effective
105	intervention methods in clinic. Due to these shortcomings in traditional treatments,

106	clinicians and researchers are exploring novel ways to improve the treatment of
107	depression combined with insomnia. The US Food and Drug Administration (FDA) and
108	Europe approved esketamine for the treatment of patients with treatment-resistant
109	depression (TRD) in 2019, a series of studies have demonstrated the efficacy and safety
110	of esketamine. ^{15,16} In our previous study, we developed Patient-Controlled Sleep (PCSL)
111	as a therapeutic modality to treat chronic intractable insomnia by using dexmedetomidine
112	(Dex). ¹⁷ Given the above context, we initiated a pilot study to evaluate the effectiveness of
113	the combination of esketamine and Dex in the treatment of depression combined with
114	insomnia.

115

116 Patients and Methods

117 Participants and study design

118 This was a single arm study. The clinical trial has been approved by the Institutional

119 Review Board (IRB) of the Shandong Second Medical University (wyfy-2023-ky-057) and

- 120 registered on Chinese Clinical Trial Registry (ChiCTR2300070756), which was performed
- 121 from April 2023 to December 2023 at our center. The study protocol followed the
- 122 Declaration of Helsinki. All participants gave written informed consent for participation in
- 123 the study and were fully aware of the risks associated with off-label use, informed consent
- 124 for minor participants were obtained from legal guardian. Eligibility criteria for patients
- 125 were as follows: (1) Met the diagnostic criteria for depression and insomnia according to
- 126 the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders. (2) The

127	patient had right-hand dominance. Patients were excluded as follows: (1) Contraindication
128	of Dex and esketamine: heart block, intracranial hypertension, hyperthyroidism and
129	narrow-angle glaucoma. (2) Patients with other types of sleep disorders such as sleep
130	apnea, restless legs syndrome, etc. All participants underwent a physical examination and
131	laboratory screening, including electrocardiography, routine hematology and chemistry
132	tests, sex hormone tests and thyroid functional measurement. In addition, all patients
133	underwent free fMRI scans. The 17-item Hamilton Depression Scale (HAMD-17) ¹⁸ were
134	used to characterize depressive symptoms by clinicians (We have obtained the copyright
135	license for the scale). The Pittsburgh Sleep Quality Index (PSQI) 19 was used to assess
136	severity of insomnia.

137

138 Study procedures

139 Prior to treatment, patients were instructed to fast for six hours, but they were permitted to

140 consume clear liquids for a period of two hours. Sleep monitoring was performed with a

- 141 polysomnography (PSG) device (iRem-A, iphysio, Hangzhou, China) equipped with six
- electroencephalograph (EEG) leads (F3, F4, C3, C4, O1, and O2), two electrooculogram
- 143 (EOG) leads (M1 and M2), submentalis electromyogram (EMG), anterior tibialis EMG
- 144 (right and left legs), respiratory effort (thoracic and abdominal impedance),
- 145 electrocardiogram (ECG) and pulse oximetry. The PSG electrodes were applied to the
- 146 participants an hour before therapy. The PSG recordings complied with American
- 147 Academy of Sleep Medicine (AASM) recommendations.²⁰ A certified registered nurse

148	(CRN) inserted a dedicated intravenous cannula and started an infusion of 500 mL of
149	saline solution. During the procedure, patients were monitored with ECG, non-invasive
150	blood pressure (BP) monitoring, oxygen saturation (SpO ₂) and bispectral index (BIS). A
151	solution was prepared by diluting 200 mcg of Dex (HumanwellHealthcare(Group)Co., Ltd.
152	Hubei, China) with 0.9% normal saline to a volume of 50 mL in a syringe. The resulting
153	drug concentration was maintained at 4 mcg/mL, a Constant Speed Syringe Pump
154	(Hopefusion ™, SP5, Weifang, China) was utilized to administer the solution through the
155	intravenous cannula. Dex titration was performed subsequent to the preceding protocol, ¹⁷
156	the titration technique was established by a seasoned anesthesiologist (An JX), and the
157	attending anesthesiologist (Li YX) performed and documented the operation and
158	evaluation, the anesthesiologist operated the constant speed syringe pump, employing a
159	basal rate of 60 mL/h (4 mcg/min). At the same time, a trained physician judged the sleep
160	stage of the patients based on PSG, and the titration was stopped when the characteristic
161	spindles and K-waves were seen and the patients entered the N2 stage, the dosage of
162	Dex at this time was recorded as D1. Then esketamine 0.25 mg/kg diluted to 50 ml was
163	infused over 40 minutes. A trained rater assessed side effects two hours after start of
164	infusion. All patients underwent fMRI scanning two hours after stopping the infusion. The
165	BP was kept within 30% of the initial level, phenylephrine was used to raise blood
166	pressure and nitroglycerin was used to lower it if the reading deviated from the intended
167	range; Anisodamine was given if the heart rate (HR) fell below 40 bpm; If the previous
168	course of treatment didn't work, atropine and isoproterenol were made accessible. If

169 agitation occurred during the application of esketamine, midazolam was given for

	170	sedation.	but needed to be excl	uded from the study.	. The anesthesiologis	st made the
--	-----	-----------	-----------------------	----------------------	-----------------------	-------------

- 171 decision about additional medical care.
- 172 Following therapy, patients were excluded if they reported discomfort or exhibited side
- 173 symptoms, such as agitation, bradycardia, or hypotension. Participants who were able to
- 174 endure the treatment were identified as potential candidates to proceed with Self-
- 175 controlled sleep. The patient was assisted by a specialized nurse in self-controlled sleep
- 176 30 minutes before bedtime, 1.5 times the dose of D1 was drawn by a syringe and injected
- 177 into a sterile cotton ball, which was placed under the patient's tongue for 10 minutes to
- allow the Dex to be fully absorbed, the cotton ball was removed, and the patient lied down
- to rest and fall asleep naturally. If the patient woke up and was unable to sleep at night,
- added 0.5 times D1 in the same way. In a sound-insulated chamber, specially trained
- 181 nurses assessed HR and SpO₂. After discharge from the hospital, the patient continued to
- 182 apply self-controlled sleep every night in the manner described above and arranged for a
- trained medical professional to follow up and adjust the Dex dosage according to the sleep
- 184 situation.
- 185 Participants were required to maintain their present psychiatric medication regimen
- 186 consistent for four weeks before the first infusion and for three weeks after treatment.
- 187 Patients received another esketamine antidepressant treatment when the patient
- 188 experienced a relapse, relapse was considered the reappearance of symptoms from a
- 189 continuing episode that had been symptomatically repressed.²¹ To evaluate the efficacy of

190	esketamine use, when the patients' HAMD-17 score decreased by 50% overall from the
191	baseline evaluation, they were classified as responders. ²² In addition, remission was
192	defined as a HAMD-17 score of <7.23 The HAMD-17 and PSQI scores were gathered by
193	telephone surveys and online questionnaires. Two physicians who were not participating in
194	the clinical trial conducted follow-up interviews. Rating scales were administered at
195	baseline (T0) and at seven-time intervals after infusion: 24 hours (T1), 7 days (T2), 14
196	days (T3), 21 days (T4), one month (T5), two months (T6), and three months (T7). All
197	personal data was recorded on the Case Record Form (CRF) and was kept totally private
198	for the sole purpose of study. Personal data will be kept by the members of the research
199	team.
200	
~~ (Magnetic Decononce Imaging Acquisition

²⁰¹ Magnetic Resonance Imaging Acquisition

- 202 The imaging was conducted utilizing a 3.0-T Magnetic Resonance Imaging (MRI) scanner
- 203 (Signa HDxt, GE Medical Systems, Waukesha, WI, USA) that had an eight-channel phase
- array head coil. Two earplugs that were the right size were utilized to limit scanner noise,
- 205 and plastic foam pads were employed to lessen head movement. All individuals were
- 206 instructed to stay motionless during the scanning procedure, keeping their eyes closed but
- 207 not thinking or dozing off. If a participant displayed signs of discomfort, their scanning was

208 stopped.

- 209 To begin, all participants underwent T2-weighted imaging (T2WI) to rule out the
- 210 possibility of asymptomatic lesions.

211	The following parameters were used to obtain resting-state fMRI data: total
212	volume=200, repetition time (TR)=2,000 ms, echo time (TE)=30 ms, flip angle=90°, slice
213	thickness=4.0 ms, matrix=64×64, field of view (FOV)=240×240 ms, number of slices=32,
214	the duration of the session was 400 seconds. Collecting three-dimensional high-resolution
215	T1-weighted anatomical images with the following parameters: TR=7.8 ms, TE=3.0 ms, flip
216	angle=15°, slice thickness=1.0 mm, FOV=256×256 mm ² , matrix=256×256, and number of
217	slices=188 were achieved using the defective gradient recalled acquisition, the entire
218	session lasted 250 s.
219	
220	Data Preprocessing
221	REST plus, V1.25 was executed on the MATLAB 2017b platform (MathWorks, Natick, MA,
222	USA), was used for processing fMRI data. ²⁴ The steps were as follow: (1) for magnetic
223	field stabilization, delete the first ten of the 200-time points, (2) a correction to the slice
224	timing in order to account for acquisition delays between slices, (3) head motion
225	correction, (4) normalization, (5) remove the impact of thermal drift on the signal during
226	extended scanning, (6) to remove the head motion confound, the 24 head motion
227	characteristics were regressed out. ²⁵ As a result of excessive head motion, eleven
228	participants were disqualified from additional analysis. (7) band-pass filtration with a 0.01-
229	0.08 Hz frequency band.
230	

231 Regional homogeneity calculations

232	Regional homogeneity (ReHo) was evaluated using the Kendall's coefficient of
233	concordance (KCC), a task executed utilizing the REST plus toolkits version 1.25.24 In
234	order to obtain the ReHo value, every 27 closest neighboring voxels' time course KCC
235	was calculated. ²⁶ For purposes of standardization, each voxel's ReHo value was divided
236	by the individual's global mean ReHo. After the ReHo calculation, fullwidth at half-
237	maximum [FWHM] = 6 mm was used for the spatial smoothing
238	
239	Statistical analysis

240 The G*Power software and the ANOVA: repeated measures, within factors test were

241 utilized for calculating the sample size. In accordance with previous research, the sample

size was determined using the anticipated response to esketamine as 40%, a significance

level of 0.05, and a power of 95%. Additionally, the non-experimental sample was

- accounted for when testing the hypothesis of 20% of the patients discontinuing treatment
- 245 prematurely or not initiating it.

The mean and standard deviation (SD) are used to show continuous variables.

247 Numbers and percentages are used to show category variables. Using a repeated-

248 measures analysis of variance (ANOVA) on the HAMD-17 and PSQI scores, the

249 intervention impact was determined. Pearson's correlation analyses were used to

250 investigate the associations between clinical symptom remission (lower HAMD-17 and

251 PSQI scores) and sociodemographic characteristics.

252 A paired t-test was performed in the field of Data Processing & Analysis for Brain

253	Imaging (REST plus, V1.25) ²⁴ to compare the ReHo differences between the baseline and
254	after treatment. In the statistical study, Gaussian Random Field theory (GRF) correction for
255	multiple comparisons, the results were thresholded with voxel level p <0.005, cluster level
256	<i>p</i> <0.05.
257	
258	Results
259	Baseline characteristics and treatments
260	A total of 98 patients were enrolled, 41 of whom completed the second fMRI (Figure 1).
261	Most participants completed the treatment phase and entered the post-treatment follow-up
262	phase, with 77 completing the 3-month follow-up (Table 1). There were 47 (61.0%)
263	females and 30 (39.0%) males, 30 (39.0%) married, and 47 (61.0%) singles. The mean
264	age was 28.95 (\pm 14.64) years, the mean duration of depression was 5.16 (\pm 6.18) years,
265	and the mean duration of insomnia was 4.98 (\pm 6.82) years. The mean HAMD-17 score
266	was 25.61 (\pm 6.31) and the mean PSQI score was 14.08 (\pm 2.84). 48 patients (62.3%) had a
267	history of suicide ideation, and 18 patients (23.4%) had a history of self-injury.
268	Bipolar disorder (BD) was the most common comorbidity (13.0%), together with
269	schizophrenia (SZ) (10.4%). 70.1% of the individuals had no additional mental conditions.
270	62 patients (81%) had received antidepressant therapy in the past, 14 patients (18.2%)
271	had previously used repetitive transcranial magnetic stimulation (rTMS); and 13 patients
272	(16.9%) had previously used ECT for treating depression. In addition, 31 patients (40.3%)
273	were taking hypnotics. As part of augmentation techniques, 33 patients (42.9%) were

Air fights reserved. No reuse allowed without permission.

taking SSRIs and 6 patients (7.8%) were using SNRIs as antidepressants, 23 patients

275 (29.9%) were taking an antipsychotic in addition to antidepressant (Table 1).

276

277 **Figure 1** The flowchart for the study.

278 Abbreviations: obstructive sleep apnea; fMRI: functional magnetic resonance imaging

280 Table 1 Sociodemographic and clinical data	(n=77)
---	--------

	Mean	Sd
Age	28.95	14.64
Body mass index (calculated as kg/m ²)	23.75	5.34

Education	12.23	3.86
Duration of depression (years)	5.16	6.18
Duration of insomnia (years)	4.98	6.82
Baseline clinical measures		
HAMD-17	25.61	6.31
PSQI	14.08	2.84
	Ν	%
Female	47	61.0%
Status		
Single	47	61.0%
Married	30	39.0%
Previous suicidal ideation	48	62.3%
Previous self-injury	18	23.4%
Psychiatric comorbidities		
BD	10	13.0%
SZ	8	10.4%
OCD	3	3.9%
PTSD	1	1.3%
SAD	1	1.3%
Participants who attempted FDA-approved rTMS	14	18.2%

Participants who attempted FDA-approved ECT	13	16.9%
Add-on therapies		
Hypnotics	31	40.3%
SSRIs	33	42.9%
SNRIs	6	7.8%
Antipsychotic	23	29.9%
Other antidepressants	7	9.1%

281 Abbreviations: HAMD-17: Hamilton Depression Scale; PSQI: Pittsburgh Sleep Quality

282 Index; BD: Bipolar disorder; SZ: Schizophrenia; OCD: Obsessive-compulsive disorder;

283 PTSD: Post-traumatic stress disorder; SAD: Social anxiety disorder; SSRI: Selective

284 serotonin reuptake inhibitors. SNRIs: Serotonin and Noradrenalin Reuptake Inhibitors.

285

1

Effects of depression and insomnia 286

- 287 Repeated measurements showed that HAMD-17 scores decreased significantly at T1-T7
- 288 compared with T0. The average HAMD-17 score was 25.61 (±6.31) at T0, 19.77 (±6.85) at
- 289 T1, and 11.90±6.44 at T7, One-way ANOVA results showed that HAMD-17 scores
- 290 significantly decreased over time (F=29.043, p<0.01) (Figure 2A). In addition, esketamine
- 291 also had a significant effect on reducing suicidal ideation, with 48 patients had suicidal
- 292 ideation in the past three months before treatment and 42 patients no longer had suicidal
- 293 ideation at T8; in addition, 18 patients had non-suicidal self-injury before treatment, and
- 294 only two patients still had this behavior at T7.

295 The average PSQI score was 14.08 (±2.84) at T0, 11.36 (±2.24) at T5 (p<0.01), and

- 9.40±2.56 at T6, and 7.61 (±2.58) at T7. PSQI scores decreased significantly at T5, T6
- 297 and T7 compared with T0 (F=107.852, *p*<0.01) (Figure 2B).
- 298 Overall effectiveness was assessed at T7, according to the definitions of responder and
- remission, 26 (34%) patients exhibited a clinical response to treatment, and 21 (27%)
- 300 patients were in remission, 11(14%) patients did not respond to treatment and 19 (25%)
- 301 patients had a HAMD-17 decrease of \geq 20% but not yet 50% (Figure 3).
- 302 We further analyzed the demographic information and clinical data of responders and
- 303 non-responders and found that there were statistically significant differences in age,

insomnia duration, and marital status between the two groups (Table 2).

305

306

307 Figure 2 Treatment outcomes.

308 Abbreviations: HAMD: Hamilton Depression Scale; PSQI: Pittsburgh Sleep Quality Index.

- Figure 3 Overall effectiveness.

Table 2 Differences in sociodemographic and clinical data between responders and non-

314	responders
-----	------------

	responders	non-responders	Р
	(n=47)	(n=30)	
Age	24.60±13.13	35.77±14.46	0.001
Body mass index (calculated as	23.12±5.72	24.72±4.62	0.20
kg/m²)			
Education	11.91±3.99	12.73±3.67	0.37
Duration of depression (years)	4.13±5.42	6.79±6.99	0.06
Duration of insomnia (years)	3.49±5.34	7.30±8.22	0.02
Baseline clinical measures			
HAMD-17	25.40±6.62	25.93±5.89	0.72
PSQI	13.72±2.40	14.63±3.38	0.21

	N (%)		Ρ
Female	31 (66%)	16 53.3%)	0.27
Status			
Single	35 (74.5%)	12 (25.5%)	0.002
Married	12 (40.0%)	18 (60.0%)	
Previous suicidal ideation	32 (68.1%)	16 (53.3%)	0.19
Previous self-injury	14 (29.8%)	4 (13.3%)	0.10
Participants who attempted FDA-	8 (17.0%)	6 (20.0%)	0.74
approved rTMS			
Participants who attempted FDA-	6 (12.8%)	7 (23.3%)	0.23
approved ECT			

315

Brain activity between baseline and two hours after 316

treatment 317

318 Compared with baseline, decreased ReHo values were observed in the left amygdala, left

- 319 hippocampus, left superior temporal gyrus, left anterior cingulate gyrus, and paracingulate
- 320 gyrus. In contrast, increased ReHo values were observed in the right dorsolateral superior
- 321 frontal gyrus, middle frontal gyrus, inferior orbital frontal gyrus, middle orbital frontal gyrus,
- 322 and right caudate nucleus (Figure 4). Table 3 details the regions with significant
- 323 differences. The preceding outcomes were adjusted utilizing the Gaussian Random Field
- 324 theory (GRF) (voxel p<0.005, cluster p<0.05).

325

326 **Table 3** Brain areas with significantly changed ReHo values

AAL cluster label	Cluster size	MN	I coordinate		Peak T
					value
		x	у	Z	
clusyter1	733	-30	3	-18	-5.7948
Amygdala_L					
Hippocampus_L					
Temporal_Sup_L					
clusyter2	1815	24	36	36	5.6675
Frontal_Sup_R					
Frontal_Mid_R					
Frontal_Inf_Orb_R					
Frontal_Mid_Orb_R					
Caudate_R					
clusyter3	204	-12	39	3	-5.2302
Cingulum_Ant_L					

327 Abbreviations: AAL: Anatomical Automatic Labeling; MNI coordinates (X, Y, and Z)

328 refer to the cluster's center of gravity.

331 Figure 4 ReHo maps demonstrate significant variations in brain activity at baseline and

- 332 after therapy.
- 333

Correlation analyses 334

335 There was no statistically significant correlation between baseline HAMD-17 score and

336 age, and after treatment, percentage improvement in HAMD-17 scores was negatively

```
337
        correlated with age (p<0.001, r=0.4967) (Figure 5).
```

338

341 Abbreviations: HAMD: Hamilton Depression Scale.

343 Safety and tolerability

- 344 As described above, seven patients discontinued treatment due to severe side effects.
- 345 Three patients were diagnosed with OSA during titration, two patients had HR less than 40
- 346 after Dex titration, and one had severe psychomotor agitation. The most commonly
- 347 reported adverse effects were dissociative symptoms (34.7%), dry mouth (30.6%), and
- 348 vertigo (24.5%). Other adverse reactions included nausea, somnolence, increased blood
- 349 pressure and headache (Figure 6).
- 350

- 352 **Figure 6** Reported side effects.
- 353

354 **Discussion**

355 Through this study, we examined the efficacy, safety, and tolerability of esketamine in

356 combination with Dex in the treatment of depression combined with insomnia. In the

- 357 traditional way, approved oral combinations of antipsychotics and monoaminergic
- 358 antidepressants have response rates of roughly 37%–56% after 6-12 weeks for TRD or

359	insufficiently responsive MDD. ²⁷ In this study, based on HAMD-17 score and clinical
360	symptom assessment, the response rate was 61%, as reported in a previous study,
361	esketamine improved depressive symptoms more significantly, ^{28,29} which is consistent with
362	our findings. Importantly, we found that the improvement in depression was inversely
363	associated with age, also, there was a difference in age between responders and non-
364	responders, which is consistent with clinical observation. This age-related phenomenon
365	was also found after esketamine application, and this decrease in efficacy may be related
366	to increased neuromorphological alterations and treatment resistance, which may also
367	increase the difficulty of treatment.
368	Dex is an alpha-2 agonist, frequently used in preoperative treatment, sedative, and
369	antianxiety. Recent studies have found that Dex induces biomimetic sleep in humans,
370	increases non-rapid eye movement (non-REM) time, and does not impair performance on
371	psychomotor alertness tests compared to hypnotics. ^{30,31}
372	On the basis of PCSL, we made a further upgrade to the treatment, namely
373	multimodal sleep (MMS); ³² however, despite apparent success in treating patients with
374	chronic intractable insomnia, there is still a proportion of insomnia patients with depression
375	who relapse after treatment because of untreated depression. Thus, we developed a new
376	set of approaches and procedures to address both issues simultaneously.
377	This treatment has several advantages over traditional treatments, first of all, recent
378	study data demonstrated that Dex can considerably lower bipolar disorder patients' two-
379	hour agitation scores. These findings also suggested that Dex is crucial in lowering the

380	high emotional risk of depression, manic episodes, and mixed mood states. ³³ Compared
381	with prior randomized controlled trials (RCTs), our study included patients with psychiatric
382	comorbidities and recent suicide risk, who might be considered more vulnerable to
383	emotional states. Dex's mood-stabilizing effects can be used as a useful adjuvant to
384	esketamine antidepressants. Secondly, Dex can relieve sleep deprivation (SD) in rats by
385	reducing oxidative stress of hippocampal neurons, restoring damaged cells, reducing
386	hippocampal inflammation and improving cognitive function. ³⁴ Most depression patients
387	suffer from accompanying cognitive disturbances such as memory decline and retardation
388	of thought, so the long-term application of Dex may repair these symptoms. Not only that,
389	we also found that there was a statistically significant difference in the duration of insomnia
390	between responders and non-responders, and for patients with chronic insomnia, we
391	believe that long-term repair with esketamine antidepressant combined with Dex sleep
392	modulation that can improve the cognitive impairment caused by depression and
393	insomnia. Finally, 62 patients (81%) received oral medications in the past in our study, and
394	discontinuation and tapering were difficult steps for all patients who received oral
395	antidepressants or sleeping pills as they were faced with discontinuation syndrome and
396	relapse. Drugs that act on alpha $2_{ m c}$ adrenoceptors may be useful in treating illnesses
397	associated with increased startle responses and sensorimotor gating impairments, such as
398	schizophrenia, drug withdrawal, attention deficit hyperactivity disorder, and posttraumatic
399	stress disorder. ³⁵ As a highly selective alpha2 adrenergic receptor agonist, Dex may
400	prevent withdrawal reactions in patients discontinuing the drug.

401	Due to the inconvenience in the application of patient-controlled device, we have
402	adjusted the previous PCSL program. In this study, Dex was administered using a
403	sublingual approach. The average onset of effect for the sublingual route was 13.89±1.54
404	minutes secondary to the abundant blood supply of the sublingual mucosa that permits
405	direct and rapid absorption of the drug into the body circulation and avoids first-pass
406	elimination. However, absorption appears to be influenced by a number of factors, such
407	as the duration of contact between the drug and the mucosal surface, the local ph., and
408	the salivary flow rate. ³⁶ In the future, better dosage forms and application methods may
409	solve this problem.
410	In fMRI scans performed two hours after treatment, we observed significant changes.
411	Elevated ReHo might be a sign of neuronal hyperactivity in a specific brain region. ²⁶ In
412	fMRI studies of normal emotional processing, multiple brain regions are frequently co-
413	activated when performing emotional tasks, possibly due to interactions between emotion
414	production and regulation. ³⁷ Transcranial direct current stimulation (tDCS) treatment
415	reduced depression and was linked to lower ReHo in the hippocampus and amygdala,
416	which is consistent with our findings. ³⁸
417	The amygdala is a brain region that regulates emotions. People with depression
418	exhibit elevated amygdala activation when exposed to favorable emotions. There is
419	evidence that antidepressant medications or CBT can lower amygdala hyperactivity, which
420	may be related to esketamine's antidepressant effect. ^{39,40} Furthermore, it was discovered
421	that ReHo increased in the hippocampus of individuals with significant depression

422	compared to healthy controls. ⁴¹ Several investigations have demonstrated that
423	hippocampus serves as a key node in the limbic thalamo-cortical network involved in
424	cognitive functions as well as in the regulation of motivation and emotion.42-44 Changes in
425	activity within the anterior cingulate cortex (ACC) have been associated with the
426	antidepressant effects of ketamine. Similarly, changes in the ACC were observed in our
427	study at an earlier time, two hours after injection. Esketamine may improve depression by
428	modulating the overactive limbic system. In the future, nevertheless, more reliable
429	experiments are required to test this theory.
430	A decrease in ReHo could potentially indicate an incoherent intraregional neural
431	activity, while an increase in ReHo could indicate an improvement in emotional regulation.
432	The superior frontal gyrus, dorsolateral (SFGdl) is involved in a variety of cognitive
433	activities, primarily working memory, and the execution of cognitive maneuvers. The
434	inferior frontal gyrus and middle frontal gyrus are essential components of the dorsolateral
435	prefrontal cortex (DLPFC), which plays a role in the regulation of cognitive and emotional
436	processes as well as the perception of pain.45
437	A study showed that compared to non-depressed patients, the brain of depressed
438	patients typically has a reduced level of activity at rest in the region of the DLPFC, ⁴⁶ and
439	ReHo in the DLPFC is elevated after rTMS. ⁴⁷ It has been noted that there was a significant
440	increase in ReHo values in the right caudate nucleus after several courses of ECT in the
441	previous study, ⁴¹ and similar results were obtained in this study. We proposed an increase
442	in ReHo after therapy could enhance emotional control or some cognitive functions to

443 alleviate depressed symptoms.

444	Several limitations of our study deserve comment. First, the study's open design and
445	absence of a placebo or active comparison group are major shortcomings. Second, the
446	duration of the study was relatively short, with induction and maintenance responses
447	assessed for only three months. Depression is a chronic condition, and longer studies are
448	necessary to fully determine whether the clinical benefits of esketamine can be
449	maintained. Third, the study evaluated the efficacy and safety of the method but did not
450	assess efficacy of two dosing regimens that differed in frequency of administration.
451	
452	Conclusion
453	This article is the first to propose that combining esketamine with Dex could be an
453 454	This article is the first to propose that combining esketamine with Dex could be an effective treatment for patients with depression and insomnia. The safety and tolerability of
453 454 455	This article is the first to propose that combining esketamine with Dex could be an effective treatment for patients with depression and insomnia. The safety and tolerability of esketamine combined with Dex for the treatment of depression and insomnia are
453 454 455 456	This article is the first to propose that combining esketamine with Dex could be an effective treatment for patients with depression and insomnia. The safety and tolerability of esketamine combined with Dex for the treatment of depression and insomnia are supported by our observational data. But more research is required to determine long-term
453 454 455 456 457	This article is the first to propose that combining esketamine with Dex could be an effective treatment for patients with depression and insomnia. The safety and tolerability of esketamine combined with Dex for the treatment of depression and insomnia are supported by our observational data. But more research is required to determine long-term efficacy.
453 454 455 456 457 458	This article is the first to propose that combining esketamine with Dex could be an effective treatment for patients with depression and insomnia. The safety and tolerability of esketamine combined with Dex for the treatment of depression and insomnia are supported by our observational data. But more research is required to determine long-term efficacy.
453 454 455 456 457 458 459	This article is the first to propose that combining esketamine with Dex could be an effective treatment for patients with depression and insomnia. The safety and tolerability of esketamine combined with Dex for the treatment of depression and insomnia are supported by our observational data. But more research is required to determine long-term efficacy.

- 461 Diagnosis & Treatment in Anesthesiology, Shandong Second Medical University and Le
- 462 Shi MD. PhD. from Peking University Sixth Hospital for their helpful suggestions.

464 **Disclosure**

465 The authors report no conflicts of interest in this work.

466

467 Funding

- 468 This work was supported by the program of the National Natural Science Foundation of
- 469 China (82072086).
- 470

471 Ethics Approval and Consent to Participate

- 472 Ethical approval was given by the medical ethics committee of Shandong Second Medical
- 473 University (number: wyfy-2023-ky-057). All participants gave written informed consent.
- 474 Registration: Chinese Clinical Trial Registry (ChiCTR2300070756)

475

476 CRediT authorship contribution statement

- 477 Muyan Zuo: collect clinical data, formal analysis and writing original draft. Yaozu Li: collect
- 478 clinical data, formal analysis. John P Williams: modify the manuscript. Yongxiang Li, Lina
- 479 Sun, Ruoguo Wang: carried out the study, collect clinical data. Guoqiang Ren: provided
- 480 substantial comments. Qinyan Xu: fMRI scanning, data analysis. Jianxiong An: funding
- 481 acquisition, design the study, writing review & editing. All authors read and approved the

final manuscript.

483

484 **Data availability statement**

485	The data that support the findings of this study are available from the corresponding
486	author upon reasonable request. Due to ethical restrictions, the data that support the
487	findings of this study are not publicly available. Data may be available from the authors
488	upon reasonable request and with the approval of relevant ethics committee.
489	

490 **References**

491	1.	Collaborators GDallaP. Global, regional, and national incidence, prevalence, and
492		years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016:
493		a systematic analysis for the Global Burden of Disease Study 2016. Lancet.
494		2017;390(10100):1211-1259. doi:10.1016/s0140-6736(17)32154-2
495	2.	Gong L, Xu R, Liu D, et al. Abnormal functional connectivity density in patients with
496		major depressive disorder with comorbid insomnia. J Affect Disord. Apr 1
497		2020;266:417-423. doi:10.1016/j.jad.2020.01.088
498	3.	Buysse DJ, Angst J, Gamma A, Ajdacic V, Eich D, Rössler W. Prevalence, course, and
499		comorbidity of insomnia and depression in young adults. Sleep. Apr 2008;31(4):473-
500		80. doi:10.1093/sleep/31.4.473
501	4.	Staner L. Comorbidity of insomnia and depression. Sleep Med Rev. Feb
502		2010;14(1):35-46. doi:10.1016/j.smrv.2009.09.003
503	5.	Vargas I, Perlis ML. Insomnia and depression: clinical associations and possible
504		mechanistic links. Curr Opin Psychol. Aug 2020;34:95-99.
505		doi:10.1016/j.copsyc.2019.11.004
506	6.	Sweetman A, Lack L, Van Ryswyk E, et al. Co-occurring depression and insomnia in
507		Australian primary care: recent scientific evidence. Med J Aust. Sep 6
508		2021;215(5):230-236. doi:10.5694/mja2.51200
509	7.	Eyre H, Baune BT. Neuroimmunomodulation in unipolar depression: a focus on
510		chronobiology and chronotherapeutics. J Neural Transm (Vienna). Oct
511		2012;119(10):1147-66. doi:10.1007/s00702-012-0819-6
512	8.	McCall WV, Blocker JN, D'Agostino R, Jr., et al. Treatment of insomnia in depressed
513		insomniacs: effects on health-related quality of life, objective and self-reported
514		sleep, and depression. J Clin Sleep Med. Aug 15 2010;6(4):322-9.
515	9.	Fang H, Tu S, Sheng J, Shao A. Depression in sleep disturbance: A review on a
516		bidirectional relationship, mechanisms and treatment. J Cell Mol Med. Apr
517		2019;23(4):2324-2332. doi:10.1111/jcmm.14170
518	10.	Sadler P, McLaren S, Klein B, Harvey J, Jenkins M. Cognitive behavior therapy for
519		older adults with insomnia and depression: a randomized controlled trial in
520		community mental health services. <i>Sleep.</i> Aug 1 2018;41(8)doi:10.1093/sleep/zsy104

521	11.	Hinkelmann K, Moritz S, Botzenhardt J, et al. Changes in cortisol secretion during
522		antidepressive treatment and cognitive improvement in patients with major
523		depression: a longitudinal study. <i>Psychoneuroendocrinology</i> . May 2012;37(5):685-
524		92. doi:10.1016/j.psyneuen.2011.08.012
525	12.	Cheng W, Rolls ET, Ruan H, Feng J. Functional Connectivities in the Brain That
526		Mediate the Association Between Depressive Problems and Sleep Quality. JAMA
527		<i>Psychiatry</i> . Oct 1 2018;75(10):1052-1061. doi:10.1001/jamapsychiatry.2018.1941
528	13.	Razeghi E, Sahraian MA, Heidari R, Bagherzadeh M. Association of inflammatory
529		biomarkers with sleep disorders in hemodialysis patients. Acta Neurol Belg. Mar
530		2012;112(1):45-9. doi:10.1007/s13760-012-0003-7
531	14.	Slavich GM, Irwin MR. From stress to inflammation and major depressive disorder: a
532		social signal transduction theory of depression. <i>Psychol Bull.</i> May 2014;140(3):774-
533		815. doi:10.1037/a0035302
534	15.	Zhang K, Yang Y, Yuan X, et al. Efficacy and safety of repeated esketamine
535		intravenous infusion in the treatment of treatment-resistant depression: A case
536		series. Asian J Psychiatr. Feb 2022;68:102976. doi:10.1016/j.ajp.2021.102976
537	16.	Canuso CM, Singh JB, Fedgchin M, et al. Efficacy and Safety of Intranasal Esketamine
538		for the Rapid Reduction of Symptoms of Depression and Suicidality in Patients at
539		Imminent Risk for Suicide: Results of a Double-Blind, Randomized, Placebo-
540		Controlled Study. Am J Psychiatry. Jul 1 2018;175(7):620-630.
541		doi:10.1176/appi.ajp.2018.17060720
542	17.	An JX, Williams JP, Fang QW, et al. Feasibility of Patient-Controlled Sleep with
543		Dexmedetomidine in Treating Chronic Intractable Insomnia. Nat Sci Sleep.
544		2020;12:1033-1042. doi:10.2147/nss.S262991
545	18.	Hamilton M. A RATING SCALE FOR DEPRESSION. Journal of Neurology,
546		Neurosurgery & amp; Psychiatry. 1960;23(1):56-62. doi:10.1136/jnnp.23.1.56
547	19.	Tsai PS, Wang SY, Wang MY, et al. Psychometric evaluation of the Chinese version of
548		the Pittsburgh Sleep Quality Index (CPSQI) in primary insomnia and control subjects.
549		<i>Qual Life Res.</i> Oct 2005;14(8):1943-52. doi:10.1007/s11136-005-4346-x
550	20.	Kushida CA, Morgenthaler TI, Littner MR, et al. Practice parameters for the treatment
551		of snoring and Obstructive Sleep Apnea with oral appliances: an update for 2005.
552		<i>Sleep</i> . Feb 2006;29(2):240-3. doi:10.1093/sleep/29.2.240
553	21.	de Zwart PL, Jeronimus BF, de Jonge P. Empirical evidence for definitions of episode,
554		remission, recovery, relapse and recurrence in depression: a systematic review.
555		<i>Epidemiol Psychiatr Sci</i> . Oct 2019;28(5):544-562. doi:10.1017/s2045796018000227
556	22.	Fedgchin M, Trivedi M, Daly EJ, et al. Efficacy and Safety of Fixed-Dose Esketamine
557		Nasal Spray Combined With a New Oral Antidepressant in Treatment-Resistant
558		Depression: Results of a Randomized, Double-Blind, Active-Controlled Study
559		(TRANSFORM-1). Int J Neuropsychopharmacol. Oct 1 2019;22(10):616-630.
560		doi:10.1093/ijnp/pyz039
561	23.	Frank E, Prien RF, Jarrett RB, et al. Conceptualization and rationale for consensus
562		definitions of terms in major depressive disorder. Remission, recovery, relapse, and

563		recurrence. Arch Gen Psychiatry. Sep 1991;48(9):851-5.
564		doi:10.1001/archpsyc.1991.01810330075011
565	24.	Jia XZ, Wang J, Sun HY, et al. RESTplus: an improved toolkit for resting-state
566		functional magnetic resonance imaging data processing. Sci Bull (Beijing). Jul 30
567		2019;64(14):953-954. doi:10.1016/j.scib.2019.05.008
568	25.	Zeng LL, Wang D, Fox MD, et al. Neurobiological basis of head motion in brain
569		imaging. Proc Natl Acad Sci U S A. Apr 22 2014;111(16):6058-62.
570		doi:10.1073/pnas.1317424111
571	26.	Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data
572		analysis. <i>Neuroimage</i> . May 2004;22(1):394-400.
573		doi:10.1016/j.neuroimage.2003.12.030
574	27.	Singh JB, Fedgchin M, Daly E, et al. Intravenous Esketamine in Adult Treatment-
575		Resistant Depression: A Double-Blind, Double-Randomization, Placebo-Controlled
576		Study. <i>Biol Psychiatry</i> . Sep 15 2016;80(6):424-431.
577		doi:10.1016/j.biopsych.2015.10.018
578	28.	Martinotti G, Vita A, Fagiolini A, et al. Real-world experience of esketamine use to
579		manage treatment-resistant depression: A multicentric study on safety and
580		effectiveness (REAL-ESK study). J Affect Disord. Dec 15 2022;319:646-654.
581		doi:10.1016/j.jad.2022.09.043
582	29.	Popova V, Daly EJ, Trivedi M, et al. Efficacy and Safety of Flexibly Dosed Esketamine
583		Nasal Spray Combined With a Newly Initiated Oral Antidepressant in Treatment-
584		Resistant Depression: A Randomized Double-Blind Active-Controlled Study. Am J
585		Psychiatry. Jun 1 2019;176(6):428-438. doi:10.1176/appi.ajp.2019.19020172
586	30.	Akeju O HL, Gao L, Burns SM, Pavone KJ, Plummer GS, Walsh EC, Houle TT, Kim SE,
587		Bianchi MT, Ellenbogen JM, Brown EN Dexmedetomidine promotes biomimetic
588		non-rapid eye movement stage 3 sleep in humans: A pilot study. <i>Future Internet</i> .
589		2018;129:69-78. doi:10.1016/j.clinph.2017.10.005
590	31.	Chamadia S HL, Marota S, Ibala R, Hahm E, Gitlin J, Mekonnen J, Ethridge B, Colon
591		KM, Sheppard KS, Manoach DS, DiBiasio A, Nguyen S, Pedemonte JC, Akeju O Oral
592		Dexmedetomidine Promotes Non-rapid Eye Movement Stage 2 Sleep in Humans.
593		Anesthesiology. 2020;133:1234-1243. doi:10.1097/aln.000000000003567
594	32.	Zhang JF, Williams JP, Zhao QN, et al. Multimodal sleep, an innovation for treating
595		chronic insomnia: case report and literature review. J Clin Sleep Med. Aug 1
596		2021;17(8):1737-1742. doi:10.5664/jcsm.9310
597	33.	Preskorn SH, Zeller S, Citrome L, et al. Effect of Sublingual Dexmedetomidine vs
598		Placebo on Acute Agitation Associated With Bipolar Disorder: A Randomized Clinical
599		Trial. <i>Jama</i> . Feb 22 2022;327(8):727-736. doi:10.1001/jama.2022.0799
600	34.	Guo B, Chen C, Yang L, Zhu R. Effects of dexmedetomidine on postoperative
601		cognitive function of slee p deprivation rats based on changes in inflammatory
602		response. <i>Bioengineered</i> . 2021/12// 12(1):7920-7928.
603		doi:10.1080/21655979.2021.1981757
604	35.	Kamibayashi T, Maze M. Clinical uses of alpha2 -adrenergic agonists.

605		Anesthesiology. Nov 2000;93(5):1345-9. doi:10.1097/00000542-200011000-00030
606	36.	Shaat MA, Bakry NS, Elshafie AM, Talaat DM. Intranasal versus sublingual route of
607		dexmedetomidine sedation in paediatric dentistry: A randomized controlled clinical
608		trial. <i>Int J Paediatr Dent</i> . Mar 2022;32(2):232-239. doi:10.1111/ipd.12848
609	37.	Phelps EA. Human emotion and memory: interactions of the amygdala and
610		hippocampal complex. Curr Opin Neurobiol. Apr 2004;14(2):198-202.
611		doi:10.1016/j.conb.2004.03.015
612	38.	Zhang L, Li Q, Du Y, et al. Effect of high-definition transcranial direct current
613		stimulation on improving depression and modulating functional activity in emotion-
614		related cortical-subcortical regions in bipolar depression. J Affect Disord. Feb 15
615		2023;323:570-580. doi:10.1016/j.jad.2022.12.007
616	39.	Paulus MP, Feinstein JS, Castillo G, Simmons AN, Stein MB. Dose-dependent
617		decrease of activation in bilateral amygdala and insula by lorazepam during emotion
618		processing. Arch Gen Psychiatry. Mar 2005;62(3):282-8.
619		doi:10.1001/archpsyc.62.3.282
620	40.	Furmark T, Tillfors M, Marteinsdottir I, et al. Common changes in cerebral blood flow
621		in patients with social phobia treated with citalopram or cognitive-behavioral
622		therapy. Arch Gen Psychiatry. May 2002;59(5):425-33. doi:10.1001/archpsyc.59.5.425
623	41.	Qiu H, Li X, Zhao W, et al. Electroconvulsive Therapy-Induced Brain Structural and
624		Functional Changes in Major Depressive Disorders: A Longitudinal Study. <i>Med Sci</i>
625		<i>Monit.</i> Nov 26 2016;22:4577-4586. doi:10.12659/msm.898081
626	42.	Cao X, Liu Z, Xu C, et al. Disrupted resting-state functional connectivity of the
627		hippocampus in medication-naïve patients with major depressive disorder. J Affect
628		Disord. Dec 10 2012;141(2-3):194-203. doi:10.1016/j.jad.2012.03.002
629	43.	Sampath D, Sathyanesan M, Newton SS. Cognitive dysfunction in major depression
630		and Alzheimer's disease is associated with hippocampal-prefrontal cortex
631		dysconnectivity. Neuropsychiatr Dis Treat. 2017;13:1509-1519.
632		doi:10.2147/ndt.S136122
633	44.	Zhang B, Qi S, Liu S, Liu X, Wei X, Ming D. Altered spontaneous neural activity in the
634		precuneus, middle and super ior frontal gyri, and hippocampus in college students
635		with subclinical depression. BMC Psychiatry. 2021/6/1/ 21(1):280.
636		doi:10.1186/s12888-021-03292-1
637	45.	Seminowicz DA, Moayedi M. The Dorsolateral Prefrontal Cortex in Acute and Chronic
638		Pain. <i>J Pain</i> . Sep 2017;18(9):1027-1035. doi:10.1016/j.jpain.2017.03.008
639	46.	Che K, Mao N, Li Y, et al. Altered Spontaneous Neural Activity in Peripartum
640		Depression: A Restin g-State Functional Magnetic Resonance Imaging Study. Front
641		Psychol. 2020/4/8/ 11:656. doi:10.3389/fpsyg.2020.00656
642	47.	Lu F, Cui Q, Zou Y, et al. Effects of rTMS Intervention on Functional Neuroimaging
643		Activities in Adolescents with Major Depressive Disorder Measured Using Resting-
644		Stat e fMRI. <i>Bioengineering (Basel)</i> . 2023/11/29/ 10(12):1374.
645		doi:10.3390/bioengineering10121374
646		
040		