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Abstract  

Background Down syndrome (DS) is caused by trisomy 21, leading to increased risks of 

Alzheimer’s disease (AD) and Obstructive sleep apnea (OSA). Traditional diagnostic methods for 

AD and OSA, like cerebrospinal fluid analysis and polysomnography, are invasive and challenging 

for people with DS. Facial morphology has emerged as a non-invasive biomarker for these 

conditions. Therefore, we conducted a comprehensive 3D analysis of facial shape variation in DS 

and euploid control (EU) populations, assessing the effect of critical factors such as age, sex, and 

facial size, to investigate its association with AD and OSA.  

Methods Facial shape differences among groups were analyzed from the coordinates of 21 

landmarks automatically registered on 3D facial models generated from head magnetic 

resonance images in a cross-sectional sample of 131 individuals with DS and 216 EU controls 

from 18 to 90 years old, including subjects diagnosed with AD and OSA. We used Procrustes 

ANOVA and MANOVA tests to quantify the amount of facial shape variation attributable to sex, 

age, and facial size, and quantified facial shape differences among diagnostic groups using 

geometric morphometrics.  

Results Besides facial shape differences between DS and EU individuals, our results detected 

significant interactions between diagnosis and sex, and between diagnosis and age, indicating 

sex-dependent differences and an altered pattern of facial shape change over adulthood in DS, 

with females presenting more severe alterations. Multivariate regression analyses showed that 

facial shape significantly correlated with the concentration ratio between amyloid beta peptide 1-

42 and amyloid beta peptide 1-40 (Aβ1-42/Aβ1-40) in cerebrospinal fluid, a common biomarker for 

AD diagnosis. In the DS population, facial shape differences between individuals with and without 

AD diagnosis did not achieve statistical significance after adjusting for age and facial size, but 

significant shape differences were detected in the EU population. Regarding OSA, facial shape 

significantly correlated with the apnea-hypopnea index, and individuals with DS and severe OSA 
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presented a significantly different facial morphology in comparison to individuals with DS and no 

signs of OSA, suggesting that facial morphology could be associated with sleep respiratory 

disturbances.  

Conclusions Overall, our study underscores the potential of facial morphology as a diagnostic 

biomarker for the early detection and clinical management of AD and OSA. 

Keywords: Trisomy 21, Facial development, Ontogenetic trajectories, Sexual dimorphism, 

Dementia, Sleep and respiratory disorders, Facial dysmorphology, Geometric morphometrics. 

 

Background 

Down syndrome (DS) (OMIM 190685) is a complex genetic disorder occurring in one out of 700–

1,000 live births that is caused by trisomy of chromosome 21 [1]. The overexpression of more 

than 200 triplicated genes leads to a dosage imbalance, disrupting signaling pathways that 

regulate the development of multiple systems, including the nervous, cardiac, immune, 

gastrointestinal, and skeletal systems [2]. Advances in research, early intervention, educational 

therapy, and improvements in medical care have facilitated the management of pathologies 

associated with DS that manifest early in life. As a result, the quality of life of patients with DS has 

significantly improved, with life expectancy increasing from 9 to 60 years [1,3,4]. However, this 

increased longevity has led to greater vulnerability to age-related comorbidities [1,5], such as 

Alzheimer’s disease (AD) [6] and Obstructive sleep apnea (OSA) [7]. These disorders further 

impact cognitive impairment and substantially reduce quality of life in people with DS. 

 

Individuals diagnosed with DS present an ultrahigh risk of developing early-onset AD, [6] In DS, 

the triplication of the Amyloid Precursor Protein (APP) gene, located in Hsa21 [8], is considered 

a necessary and sufficient condition to the overproduction of β-amyloid peptides (Aβ) in the brain 

and the development of AD [8]. Furthermore, individuals with DS also present a higher prevalence 
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of severe sleep disruptions (74.5%) and OSA (78%) [7,9]. Typical features associated with DS, 

such as midfacial flatness and mandibular hypoplasia [10,11], muscular hypotonia [10,11], 

adenotonsillar hypertrophy and macroglossia [12], are risk factors for respiratory problems in 

people with DS. Sleep disorders have in turn been associated with cognitive deterioration due to 

deficient rest and lack of oxygen [13], as well as with higher burden and deposition rates of Aβ 

[14,15] and tau proteins [16,17] due to a poor protein clearance, further contributing to an earlier 

onset of AD in people with DS [18]. 

 

Diagnosis of AD and OSA is challenging in the general population, but particularly in individuals 

with DS. Research on biomarkers based on the analysis of protein concentration such as Aβ, tau 

and neurofilament light (NFL) in the cerebrospinal Fluid (CSF) showed a high diagnostic potential 

for AD [19,20]. However, CSF extraction is invasive and poorly tolerated by people with DS. 

Concerning OSA detection, an overnight polysomnography (PSG) study is the established gold 

standard [21]. However, this procedure can be tedious, cause discomfort, and has been 

questioned as a diagnostic tool in the DS population [12]. Similar to CSF extraction, performing a 

PSG in people with DS presents additional challenges, since the presence of craniofacial 

dysmorphologies, obesity and restless behavior during testing can alter the PSG output, 

misdiagnosing the presence and severity of OSA [21]. 

 

In the search of complementary biomarkers that are reliable and non-invasive to diagnose the 

presence of AD and OSA, facial morphology has emerged as a potential biomarker 

[22,23,24,25,26,27]. Recent advancements in imaging, computational, and artificial intelligence 

technologies have developed faster and more reliable tools for diagnosing genetic, rare, 

neurodevelopmental and psychotic disorders [22,23,26,28]. These tools use high-throughput 

methods based on 2D and 3D image analysis to identify phenotypic biomarkers through 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2024. ; https://doi.org/10.1101/2024.11.03.24316427doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.03.24316427
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 
 

comparisons of facial patterns between patients and healthy controls [22,23,24,25,26,27]. 

Assuming facial development is closely integrated with brain and upper airway development 

through common signaling pathways [29,30], previous research underscored that facial traits may 

indirectly reflect neurological and respiratory disorders in the general population.  

 

Specifically for AD, previous studies have demonstrated that automated computational methods 

can non-invasively detect dementia using facial traits, with an accuracy above 80% in 2D frontal 

images [31], and 66% with 3D facial meshes [32]. Regarding OSA, previous research has been 

able to detect this respiratory condition using non-invasive facial biomarkers with 2D images 

based on cephalometric parameters [33,34,35,36], as well as with 3D meshes, revealing 

significant local differences concentrated in the nasal region in patients with OSA [37]. Although 

these studies showed promising results that reinforce the reliability of using facial biomarkers for 

detecting AD and OSA, they overlooked significant factors that influence facial shape variation 

such as sex, age, and facial size. Moreover, these methods have not been assessed in individuals 

diagnosed with genetic conditions who are at an elevated risk of developing AD and OSA, such 

as the DS population.  

To fill these gaps and to further improve the use of facial biomarkers for early detection and 

prognosis of neurodevelopment and respiratory disorders, we conducted the first comprehensive 

quantitative 3D analysis of facial shape variation including euploid controls (EU) and individuals 

diagnosed with DS, AD and OSA. First, we assessed the effect of age, sex, facial size and genetic 

factors on facial shape to understand how these critical factors modulate the facial phenotype. 

Second, we explored facial adult ontogeny in healthy controls and tested whether this process is 

altered in DS individuals depending on the sex. This is crucial in the investigation of the diagnostic 

potential of facial biomarkers because the mechanisms that regulate the process of facial 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 7, 2024. ; https://doi.org/10.1101/2024.11.03.24316427doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.03.24316427
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 
 

development, growth and ageing vary during the ontogenetic trajectory, among individuals, and 

between sexes [38,39,40].  

To address these issues, we applied quantitative geometric morphometric analyses [41,42,43], 

which have been previously used to identify disease and sex-specific facial features associated 

with genetic and neurodevelopmental disorders. In an earlier study, we reported subtle but 

significant facial shape differences between healthy controls and patients diagnosed with 

schizophrenia and bipolar disorder, showing that these facial traits were significantly different 

between disorders and between male and female patients within each disorder [28]. These results 

underscore the sensitivity of facial biomarkers for disease diagnosis. In this study, we accounted 

for the key factors modulating facial shape to assess the potential of facial biomarkers for 

detecting sex-specific facial traits associated to AD and OSA in the general and the DS 

populations. 

 

Methods 

Sample composition 

The sample analyzed in this cross-sectional study comprised 347 individuals with and without 

diagnosis of AD, including 216 euploid individuals (EU) (72 males, 144 females), and 131 

individuals with Down syndrome (DS) (80 males, 51 females) (Table 1). For all individuals, a head 

Magnetic Resonance image (MRI) was available, along with information regarding dementia 

stage and diagnosis of Alzheimer’s disease (AD). Data on Obstructive sleep apnea (OSA) was 

also available for a subsample of individuals (Table 1).  

 

All individuals with DS were recruited from the population-based Down-Alzheimer Barcelona 

Neuroimaging Initiative (DABNI) cohort. Cognitively unimpaired EU participants were recruited 
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from the Sant Pau Initiative on Neurodegeneration (SPIN) cohort, while EU participants with AD 

were selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). All participants were of European origin, with ages ranging from 18 to 62 years 

(individuals with DS) and from 18 to 90 years (EU controls). The study was approved by the Sant 

Pau Ethics Committee following the standards for medical research in humans recommended by 

the Declaration of Helsinki. All participants or their legally authorized representatives gave written 

informed consent before enrollment. To use the ADNI database, we followed an application 

protocol that, after evaluation, provided us access to the clinical and imaging data of ADNI 

participants, who signed consent forms approved by the Resource Allocation Review Committee 

(RARC). 

 

Table 1 Sample composition of EU and DS groups divided by AD dementia stages and OSA level. The 

number of males and females is indicated in brackets as (Males/Females).  

 AD  

 Sample size Age range   Median 

 No Alzheimer Alzheimer Total (Median) Ratio Aβ42/40   

EU 169 (50/119)  47 (22/25) 216 18-90 (57.07) 0.04-0.121 (0.104) 

DS 82 (49/33) 49 (31/18) 131 18-62 (42.51) 0.026-0.116 (0.069) 

Total 251 96 347     

   

 OSA 

 Sample size Age range 
(Median) 

 Median 
AHI  

 No Mild Severe Total 

EU 20 (2/18) 5 (2/3) 2 (0/2) 27 18-90 (53.21) 0-38.1 (3) 

DS 22 (11/11) 30 (15/15)  30 (26/4) 82 18-62 (40.51) 0-120 (20) 

Total 42 35 32 109     

 

AD diagnosis 

In the DS cohort, AD diagnosis was established after neurological and neuropsychological 

examinations with a semi-structured health questionnaire (Cambridge Examination for Mental 
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Disorders of Older People with Down Syndrome and others with intellectual disabilities [CAMDEX-

DS]) [44], and a neuropsychological battery including the Cambridge Cognition Examination 

(CAMCOG). Both tests were adapted for intellectual disabilities, as in Fortea et al. (2018) [19]. In 

the ADNI EU cohort, AD diagnosis was obtained following the National Institute on Aging-

Alzheimer’s Association guidelines for the neuropathologic and neuropsychological assessments 

of AD [45].  

 

In both cohorts, the neuropsychological evaluations were accompanied by molecular data, 

including the concentration ratio of Aβ1-42/Aβ1-40 proteins obtained from CSF samples. For each 

individual, the degree of AD dementia was classified as “No Alzheimer” when no signs of AD 

dementia were detected, or as “Alzheimer disease” when individuals showed prodromal or 

advanced signs of AD dementia (Table 1), following the criteria in Fortea et al. (2018) [19].  

 

OSA diagnosis 

To score the presence and severity of OSA, we used the apnea-hypopnea index (AHI) obtained 

from nocturnal polysomnography tests performed in sound-attenuated and temperature regulated 

rooms in the sleep laboratory at the Sant Pau sleep unit following the protocols described in 

Giménez et al (2018) [30]. AHI is defined as the sum of all apneas (airflow reduction greater than 

90% for more than 10 seconds), and hypopneas (airflow reduction greater than 30% for at least 

10 seconds with an oxygen saturation decrease of approximately 3% or a cortical awakening) per 

hour of sleep [7]. Individuals were classified into three categories according to the severity of 

sleep disruption: a) no OSA (AHI: <5), mild OSA (AHI: 5-30) and severe OSA (AHI: >30) (Table 

1). To streamline the analysis and increase sample size for each group, we created a “mild OSA 

category” which contains two existing categories: mild OSA (AHI 5–15) and moderate OSA (AHI 

15–30). 
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Facial 3D models and landmarking  

3D facial models were generated from MR images (Additional file 1: Figure. S1) by adjusting the 

grey‐scale threshold that optimized skin segmentation using Amira 5.2.1 (v6.3, Visualization 

Sciences Group, FEI). The facial models showed similar reconstruction quality and were derived 

from T1-weighted images obtained from Hospital del Mar (Barcelona, Spain) or Hospital Clinic 

(Barcelona, Spain), and ADNI database. Since all individuals were scanned using a 3T scanner 

with similar scanning protocols (Additional file 2: Table S1), potential experimental bias due to 

different scan origin was considered negligible. 

 

To capture facial shape, we used an automatic method to record the 3D coordinates of 21 

anatomical landmarks on the 3D facial models generated from MR images (Fig. 1 and Additional 

file 3: Table S2). The automatic landmarking method is included in BioFace3D, a pipeline for the 

automatic computation of potential facial biomarkers from 3D head models reconstructed from 

MRI scans [46]. Bioface3D [46] applies a domain adaptation an architecture reuse approach [47] 

on Multi-View Consensus Convolutional Neural Networks (MV-CNN), a deep learning-based 

state-of-the-art method devised for automatic 3D facial landmarking [48]. This method is based 

on creating 2D views of the 3D anatomical facial models from different viewpoints. Then, the 

hourglass model is used to predict candidate landmarks on 2D heat maps, and the final position 

is determined by ray-projecting onto the surface of the 3D mesh using least squares combined 

with random sample consensus [48]. The model was trained with datasets of 21 landmarks 

manually collected on 538 facial meshes, including healthy controls and subjects with genetic and 

neurodevelopmental disorders [46]. This automatic facial landmarking method has an average 

landmarking error of 1.78mm. This accuracy level is lower than 2mm, which is the intra-observer 

measurement error commonly accepted for craniometric measurements [49].  
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Fig. 1 Anatomical position of the facial landmarks used for geometric morphometric and multivariate 

statistical analyses. For landmark definitions see Additional file 3: Table S2. This facial model is a morphing 

which does not belong to a real individual and is based on 3D landmark coordinates. 

 

 

 

Geometric Morphometrics and multivariate statistical analyses 

To quantify facial shape variation, we used Geometric Morphometric (GM) analyses. First, we 

performed a Generalized Procrustes Analysis (GPA) [50] to superimpose all the configurations of 

landmarks into a common morphospace by scaling, rotating, and translating the landmark 

coordinates [51]. As the resulting Procrustes coordinates still contained an allometric effect, we 

computed the centroid size (CS) of the facial configurations of landmarks and used this variable 

[51] to account for the effect of facial size on shape in all subsequent analyses. 

 

To quantify the amount of facial shape variation attributable to sex, age, facial size, and genetic 

diagnosis we implemented Procrustes ANOVA and MANOVA tests [52,53] using the function 

ProcD.lm in the Geomorph R package with 1,000 permutations [53,54]. When sex, age or facial 
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size were significant factors influencing facial shape variation, subsequent analyses were 

adjusted using the residuals derived from the Procrustes MANOVA. Analyses were performed 

combined and separately for EU and DS samples. When sex differences were detected, further 

analyses were also performed separately for males and females. 

 

Further Procrustes ANOVA tests were performed to assess whether biomarkers for AD 

(concentration ratio Aβ1-42/Aβ1-40) and OSA (AHI) explained a significant amount of facial shape 

variation. Additionally, multivariate linear regressions were performed to further test, statistically 

and visually, the correlation between facial shape, age, concentration ratio Aβ1-42/Aβ1-40, and AHI. 

 

To assess statistically significant facial shape differences between diagnostic groups, we 

computed the Procrustes distances between the average shapes of each group and performed 

permutation tests with 10,000 iterations [50]. Facial comparisons were performed between the 

following diagnostic groups: a) DS/EU, b) Alzheimer/ No Alzheimer for EU and DS groups, and c) 

no OSA/mild OSA/severe OSA in the DS group. To visualize the facial shape differences between 

groups, we conducted Canonical Variate Analysis (CVA), a statistical discriminant method that 

maximizes the separation among predefined groups [55,56]. Facial morphings associated with 

the negative and positive extremes of the first two CVs were created with IDAV Landmark Editor 

version 3.0. Moreover, we created heatmaps using Amira 5.2.1 (v6.3, Visualization Sciences 

Group, FEI) to identify the facial regions where differences between diagnostic groups were 

mainly located. 

 

All GM and multivariate statistical analyses were executed using MorphoJ version 1.07a b [57] 

and Geomorph R-Package version 4.0.5 [54]. 
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Results 

Sex, age and facial size influence facial shape 

Procrustes ANOVA analyses revealed that sex (Z = 4.0879, P = 0.001), age (Z = 7.4097, P = 

0.001) and facial size (Z = 7.1928, P = 0.001) were significant factors influencing facial shape in 

our sample (Additional file 4: Table S3). After adjusting for these factors, the Procrustes MANOVA 

test also indicated a significant influence of trisomy on facial shape variation (Z = 6.9455, P = 

0.001) (Additional file 5: Table S4). Comparative shape analysis based on Procrustes distances 

confirmed significant facial differences between EU controls and individuals with DS (P < 0.0001), 

whereas the CVA showed that trisomic individuals exhibited shorter and wider faces, midfacial 

retrusion with flattened nasal bridges, and oblique palpebral fissures (Fig. 2A), which are the facial 

features typically associated with DS.   

 

Sex-dependent effect of trisomy 21 on facial shape  

To determine whether trisomy 21 differently affected males and females, we performed a 

Procrustes MANOVA adjusting only for age and facial size. The results showed that the 

interaction between genetic diagnosis and sex was statistically significant (Z = 3.7046, P = 0.002) 

(Additional file 6: Table S5), suggesting a sex-dependent effect of trisomy 21 on facial shape.  

 

To further explore these sex-specific effects, we performed independent analyses for males and 

females. Procrustes distances between diagnostic groups confirmed significant facial shape 

differences between individuals with DS and EU controls in both males (P < 0.0001) and females 

(P < 0.0001). The CVAs showed that individuals diagnosed with DS from both sexes showed the 

typical DS facial features (Fig. 2B and 2C). However, the heatmaps representing facial shape 

differences between EU controls and DS individuals showed that DS facial traits were more 

pronounced in females (Fig. 2C). 
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Fig. 2 Results of the Canonical Variate Analysis (CVA) between EU controls and individuals with DS. A) 

Male + Female, B) Male and C) Female groups. The X-axis displaying Canonical Variate1 (CV1) represents 

100% of facial shape variation. Facial morphings associated to the negative extreme of CV1 represent 

frontal and lateral views of the shape changes in EU individuals (blue), whereas facial morphings on the 

positive extreme represent individuals diagnosed with DS (red). Facial morphings are magnified by a factor 

of 2. Heatmaps showing facial shape differences between the morphings associated to the positive and 

negative extreme of CV1. Red areas indicate anatomical regions with largest facial shape differences 

between EU controls and individuals with DS, whereas blue areas indicate smallest facial shape 

differences. *Statistically significant difference between groups (P <0.0001). The faces in the figure are 

morphings which do not belong to a real individual and are based on 3D landmark coordinates. 

  

Altered facial ontogenetic trajectories in females with Down syndrome 

After evaluating the effect of sex on facial shape, we compared how facial shape changes over 

adulthood in EU and DS groups. A multivariate linear regression analysis revealed a significant 

relationship of facial shape with age (%Predicted = 7.11%, P = <0.0001), and showed the effects 

of ageing in both groups. Since the slope of the regressions were not parallel, the analysis 

suggested differences in the ontogenetic trajectories of EU controls and individuals diagnosed 
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with DS (Fig. 3A). A Procrustes MANOVA confirmed a significant interaction between genetic 

diagnosis and age after adjusting for sex and facial size (Z = 1.5826, P = 0.005) (Additional file 7: 

Table S6A), demonstrating that facial adult ontogeny is altered in DS. Individuals with DS 

presented a steeper slope of the ontogenetic trajectory, showing more pronounced facial shape 

changes during ageing in comparison to EU controls (Fig. 3A).  

 

 

Fig. 3 Ontogenetic trajectories of EU and DS populations assessed by multivariate regression of facial 

shape on age. A) Male + Female, B) Male and C) Female groups.  

 

To further explore sex-specific facial shape changes in the ontogenetic trajectories between EU 

controls and individuals with DS, we repeated the multivariate regressions and Procrustes 

MANOVA tests separately for males and females, adjusting only for facial size. In the male 

sample, the multivariate regression results showed a significant correlation between facial shape 

and age among EU and DS individuals (%Predicted = 8.79%, P = <0.0001) (Fig. 3B). However, 

the Procrustes MANOVA showed that the interaction between diagnosis and age was not 

significant (Z = -0.3126, P = 0.605) (Additional file 7: Table S6B, Fig. 3B), indicating no differences 

in the ontogenetic trajectories between the EU and DS groups in males. On the contrary, in the 

female sample, we detected both a statistical significance in the correlation between facial shape 

and age (%Predicted = 6.98%, P = <0.0001) (Fig. 3C), and in the interaction between diagnosis 

and age (Z = 1.8775, P = 0.033) (Additional file 7: Table S6C, Fig. 3C). These results indicated 
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that the altered ontogenetic trajectory in the DS population (Fig. 3A) was only due to female 

individuals (Fig. 3C), who showed more pronounced facial ageing effects.  

 

Significant correlations of facial shape with AD and OSA 

Considering the previous results, we accounted for the effect of sex, age and facial size in the 

subsequent analyses assessing the potential of facial shape as a diagnostic biomarker for AD 

and OSA in the DS and EU populations. 

 

Regarding AD, we first investigated the association between facial shape variation with molecular 

biomarkers of dementia. A multivariate regression analysis indicated that the concentration ratio 

of Aβ1-42/Aβ1-40 in CSF was significantly correlated with facial shape after adjusting for sex, age 

and facial size when EU controls and individuals with DS were pooled together (%Predicted = 

4.4%, P = 0.001) (Additional file 8: Table S7, Fig. 4). However, when the association was 

evaluated separately for each group, the multivariate regressions did not show significant 

correlations neither for EU controls (%Predicted = 1.8%, P = 0.369) nor for individuals with DS 

(%Predicted = 2.1%, P = 0.689).  

 
Fig. 4 Multivariate regression of facial shape on concentration ratio Aβ1-42/Aβ1-40, an AD diagnostic 
biomarker.  
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Second, we explored the facial morphological variation associated with the diagnosis of AD in 

each group, and separately for males and females. In the DS population, facial shape differences 

between individuals with and without AD diagnosis were significant before adjusting for age, sex 

and facial size (Z = 2.3385, P = 0.008). However, once adjusted for those variables, statistical 

significance was not achieved (Z = -0.30077, P = 0.611) (Fig. 5A). Moreover, when we performed 

the analyses separately for each sex, we did not detect any significant facial shape differences 

between individuals with and without AD in males (Z = 0.21119, P = 0.411) (Fig. 5B), nor in 

females (Z = 0.072242, P = 0.468) (Fig. 5C). 

 
 

Fig. 5 Results of the CVA between DS individuals with and without AD dementia. A) Males + Females, B) 

Males and C) Females. The X-axis displaying Canonical Variate1 (CV1) represents 100% of facial shape 

variation. Facial morphings associated to the negative extreme of CV1 represent frontal and lateral views 

of the shape changes in DS individuals with AD dementia (purple), whereas facial morphings on the positive 

extreme represent DS individuals without AD dementia (light pink). Facial morphings are magnified by a 

factor of 2. No statistically significant differences were detected between groups. The faces in the figure 

are morphings which do not belong to a real individual and are based on 3D landmark coordinates. 
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In the EU population, significant shape differences were detected between individuals with and 

without AD diagnosis before (Z = 4.4324, P = 0.001) and after (Z = 3.5777, P = 0.001) (Fig. 6A) 

adjusting for age, sex, and facial size. We found that the main facial morphological differences 

between EU controls with and without AD were independent from age, with facial changes located 

in the facial midline, specifically on the forehead and chin (Fig. 6A). Moreover, we identified 

significant facial differences between individuals with and without AD dementia in both males (Z 

= 2.2095, P = 0.015) (Fig. 6B), and females (Z = 2.4276, P = 0.009) (Fig. 6C). In males, the main 

facial differences were detected in the facial midline (Fig. 6B), whereas in females the differences 

were localized on the forehead and the zygomatic prominences (Fig. 6C). 

 

      

Fig. 6 Results of the CVA between EU controls with and without AD dementia. A) Males + Females, B) 

Males and C) Females. The X-axis displaying Canonical Variate1 (CV1) represents 100% of facial shape 

variation. Facial morphings associated to the negative extreme of CV1 represent frontal and lateral views 

of the shape changes in the EU controls without AD dementia (dark blue), whereas facial morphings on the 

positive extreme represent EU controls diagnosed with AD dementia (light blue). Facial morphings are 

magnified by a factor of 2. *Statistically significant differences between groups (P <0.0001). The faces in 

the figure are morphings which do not belong to a real individual and are based on 3D landmark 

coordinates. 

 

Regarding OSA, we explored the association between facial shape variation and a clinical score 

of sleep apnea in a subsample of individuals. The multivariate regression of facial shape variation 
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on AHI after adjusting for age, sex, and facial size demonstrated a significant correlation when 

the EU and DS populations were pooled together (%Predicted = 3.4%, Z = 1.8139, P = 0.039) 

(Fig. 7). When the association was tested separately for each group, the multivariate regressions 

indicated no significant correlation for EU controls (%Predicted = 2.1%, P = 0.902), but a 

significant correlation for individuals with DS (%Predicted = 2.9%, P = 0.009). A Procrustes 

ANOVA confirmed that AHI accounted for a small but significant percentage of facial shape 

variation in the DS group (Z = 2.1487, P = 0.017) (Additional file 9: Table S8). 

 

Fig. 7 Multivariate regression of facial shape on AHI, an OSA diagnostic biomarker. 

 

Finally, when we assessed whether there were significant facial shape differences between 

individuals diagnosed with DS and different levels of OSA severity, the Procrustes distances 

between groups revealed that individuals with DS and severe OSA presented a significantly 

different facial morphology than individuals with DS and no OSA (P = 0.005). The CVA showed 

that, in comparison to individuals with no signs of OSA, individuals with DS and severe OSA were 

characterized by narrower faces and subtle mandibular retraction (Fig. 8). Individuals with mild 

OSA fell between the individuals with no signs of OSA and individuals with severe OSA, showing 
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a continuum spectrum of facial shape variation associated to OSA and suggesting a relationship 

between facial morphology and OSA worsening.  

 

 
 

Fig. 8 Results of the CVA assessing facial differences between individuals with DS and different OSA 

levels. Facial morphings (magnified by a factor of 2) corresponding to the consensus morphology/average 

shape of each group. *Statistically significant differences between groups (P <0.0001). The faces in the 

figure are morphings which do not belong to a real individual and are based on 3D landmark coordinates. 

 
 
 
Discussion 

Our study is the first to perform a comprehensive and quantitative 3D analysis of facial shape 

variation in Down syndrome (DS) and euploid control (EU) populations to assess the diagnostic 

potential of facial biomarkers for Alzheimer’s disease (AD) and Obstructive Sleep Apnea (OSA). 

Our results demonstrated that age, sex, and facial size are significant factors on facial shape 

variation, and that these factors should be accounted to optimize the diagnostic potential and 

accuracy of facial biomarkers. Furthermore, we demonstrated that facial shape showed diagnostic 

and sex-specific patterns. First, we identified more severe facial traits in females with DS. Second, 
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we detected significant facial patterns associated to AD in EU, and to OSA in DS populations. 

Overall, our results support the use of facial shape as indirect biomarker for neurodegenerative 

and respiratory disorders in future studies and clinical applications. 

 

Our findings showed that after adjusting for the significant effect of age, sex, and facial size, 

individuals diagnosed with DS displayed a significantly different facial morphology as compared 

to EU controls. The facial traits associated with DS in our study coincided with the typical DS 

facial features described in previous studies [10,11,58], including shorter and wider faces, 

midfacial retrusion, flattened nasal bridges and oblique palpebral fissures. However, our study 

provided original evidence that trisomy 21 differentially affects the facial morphology of males and 

females diagnosed with DS, with females showing more pronounced facial shape differences. 

Other studies have reported sex-related differences in individuals DS, such as an earlier decline 

in bone mineral density (BMD) in males [59,60] and a slower rate of BMD acquisition in females 

[61]. Additionally, females with DS tend to have higher fat levels and lower lean mass, which 

carries significant health implications [62]. Given that facial anatomy is composed of both bone 

and soft tissue (fat and lean mass), these previous findings [59,60,61,62] suggest that the reduced 

BMD and lean mass in females could contribute to the more pronounced DS-associated facial 

features observed in this population. 

 

Our results also evidenced facial shape changes over adult ontogeny in both the EU and DS 

populations. These findings are consistent with previous studies indicating that age had a 

significant effect in facial shape in the general [63] and the DS populations [64,65]. Specifically, 

these studies showed that individuals with DS exhibit specific facial patterns that appear early in 

life but can vary in adolescence or adulthood, becoming either subtler or more pronounced 

[64,65]. Our results showed that adults with DS retained the characteristic facial features 
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associated with trisomy 21, but only females showed a significant deviation of facial adult 

ontogeny compared to EU controls, displaying more pronounced facial aging effects. Our results 

thus support previous research showing that even though there is an early genetic contribution 

establishing the typical facial morphology of diverse syndromes, postnatal ontogeny plays a key 

role in facial morphological variation throughout life [66]. Moreover, this result aligns with our 

previous findings, which indicate a more severe phenotype in females with DS, particularly in 

early adulthood. We detected significant differences in the slopes of the ontogenetic trajectories 

in females, showing more severe DS phenotypes during adolescence that vary with aging. 

 

Regarding the association between facial morphology and AD, our study demonstrated that facial 

shape significantly correlated with Aβ1-42 concentration in CSF, which has been proposed as an 

accurate diagnostic biomarker for AD [19]. Furthermore, we detected significant facial shape 

differences between individuals with and without AD in the EU population that were sex-specific 

and independent of age. These results highlight the need for sex-differential approaches for AD 

detection using facial biomarkers, and suggest that facial morphology could be used as a non-

invasive and complementary biomarker for detecting AD. This supports the findings in Umeda-

Kameyama et al. (2021) [31] and Zheng et al. (2023) [32], who demonstrated that 2D [31] and 3D 

[32] facial morphology accurately assists in the non-invasive detection of AD dementia. 

 

However, the significant facial shape differences between individuals with and without AD that 

were detected in the DS population were not consistent after adjusting for age, sex and facial 

size. With the available data, we cannot determine whether this result is due to experimental bias 

from limited sample sizes in the DS population, or due to biological mechanisms associated with 

DS and AD. It is likely that the facial dysmorphologies caused by trisomy 21 are so pronounced 
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that may mask the facial shape changes associated with AD. Further studies are needed to 

confirm this hypothesis.  

 

Concerning the association between facial shape and OSA, our study indicated a significant 

correlation between facial morphology and AHI, the most commonly used biomarker for 

diagnosing OSA [7]. Furthermore, when analyzing the facial morphological variation associated 

with OSA, our results demonstrated that individuals diagnosed with DS and severe OSA displayed 

a significantly different facial shape compared to individuals with DS and no signs of OSA. The 

facial morphology of individuals with DS affected by severe OSA was characterized by narrower 

faces and a slight mandibular retraction, which can lead to restricted upper airways and a minor 

backward displacement of the oropharynx that may explain the higher prevalence of OSA in the 

DS population. In contrast to previous studies that found no statistically significant differences 

associated with OSA using 3D photogrammetric measurement [67] or detected only 2D local 

significant facial differences in the EU population, or using linear measurements based on 

cephalometric parameters [33,34,35,36]; our study showed significant differences in the DS 

population. Our results demonstrate that 3D facial anatomy is a potential non-invasive biomarker 

for detecting OSA and for preventing further cognitive impairment in the DS population.  

 

Future directions and conclusions 

Understanding the bidirectional link between AD and OSA is crucial for the DS population. Several 

studies have demonstrated that sleep disturbances, including OSA, can increase the risk of an 

earlier AD onset [68,69], likely due to poor sleep quality, which impairs neuronal repair and 

reduces the clearance of proteins such as Aβ [14,15] and tau [16,17], leading to increased 

deposition rates. Moreover, other studies have shown that sleep-related problems generally 

increase as AD progresses [18,68,70]. Currently, there is no effective cure or treatment for AD 
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that can mitigate the progress of this neurodegenerative disorder. Moreover, people with DS at 

an ultrahigh risk for suffering AD due to different genetic and morphological factors and invariably 

will develop AD in adulthood [71,72,73]. However, sleep-related disturbances, such as OSA, 

display modifiable risk factors that can be treated, minimizing derived neurodegenerative 

comorbidities such as AD and thereby improving life quality [7,74].  

 

Our results encourage further research using larger samples in the DS population to detect facial 

shape differences between individuals with and without AD dementia. Regarding OSA, larger 

samples could enable the evaluation of facial shape differences by sex and to determine if 

significant morphological differences can be detected in individuals with mild OSA. Moreover, 

additional data of EU controls with OSA are needed to extend our facial morphological analyses 

to population with sleep-related disorders but no genetic condition. 

 

Overall, our study demonstrated that 3D facial morphology can serve as a potential non-invasive 

diagnostic biomarker for disorders such as AD and OSA. The findings underscore the importance 

of adjusting diagnostic models for sex, age, and facial size to optimize the accuracy of these facial 

biomarkers. Additionally, early detection of disorders in EU or DS populations through facial 

biomarkers could facilitate better clinical management and improve the quality of life of people 

with these conditions. 

 

 

 

Availability of data and materials 

Raw image data cannot be made available due to restrictions imposed by the ethics approval. 

Landmark data supporting the findings of this study are available from the corresponding authors 

upon reasonable request. 
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Abbreviations 

 

DS: Down syndrome 

 

EU: Euploid control 

 

AD: Alzheimer’s disease 

 

OSA: Obstructive Sleep Apnea 

 

APP: Amyloid Precursor Protein 

 

Aβ: β-amyloid 

 

NFL: Neurofilament light 

 

CSF: Cerebrospinal Fluid 

 

PSG: Polysomnography 

 

AHI: Apnea-Hypopnea Index 

 

MRI: Magnetic Resonance image 

 

ADNI: Alzheimer’s Disease Neuroimaging Initiative 

 

RARC: Resource Allocation Review Committee 

 

MV-CNN: Multi-View Consensus Convolutional Neural Networks 

 

GM: Geometric Morphometrics 

 

GPA: Generalized Procrustes Analysis 

 

CS: Centroid size 

 

CVA: Canonical Variate Analyses 

 

BMD: Bone Mineal Density 
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