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Supplementary Methods 1 

De novo variant calling in ALSPAC and MCS 2 

We carried out DNM calling in 1,326 trios in ALSPAC and 3,106 trios in MCS. Starting with the 3 

unfiltered callset obtained by GATK (described in detail in our recent data note1), a set of 4 

candidate de novo mutations (DNMs) was generated using `bcftools +trio-dnm2 --use-NAIVE` 5 

(http://samtools.github.io/bcftools/trio-dnm.pdf). In this mode, the program detects variants that 6 

violate the Mendelian patterns of inheritance simply by comparing parental and proband 7 

genotypes. However, a callset produced this way is dominated by false positives due to 8 

sequencing, mapping or alignment artifacts. In order to filter such artifacts, the following pipeline 9 

was used (Figure S7A): 10 

1. Per-trio genotyping. We generated the following annotations at each candidate site using 11 

`bcftools mpileup -pa AD,QS,SP,SCR,FMT/NMBZ`: 12 

○ AD, allelic depth, the number of reference and alternate reads observed in the 13 

three samples 14 

○ QS, phred-score allele quality sum, an auxiliary annotation used by `bcftools +trio-15 

dnm2` 16 

○ SP, phred-scaled strand bias P-value 17 

○ SCR, number of soft-clipped reads 18 

○ NMBZ, Mann-Whitney U-z test of number of mismatches within supporting reads 19 

2. Parental genotyping. We generated profiles of parental variant allele fraction (VAF) to 20 

identify problematic regions, as described in the section on “Parental VAF Profiles” below.  21 

3. Obtaining posterior probabilities. We ran `bcftools +trio-dnm2 --strictly-novel --ppl` and `bcftools 22 

+trio-dnm2 --strictly-novel` to obtain posterior de novo probabilities using the DeNovoGear 23 

model2 implemented in the trio-dnm2 plugin (http://samtools.github.io/bcftools/trio-24 

dnm.pdf).  25 

4. Random forest. We used random forest to score the candidate variants based on the 26 

following covariates: 27 

○ DNM, the trio-dnm2 score 28 

○ DNG, the DeNovoGear score 29 

○ VCF_QUAL, variant quality as presented in the VCF QUAL column 30 

○ MaxParentalVAF, maximum variant allele frequency (VAF) observed across 31 

parents at this site 32 

○ NMBZ, Mann-Whitney U-z test of number of mismatches in variant reads  33 

○ SCR, number of soft-clipped reads 34 

○ SCBZ, Mann-Whitney U-z test of number of soft-clips in variant reads 35 

○ MQBZ, Mann-Whitney U-z test of mapping quality of variant reads 36 

The random forest classifier was trained on a subset of calls manually inspected in IGV 37 

(Integrative Genomics Viewer)3, separately for SNVs, deletions and duplications, and for 38 

autosomal and sex chromosomes in male and female samples. It was run with 100 trees 39 

in the forest and the relative contributions of the classification annotations are shown in 40 

Figure S7B.  41 

https://paperpile.com/c/6dl9GQ/4O6o
http://samtools.github.io/bcftools/trio-dnm.pdf
https://paperpile.com/c/6dl9GQ/onND
http://samtools.github.io/bcftools/trio-dnm.pdf
http://samtools.github.io/bcftools/trio-dnm.pdf
https://paperpile.com/c/6dl9GQ/c9Bi
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5. Iterative manual curation and retraining of the random forest. We randomly selected 100 42 

variants and curated them manually to extend the truth set, then re-trained the random 43 

forest classifier. We repeated this and the previous step 3-4 times until the random forest 44 

quality score separates clearly real from clearly false positive DNMs well. 45 

6. We applied the following final filters: 46 

○ In both ALSPAC and MCS 47 

■ exclude any variants with population allele frequency 1% or higher 48 

(gnomAD v2.1) 49 

■ exclude variants with parental depth lower than 8 reads 50 

■ filter variants observed across unrelated parents, assessed with the 51 

LNP_VAF metric (log-normal probability of matching parental VAF profiles; 52 

i.e. we required LNP_VAF > -1000, see the section on “Parental VAF 53 

Profiles” below) 54 

○ In ALSPAC 55 

■ require random forest score bigger than 0.92 56 

■ restrict C>A and G>T calls that passed stringent QC applied to the whole-57 

exome data, due to a known sequencing artifact in the dataset1 58 

○ In MCS 59 

■ require random forest score bigger than 0.6 60 

■ require VAF >= 25% 61 

Note that different filters were applied in the two cohorts since they were differentially affected by 62 

a sequencing artifact described in the data note1. 63 

Parental VAF Profiles 64 

The LNP_VAF annotation (log-normal probability of matching parental variant allele fraction 65 
profiles) is intended to filter sites in difficult regions by comparing the VAF profile in unrelated 66 
parents with the expected distribution. It is assumed that alternate reads in parents unrelated to 67 
the index proband represent sequencing errors. The method identifies a set of high-confidence 68 
de novo variants (i.e. sites with DNM score equal to 0) with sufficient coverage in all three trio 69 
samples (>=15x), proband VAF > 30%, and no alternate reads in the index proband's parents. 70 
For each such site, a VAF distribution is collected across all parents in the dataset who are 71 
unrelated to the proband of interest, and the mean μ and variance σ are determined across all 72 
sites for each bin of the distribution. The log-normal score is then calculated as follows:  73 

LNP_VAF = − ∑ (𝑥𝑖 −  𝜇𝑖)2/𝜎𝑖
2𝑁

𝑖=1  , where N=50 is the number of bins of the VAF distribution. 74 

It was then used in the filtering described above.  75 

DNM callset summary and evaluation 76 

The expected numbers of DNMs in different consequence classes were estimated per-gene for 77 

MANE transcripts from a sequence context-based mutational model 4. The cumulative rates of 78 

expected DNMs per parental genome were as follows: 79 

●      synonymous: 0.160734, 80 

●      missense:  0.364192, 81 

●      loss-of-function, including stop gained, stop lost, start lost, splice acceptor, and 82 

splice donor consequence predictions:  0.0277504, 83 

●      stop gain: 0.0181173, 84 

https://paperpile.com/c/6dl9GQ/4O6o
https://paperpile.com/c/6dl9GQ/4O6o
https://paperpile.com/c/6dl9GQ/VI1o
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●             frameshift:1.2*expected number of stop gain 85 

In calculating the total expected number of DNMs in the dataset, the proportion of male vs female 86 

samples was taken into account as follows:  2*nSamples*dnm_rate for autosomal chromosomes 87 

and (nMales+2*nFemales)*dnm_rate for chrX. Pseudoautosomal regions were not considered in 88 

the calculation.  89 

 90 

The mutation spectrum and distribution of parental VAF per dataset are shown in Figure S8, and 91 

the comparison of observed to expected DNMs in each consequence class in Figure S9. The 92 

number of DNMs in any one class or dataset did not differ significantly from the expected number, 93 

with the exception of missense mutations of which we observed a slight excess in MCS.  94 

Gene set associations and enrichment  95 

To derive gene set-specific associations (Extended Data Figure 5, Figure S5, Figure S6), we 96 

conducted mixed-effect linear modeling identically as above, restricting the RVBpLoF calculation to 97 

genes only present in a given gene set. To make the effects comparable between gene sets of 98 

varying sizes, we divided the effects by the number of genes in the gene set.  99 

 100 

To derive gene set-specific enrichment for a given gene set g of size n, we randomly sampled n 101 

genes not in g to generate a matched gene set h. To ensure that the distribution of heterozygous 102 

PTV selection coefficients in h is similar to g’s, we first calculated the 5-quantiles of the selection 103 

coefficient distribution of g and sampled n/5 genes from each quantile, rounded to the nearest 104 

upper whole integer. We then calculated a h specific RVBpLoF and repeated the analyses above, 105 

repeating this procedure 100 times. We then combined the estimates of the 100 gene sets using 106 

Rubin’s rule. Enrichment was calculated as the ratio of the RVBpLoF effects for g and the pooled 107 

effects for h. Significance was determined using a Wald test. 108 

Supplementary Tables 109 

Table S1 110 

Factor loading Key stage 2 (ALSPAC) Key Stage 3 (ALSPAC) 

Math 0.87 0.91 

Science 0.89 0.94 

English 0.81 0.77 

Proportion variance explained 0.74 0.77 

Key stage factor loadings and proportion of variance explained by one factor model on academic 111 

performance in ALSPAC. 112 
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Table S2 113 

IQ measure Heritability rg with age 4  rg with age 8  n IQ imputation 
status 

Age 8 0.46 (0.154) - - 3,176 pre-imputation 

Age 16 0.73 (0.153) - 0.96 (0.042) 3,176 pre-imputation 

Age 4 0.46 (0.081) - - 6,495 post-imputation 

Age 8 0.48 (0.080) 0.97 (0.021) - 6,495 post-imputation 

Age 16 0.56 (0.080) 0.96 (0.024) 0.96 (0.031) 6,495 post-imputation 

Heritabilities and genetic correlations of the IQ measures in ALSPAC pre- and post-imputation, 114 

estimated using GREML-LDMS5, with standard errors shown in brackets. Genetic correlations 115 

were estimated between post-imputation IQ measures or between pre-imputation IQ measures. 116 

GREML-LDMS estimates of heritability at age 4 pre-imputation are missing from this table as they 117 

did not converge. Estimates of heritabilities and genetic correlation between IQ at age 8 and 16 118 

pre-imputation were calculated in unrelated individuals that had both measures.  119 

Table S3 120 

IQ measure rg with EA  rg with Cog  rg with NonCog  

Age 4 0.903 (0.065) 0.863 (0.062) 0.416 (0.077) 

Age 8 1.118 (0.081) 0.952 (0.071) 0.629 (0.089) 

Age 16 0.977 (0.068) 0.878 (0.061) 0.502 (0.076) 

Genetic correlations of the post-imputation IQ measures in ALSPAC with external GWASs using 121 

LDSC6, with standard errors in brackets. 122 

 123 

Table S4 124 

PGI effects for cross-sectional and mixed-effects models on IQ in ALSPAC. First column indicates 125 

the PGI being assessed in the regression, second column indicates whether the effect is the 126 

proband’s population or direct effect estimate or the paternal/maternal effect estimate from a trio 127 

model, columns three through five indicate the effect size, standard error, and the p value, 128 

respectively, the sixth column indicates whether it was a cross-sectional or mixed-effects model, 129 

the seventh column indicates for a cross-sectional model the age at which the IQ test was 130 

administered or for a mixed-effects model whether it is an estimate of the main or age interaction 131 

effect, the eighth column indicates whether the regression was conducted before or after 132 

imputation of IQ measures, and the ninth column indicates whether the regression was conducted 133 

in the full cohort or the trio subset. 134 

 135 

https://paperpile.com/c/6dl9GQ/HyywI
https://paperpile.com/c/6dl9GQ/xfd6W
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Table S5 136 

PGIs effects on academic performance in ALSPAC. First column indicates the PGI being 137 

assessed in the regression, second column indicates whether the effect is the proband’s 138 

population or direct effect estimate or the paternal/maternal effect estimate from a trio model, 139 

columns three through five indicate the effect size, standard error, and the p value, respectively, 140 

the sixth column indicates the year at which the exams were administered or whether it is the age 141 

interaction estimated by taking the difference the scaled academic performance measures. 142 

 143 

Table S6 144 

RVB effects for cross-sectional and mixed-effects models on IQ in ALSPAC. First column 145 

indicates the RVB being assessed in the regression, second column indicates whether the effect 146 

is the proband’s population or direct effect estimate or the paternal/maternal effect estimate from 147 

a trio model, columns three through five indicate the effect size, standard error, and the p value, 148 

respectively, the sixth column indicates whether it was a cross-sectional or mixed-effects model, 149 

the seventh column indicates for a cross-sectional model the age at which the IQ test was 150 

administered or for a mixed-effects model whether it is an estimate of the main or age interaction 151 

effect, the eighth column indicates whether the regression was conducted before or after 152 

imputation of IQ measures, and the ninth column indicates whether the regression was conducted 153 

in the full cohort or the trio subset. 154 

 155 
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Table S7 156 

RVB effects on academic performance in ALSPAC. First column indicates the RVB being 157 

assessed in the regression, second column indicates whether the effect is the proband’s 158 

population or direct effect, columns three through five indicate the effect size, standard error, and 159 

the p value, respectively, the sixth column indicates the year at which the exams were 160 

administered or whether it is the age interaction estimated by taking the difference the scaled 161 

academic performance measures. 162 

 163 

Table S8 164 

Quantile regression cross-sectional and mixed-effects model results for PGI and RVB effects on 165 

IQ in ALSPAC. First column indicates the PGI (EA, Cog, or Noncog) /RVB (pLoF or Missense) 166 

being assessed in the regression, second column indicates whether the effect is the proband’s 167 

population or direct effect estimate or the paternal/maternal effect estimate from a trio model, 168 

columns three through five indicate the effect size, standard error, and the p value, respectively, 169 

the sixth column indicates whether it was a cross-sectional or mixed-effects model, the seventh 170 

column indicates for a cross-sectional model the age at which the IQ test was administered or for 171 

a mixed-effects model whether it is an estimate of the main or age interaction effect, the eighth 172 

column indicates the quantile being assessed, the ninth column indicates whether the regression 173 

was conducted before or after imputation of IQ measures, and the tenth column indicates whether 174 

the regression was conducted in the full cohort or the trio subset. 175 

 176 

Table S9 177 

Quantile regression and difference in effects for PGI and RVB effects on academic performance 178 

in ALSPAC. First column indicates the PGI (EA, Cog, or Noncog) /RVB (pLoF or Missense) being 179 

assessed in the regression, second column indicates whether the effect is the proband’s 180 

population or direct effect estimate or the paternal/maternal effect estimate from a trio model, 181 

columns three through five indicate the effect size, standard error, and the p value, respectively, 182 

the sixth column indicates the year at which the exams were administered or whether it is the age 183 

interaction estimated by taking the difference the scaled academic performance measures, the 184 

seventh column indicates the quantile being assessed. 185 

  186 
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Supplementary Figures 187 

Figure S1 188 

189 
Association between inherited and de novo pLoF variant counts in constrained genes and composite 190 

cognitive performance scores in MCS. A) Standardized effects for the main and RVB-by-age interaction 191 

effect from a longitudinal mixed-effects model of constrained pLoF counts on standardized cognitive 192 

performance scores when considering all variants or de novo mutations and inherited variants separately. 193 

B) Variance explained by constrained pLoF counts when considering all variants or de novo and inherited 194 

separately.  195 



8 

 

Figure S2 196 

 197 
Influence of PGIs on different quantiles of the IQ distribution in ALSPAC estimated by applying quantile 198 

regression in cross-sectional analyses. A) Results using pre-imputation IQ measures. Standardized effects 199 

and 95% confidence intervals for quantile regression of the 5th (red), 50th (green), and 95th (blue) 200 

percentiles and ordinary least squares (OLS) linear regression (gray) estimated from cross-sectional 201 

associations with pre-imputation IQ at ages 4, 8, and 16 for PGIEA and PGICog before (left) and after (right) 202 

controlling for parental genetic measures.  B) Same as (A) using post-imputation IQ measures. 203 

 204 
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Figure S3 205 

 206 
Influence of common and rare variants on different quantiles of the IQ distribution pre-imputation. (As for 207 

Figure 3BC, which is based on post-imputation IQ.) Standardized effects and 95% confidence intervals for 208 

quantile regression of the 5th, 50th, and 95th percentiles estimated from mixed-effects modeling with pre-209 

imputation IQ at ages 4, 8, and 16 for PGIEA, PGICog, RVBSpLoF and RVBSMissense  before (left) and after 210 
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(right) controlling for parental genetic measures. The square brackets indicate significant comparisons 211 

highlighted in the text (z tests).  212 

Figure S4 213 

 214 
Influence of RVB on different quantiles of the IQ distribution using pre-imputation IQ measures in ALSPAC, 215 

from cross-sectional analyses. A) Standardized effects and 95% confidence intervals for quantile 216 

regression of the 5th (red), 50th (green), and 95th (blue) percentiles and ordinary least squares (OLS) 217 
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regression (gray) estimated from cross-sectional associations with pre-imputation IQ at ages 4, 8, and 16 218 

for PGIEA and PGICog before (left) and after (right) controlling for parental genetic measures.  B) Same as 219 

(A) using post-imputation IQ measures. 220 

Figure S5 221 

 222 

Associations between RVB in gene sets defined according to their expression patterns and academic 223 

performance in ALSPAC. (Similar to Extended Data Figure 5A which shows results for IQ in ALSPAC.) 224 

Standardized effects and 95% confidence intervals estimated for main effects on academic performance 225 

and RVB-by-age-interaction effects for each RVB in three mutually exclusive gene sets from Li et al. These 226 

comprise genes in co-expressed clusters that are more highly expressed in prenatal or postnatal brain or 227 

that are not detected in the study (non-brain). 228 

 229 

  230 

https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.wxtyj7pu1xwb
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Figure S6  231 

  232 
Replication of effects of gene set-specific RVB on composite cognitive performance measure in MCS. 233 

(Similar to Extended Data Figure 5BDE which show results using the main effect from mixed-effect models 234 

fitted on IQ in ALSPAC.) A) Effects of RVBpLoF on composite cognitive performance score stratified by gene 235 

set, divided by the number of genes in the given gene set, with 95% confidence intervals. Red horizontal 236 

line indicates the average effect for RVBpLoF across all genes. Asterisks indicate the p-value for difference 237 

in per-gene effects between a given gene set and all genes using a z test, with * indicating nominal 238 

significance and ** indicating Bonferroni significance for 8 tests. B) Ratio of the main effect for RVBpLoF for 239 

the indicated gene set relative to randomly sampled gene sets with matching underlying shet distributions 240 

(enrichment). C) Per-gene main effect for RVBpLoF using different gene FDR threshold cutoffs based on 241 

gene prioritization in Lee et al. and by restricting to prioritized genes at a given cutoff that are also the 242 

nearest genes to the prioritizing SNP in the Lee et al. GWAS7. AD/AR NDC: Autosomal dominant/recessive 243 

https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.wxtyj7pu1xwb
https://paperpile.com/c/6dl9GQ/Ka7UD
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neurodevelopmental disorder genes with loss-of-function mechanism from DDG2P8, EA 5%: educational 244 

attainment GWAS prioritized genes by Lee et al.7 at 5% FDR threshold,  IQ: intelligence GWAS prioritized 245 

genes from Savage et al.9, SCZ: schizophrenia GWAS prioritized genes from Pardiñas et al.10  246 

 247 

  248 

https://paperpile.com/c/6dl9GQ/SaBkN
https://paperpile.com/c/6dl9GQ/Ka7UD
https://paperpile.com/c/6dl9GQ/M0k3V
https://paperpile.com/c/6dl9GQ/fhkFL
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Figure S7 249 

 250 
Calling and quality control of de novo mutations. A) Flow diagram illustrating the calling and quality control 251 

process. B) Relative importance of features included in the random forest model used for quality control. 252 

SCBZ: Mann-Whitney U-z test of number of soft-clips in variant reads; SCR: number of soft-clipped reads; 253 

MQBZ: Mann-Whitney U-z test of mapping quality of variant reads; DNG: DeNovoGear score; 254 

MaxParentalVAF: maximum variant allele frequency (VAF) observed across parents at this site; DNM: trio-255 

dnm2 score; VCF_QUAL: variant quality as presented in the VCF QUAL column from GATK. 256 
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Figure S8  257 

 258 
De novo mutation spectrum for single nucleotide variants in ALSPAC (A) and MCS (B). The hashed bars 259 

are transitions and the black bars transversions. ts/tv = transition/transversion ratio. Distribution of variant 260 

allele fraction (VAF) in ALSPAC (C) and MCS (D).  261 

 262 

 263 
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Figure S9 264 

 265 
Observed vs expected number of de novo mutations in ALSPAC (A) and MCS (B) with 95% confidence 266 

intervals and Poisson test significance threshold of p<0.05 (*) and p<0.01 (**). The considered mutations 267 

types were: synonymous (syn), missense (mis), loss of function (lof), stop gained (stop) and frameshift 268 

indels (frm). 269 
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Supplementary Note 1: IQ imputation in ALSPAC 270 

Imputing IQ using SoftImpute 271 

IQ was measured in ALSPAC at ages 4, 8, and 16 via psychometric testing administered in an in-272 

person visit. Of the 8,804 children in the study with SNP array data, 6,496 had IQ measured at 273 

least once, with the lowest attendance at age 4 and relatively higher attendance at ages 8 and 16 274 

(Extended Data Figure 1A). IQ measures were highly correlated between ages, with pairwise 275 

correlations ranging from 0.51 (between ages 4 and 16) to 0.63 (between ages 4 and 8). 276 

 277 

In order to address nonresponse bias and increase our phenotyped sample size, we imputed 278 

missing IQ values across ages for all individuals with at least one IQ measurement and at least 279 

20% of variables considered for the imputation having nonmissing values per individual using 280 

SoftImpute11, an imputation algorithm that leverages the correlation structure across selected 281 

related variables to simultaneously impute all missing phenotype values. We first sought to 282 

identify a set of variables that maximize the imputation accuracy. We assessed three groups of 283 

variables: 1) the two other IQ measures, sex, parental income, and birth weight (base set), 2) the 284 

base set as well as a range of variables measured across life including additional cognitive and 285 

behavioral assessments (expanded set) (see Methods), and 3) the expanded set without the base 286 

set of variables (auxiliary set). To assess imputation quality for each of these three imputation 287 

strategies, we masked 100 measured IQ values at a given age and compared how the measured 288 

values compare to the imputed values. 289 

 290 

The highest correlations were observed in the expanded set across ages (Extended Data Figure 291 

1B). Importantly, we observed a median correlation of 0.61 for imputation accuracy for IQ at age 292 

4, where we have the fewest phenotyped individuals. When using the auxiliary set of variables, 293 

the performance at age 4 and age 8 was similar to that when using the base set, but performance 294 

was markedly worse at age 16 with a median correlation difference of 0.24 (p<.05 Wilcoxon rank-295 

sum test). These results suggest the auxiliary variables improved imputation most in the younger 296 

ages likely due to most of them being measured early in childhood, while at age 16 the base set 297 

contained the majority of the information that informed the imputation. Reassuringly, we observed 298 

consistent and accurate imputation across ages and used imputed IQ derived from the expanded 299 

set of variables throughout.  300 

Common variant heritability and genetic correlations of IQ across time 301 

We then compared the common variant genetic architecture of the imputed IQ values across 302 

ages. We conducted genome-wide association studies (GWASs) on IQ measurements at each 303 

age in an unrelated set of individuals inferred to have European genetic ancestry (n=6,495) 304 

(Methods). We used GREML-LDMS to calculate heritabilities and genetic correlations between 305 

the three GWASs. We found significant heritabilities for all traits, with h2 estimates between 0.46-306 

0.56 (Table S2). Additionally, we found significant genetic correlations between all of the traits, 307 

with none showing significant difference from an rg = 1 (Table S2). These estimates of childhood 308 

IQ are concordant with previous estimates of SNP heritabilities ranging from 0.22-0.7212,13. 309 

 310 

https://paperpile.com/c/6dl9GQ/F7qwK
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.6og5j3mk43c8
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.axportrv8nh1
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.axportrv8nh1
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.47v3xj30voy
https://paperpile.com/c/6dl9GQ/yLaj2+FwEZ


18 

 

We additionally used LD score regression to calculate genetic correlations between the three 311 

GWASs and external GWASs of EA7 and the cognitive and non-cognitive components of EA (EA-312 

Cog and EA-nonCog)14. We found all genetic correlations were significant, with the correlations 313 

for EA and EA-Cog being consistently high (rg > 0.85) (Table S3). In contrast, the genetic 314 

correlations with EA-nonCog were lower (0.42-0.63) and significantly less than 1, consistent with 315 

the lower genetic correlation estimates between childhood IQ and EA-nonCog relative to that with 316 

EA-Cog previously observed14. Overall, these results indicated the common variant genetic 317 

architecture of measured+imputed IQ was highly similar across ages and to those of cognitive 318 

performance and educational attainment GWASs in directly-measured external samples.  319 

 320 

Supplementary Note 2: Effects of polygenic scores and rare variant burden 321 

on academic performance measures in ALSPAC 322 

 323 

As a complementary approach, we assessed the influence of the PGIs and RVBs on academic 324 

performance in ALSPAC. In Year 6 and Year 9 (roughly ages 11 and 14, respectively; known as 325 

Key Stages 2 and 3 in the UK) children were administered three standardized exams covering 326 

English, Mathematics, and Science from which we derived a composite academic performance 327 

metric which we showed was measuring the same latent construct across time (Table S1; 328 

Methods). For children who had complete data for the three exams at both ages (n=3,895), we 329 

assessed the contribution of the three PGIs to academic performance in a similar way to that 330 

described for IQ in the main text. We found significant (p<1.1x10-17) population effects for all PGIs 331 

and significant increases in effects with age for PGIEA and PGINonCog(p<2.1x10-8) (Extended Data 332 

Figure 2, Table S5). In a trio analysis (n=3,024), we found evidence for direct genetic effects of 333 

PGIEA and PGICog on academic performance (Extended Data Figure 2), consistent with previous 334 

work in other cohorts19. Though all of the PGI-by-age interactions were positive, only the PGIEA 335 

showed a significant increase in direct effects (p=0.014), likely due to the reduction in power of 336 

the decreased sample size and the narrower age range considered. However, broadly these 337 

results for the impact of common genetic variation on academic performance mirror what we 338 

observed for IQ. For RVBpLoF and RVBMissense, we found that they were significantly negatively 339 

associated with academic performance at age 11 but their effects attenuated with age (Extended 340 

Data Figure 4, Table S7).  341 

Supplementary Note 3: Differential effects of rare variants in different gene 342 

sets on IQ 343 

We assessed whether the effects of rare variants on IQ differed according to the expression 344 

patterns of the genes in which they lie. Prior GWAS studies suggest that genes overlapping loci 345 

associated with intelligence and educational attainment are enriched for expression in brain7,9, as 346 

expected, and that genes associated with educational attainment showed on average relatively 347 

higher expression in prenatal rather than postnatal brain7. Similarly, genes implicated in autism 348 

by rare variants are also enriched for expression in prenatal brain 15, as are those associated with 349 

neurodevelopmental disorders16. We recalculated RVB stratified by genes’ assignments to co-350 

https://paperpile.com/c/6dl9GQ/Ka7UD
https://paperpile.com/c/6dl9GQ/RHN0E
https://paperpile.com/c/6dl9GQ/RHN0E
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.603f8ndjl7uw
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.3nsh7vp1eo3g
https://docs.google.com/spreadsheets/d/1CiVACO8-HlGBWZlJWfZ2KRpFt0P12XYZm5ZAp9diWj4/edit?gid=187392733#gid=187392733
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.3nsh7vp1eo3g
https://paperpile.com/c/ESp1ks/jcSG0
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expressed modules enriched for expression in prenatal brain (n genes = 6,808), postnatal brain 351 

(6,078), or undetected in brain (3,028) 17. We found that RVBs in the non-brain genes were not 352 

associated with IQ (Extended Data Figure 5A). In contrast, RVBpLoF and RVBMissense in the prenatal 353 

and postnatal gene sets were associated with IQ with main effects of similar magnitudes. In the 354 

prenatal gene set, RVBpLoF had a significant interaction with age pre- and post-imputation 355 

(p<0.05/3) and RVBMissense had a nominally significant interaction post-imputation (p<0.05). In 356 

contrast, we found only a nominally significant age interaction for RVBpLoF in postnatal genes post-357 

imputation, and no evidence for an age interaction pre-imputation. Hence, rare damaging variants 358 

in genes preferentially expressed in the prenatal brain showed a clear attenuation of the rare 359 

variant effect with age on IQ, but there is only mixed evidence for an age effect among genes 360 

preferentially expressed in postnatal brain.  361 

 362 

Similarly, we then assessed the association between RVBs stratified by expression patterns in 363 

the brain and academic performance in ALSPAC. As before, we detected no significant 364 

associations with any RVBSynonymous and or RVB calculated in genes not detected in brain (Figure 365 

S5). We found significant associations between RVBpLoF and RVBMissense calculated in prenatal 366 

genes and academic performance, and RVBpLoF calculated in postnatal genes. However, the 367 

patterns of attenuation were less clear: RVBpLoF only showed significant attenuation with age when 368 

calculated in postnatal genes and RVBMissense only showed a significant attenuation in prenatal 369 

genes. The confidence intervals on the age interaction estimates are large, particularly for the 370 

positive age interaction for RVBpLoF calculated in prenatal genes where the estimate was nearly 371 

nominally significant, suggesting statistical power is a limitation.  372 

 373 

We next explored other gene sets that we hypothesized might have differential contributions to 374 

the RVBpLoF association with IQ. In addition to the aforementioned gene sets defined by 375 

expression pattern, we considered gene sets ascertained for severe monogenic autosomal 376 

dominant (n genes = 337) or recessive NDCs (636) and genes prioritized via common variant 377 

genome-wide association studies of EA7 (1,838), cognitive ability (1,912), and schizophrenia10 378 

(1,558). We calculated RVBpLoF subsetted to only genes in a given gene set, and considered the 379 

main effect on IQ in ALSPAC estimated in a mixed-effects model, divided by the number of genes 380 

in the gene set, yielding per-gene effect estimates (Extended Data Figure 5B). Of the gene sets 381 

defined based on expression in the brain, only the prenatal gene set showed a modestly greater 382 

per-gene effect than the exome-wide average (p=0.006, z test). The autosomal dominant NDC 383 

gene set had the largest per-gene effect, with the average per-gene effect being 12.3 times the 384 

exome-wide average, though not significantly different from it due to the large standard error of 385 

the estimate. In contrast, the autosomal recessive gene set did not show an association with IQ 386 

significantly different from the exome-wide average or even from zero. The next strongest 387 

association was that of the EA GWAS gene set, with an average per-gene effect 6.6 times greater 388 

than the exome-wide average (p=1.5x10-7, z-test), followed by the gene sets defined based on 389 

GWASs for intelligence and schizophrenia (4.6 and 3.4 times the exome-wide average; p=2.8x10-390 
4 and 0.048 respectively).  391 

 392 

The differences in average rare variant effect sizes per gene between gene sets observed in could 393 

simply be driven by their different distributions of underlying selection coefficients (Extended Data 394 
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Figure 5C), since the majority of the RVBpLoF signal is due to variants in highly constrained genes 395 

(Extended Data Figure 6A). In order to assess the enrichment of per-gene effects in a gene set 396 

relative to similarly constrained genes, for each gene set, we simulated 100 gene sets of equal 397 

size with matching underlying selection coefficient distributions and pooled their effect estimates 398 

(see Supplementary Methods). Enrichment was defined as the ratio of the effect estimate for the 399 

original gene set to the pooled estimate from the randomly sampled gene sets. The autosomal 400 

dominant NDC gene set did not show any enrichment, suggesting that the relatively high number 401 

of evolutionarily constrained genes in this gene set is the main driver of the large per-gene effect 402 

(Extended Data Figure 5D). In contrast, the only Bonferroni-significant enrichment was observed 403 

for the EA GWAS gene set (ratio=2.47; p=1.6x10-4), with nominal enrichments for the intelligence 404 

and prenatal gene sets and a relative depletion of signal in the non-brain gene set. We observed 405 

similar results using the composite cognitive performance measure in MCS, albeit with attenuated 406 

levels of enrichment compared to ALSPAC that were nominally significant only for the EA GWAS 407 

gene set (Figure S6). These results suggest that genes prioritized via the EA GWAS contribute 408 

more variance to the RVB associations with childhood IQ than expected given their level of 409 

constraint, and potentially also for those prioritized via the intelligence GWAS and genes 410 

preferentially expressed in prenatal brain.  411 

 412 

Given the large enrichment and per-gene effects observed for the RVBpLoF in the EA gene sets, 413 

we then sought to compare how different gene inclusion criteria impact their associations on IQ 414 

in ALSPAC. We previously used a 5% FDR cutoff from the prioritized genes in Lee et al. 415 

regardless of whether the gene was the closest gene to the significant SNPs informing the 416 

prioritization. We additionally considered all combinations of using a 1% and 0.1% FDR cutoff as 417 

well as restricting to only genes that were the closest genes to the GWAS significant SNPs, 418 

resulting in six gene sets. Both when considering all genes or only closest genes, using more 419 

stringent FDR thresholds led to stronger per-gene standardized effects (Extended Data Figure 420 

5E). When restricting to only closest genes, the point estimates of the effects increased 421 

substantially for all FDR thresholds. For example, when comparing the gene sets with an FDR 422 

cutoff of 0.1%, the per-gene standardized effects increased by 51% when restricting to the closest 423 

genes, i.e. the per-gene variance explained was 2.3 times greater, though the standard errors 424 

increased substantially due to the decrease in the gene set size. As there was modest overlap 425 

with the AD NDC gene set, we further considered the EA gene sets after excluding genes 426 

overlapping the AD NDC gene set to ensure they were not driving the associations. After doing 427 

so, the per-gene effect point estimates all became stronger though not significantly so (Extended 428 

Data Figure 5E), likely due to the relative rarity of damaging variants in the highly constrained 429 

NDC genes. These results were recapitulated using a composite measure of cognitive 430 

performance in MCS (Figure S6C). We conclude that genes prioritized via common variant GWAS 431 

of cognitive traits in adult populations converge with those that have outsized effects on IQ in 432 

early life.  433 

 434 

https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.wxtyj7pu1xwb
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.hnxcgakkm1dn
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.wxtyj7pu1xwb
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.wxtyj7pu1xwb
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.wxtyj7pu1xwb
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.wxtyj7pu1xwb
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.wxtyj7pu1xwb


21 

 

Supplementary Note 4: Relative contributions of deleterious pLoF de novo 435 

and inherited variants to IQ 436 

We sought to compare the relative contribution of inherited versus de novo pLoF variants in 437 

evolutionarily constrained genes  (n = 3160 autosomal genes) to IQ in ALSPAC and our composite 438 

cognitive performance measure in MCS. To simplify interpretability of the influence of de novo 439 

variants in such genes on these phenotypes, we first compared the effect of the RVBpLoF 440 

previously used to the effect of the the number of evolutionarily constrained genes in which an 441 

individual carries a pLoF variant (constrained pLoF count). The standardized effect of RVBpLoF 442 

and constrained pLoF count on IQ were not significantly different from each other at any age  in 443 

ALSPAC, though the latter consistently produced slightly weaker effects (Extended Data Figure 444 

6A). Thus, for this analysis, we considered the associations of constrained pLoF count with 445 

measures of cognition. 446 

 447 

We then compared the unstandardized effects of the constrained pLoF count of putatively 448 

inherited versus robust de novo variants on IQ in the fully exome-sequenced trios from ALSPAC 449 

(n=958) using mixed-effect modeling. The de novo constrained pLoF count had a larger point 450 

estimate, but it was not significantly different from that for inherited variants (Extended Data Figure 451 

6B). However, power may have limited the ability to estimate a difference in the effects, as only 452 

1.8% of children had at least one de novo pLoF in a constrained gene, compared to 12% with at 453 

least one inherited pLoF in a constrained gene. The age interaction with de novo constrained 454 

pLoF count was nonsignificant, though in a concordant direction with the inherited pLoF count 455 

and the total pLoF constrained count (Extended Data Figure 6B). The ratio of the main effect to 456 

the age interaction effect was highly concordant between de novo mutations and inherited 457 

variants (18.6 and 17.9, respectively), potentially suggesting the age attenuation of the influence 458 

of rare variants acted similarly for de novo and putatively inherited variants, though the error bars 459 

are large. 460 

 461 

The variance of the constrained pLoF count for de novo mutations was significantly lower than 462 

that for inherited variants (0.018 versus 0.14, p<10-10 F test). The variance in IQ explained by the 463 

constrained pLoF count of inherited variants was nearly equal to that of all variants and about four 464 

times that of the de novo pLoF count (Extended Data Figure 6C). As the inherited and de novo 465 

constrained pLoF counts were uncorrelated (r=-0.04, p=0.13) and the estimated age interaction 466 

effects were proportionally consistent, these results suggested that the inherited constrained pLoF 467 

count explained between 3.5-4 times more variance than the de novo constrained pLoF count in 468 

IQ across development in this cohort. Virtually identical results were observed when conducting 469 

the same analysis on cognitive performance in MCS (Figure S1). 470 

 471 

However, this analysis has several limitations. First, our de novo variant calling was calibrated to 472 

maximise specificity, possibly at the expense of sensitivity, so some of the putatively inherited 473 

variants may in fact be de novo. Second, the fact that children in full trios in ALSPAC and MCS 474 

are biased towards coming from households with higher educational attainment (e.g. effect of 475 

maternal and paternal EA on being in a full trio in ALSPAC, odds ratio = 1.08 and 1.12 476 

respectively, p<10-15 for both) and older parents (maternal age at birth OR = 1.029, p=0.00653 in 477 

https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.hnxcgakkm1dn
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.hnxcgakkm1dn
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.hnxcgakkm1dn
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.hnxcgakkm1dn
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.hnxcgakkm1dn
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.hnxcgakkm1dn


22 

 

ALSPAC; OR=1.078, p=5x10-15 in MCS) likely means we have overestimated the fraction of the 478 

rare variant effect that is due to de novo mutations compared to an unbiased sample. This implies 479 

that the trio parents are likely to have fewer inherited rare variants reducing cognitive ability and 480 

that they probably pass on more de novo mutations due to having, on average, higher parental 481 

age18,19.  482 

 483 

Supplementary Note 5: Quantile regression results using cognitive ability 484 

measures in MCS and UK Biobank 485 

 486 

As additional replication for the quantile regression results (Figure 3), we then considered the 487 

association between PGIEA and a single measure of cognitive performance from each of MCS 488 

and UK Biobank. In MCS, cognitive tests were administered at multiple ages, but previous work 489 

showed that these are not longitudinally invariant47, so we instead extracted a single composite 490 

cognitive measure from the tests administered at ages 3 and 7 (see Methods) to represent overall 491 

cognitive performance in early childhood. In UK Biobank, we used the results for the verbal-492 

numerical reasoning test (sometimes called “fluid intelligence”) conducted at baseline, to 493 

represent adult cognitive performance. We hypothesized that we would see relatively uniform 494 

effects across quantiles of early childhood cognitive performance measured in MCS, as we did 495 

for IQ in ALSPAC at age 4 (Figure S2). Given the differential age interactions across quantiles 496 

observed in ALSPAC (namely the increasing effect with age that is seen only in the top half of the 497 

distribution), we predicted that, in UK Biobank adults, the PGIEA effects would be markedly 498 

stronger at the top 5% and median than the bottom 5%. Our results were concordant with these 499 

two predictions  (Extended Data Figure 7B): neither the population (n=5,920) nor direct (n=5,309) 500 

effects were statistically different across quantiles in MCS, while we found significant 501 

heterogeneity in UK Biobank when examining both the population effect (n=101,232) and direct 502 

effect (n=11,859), with the direct effect at the top 5% being 1.62 times greater than that at the 503 

bottom 5% (p=0.0084).   504 

 505 

We then considered the association between the RVBpLoF and RVBMissense and measures of 506 

cognitive performance in MCS (n=5,666) and UK Biobank (n=101,232). Given the heterogeneity 507 

of effects on IQ observed at age 4 in ALSPAC (Figure S4), we hypothesized that in MCS, we 508 

would find stronger effects for RVBpLoF at the bottom 5% of our composite cognitive performance 509 

measure from early childhood. In UK Biobank, we predicted that the differences across quantiles 510 

would be minimal since we observed increasingly uniform effects across the quantiles by age 16 511 

in ALSPAC (Figure S4). Our findings were concordant with these two predictions: the bottom 5% 512 

had an effect 1.82-times stronger than the median and 2.4-times stronger than the 95th percentile 513 

in MCS (p=0.019 and 0.011, respectively), while we found no significant differences in effects 514 

across quantiles in UK Biobank (Extended Data Figure 7B). Collectively, these results support 515 

our PGI and RVB findings using ALSPAC IQ measures. 516 

 517 

https://paperpile.com/c/6dl9GQ/4ech0+zVqRv
https://paperpile.com/c/ESp1ks/2PaBV
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.kl7hpo1owpss
https://docs.google.com/document/d/1NDVoQXfZV_zeLQytOdROEN-PdbyLPRdI55BRtYCLiUs/edit#heading=h.ec26q0jucay9


23 

 

Supplementary Note 6: Results of models including genetic measures, 518 

parental education, and perinatal exposures 519 

 520 

We first considered the effects of genetic scores, parental education and perinatal factors 521 

(maternal health and weeks born preterm) on mean IQ in ALSPAC using mixed-effects linear 522 

regression. Since perinatal factors considered are both associated with lower parental EA50–52, 523 

and parental EA is correlated with both the parents’ and the child’s genetics, the effects of these 524 

various factors on the child’s cognitive ability were likely not independent. Thus, we considered a 525 

model in which we jointly fit parental EA and the perinatal exposures together with the genetic 526 

scores that showed significant effects in Figure 1 and 2, namely offspring and parental PGIEA and 527 

the child’s RVBpLoF and RVBMissense (conditional estimates shown in orange in Figure 4A). For 528 

replication, we ran a linear regression of our composite cognitive performance measure in MCS 529 

against the genetic scores, parental education and weeks born preterm, omitting the ‘maternal 530 

health’ variable since the data were not readily available (Extended Data Figure 10).  531 

 532 

In ALSPAC, incremental R2 of the joint model (excluding weeks born preterm due to the lower 533 

sample size) relative to a baseline model with sex and genetic 10 PCs was 22.8% at age 4, 21.2% 534 

at age 8 (p=0.29 for a z-test for difference in variance explained compared to age 4) and 25.6% 535 

at age 16 (p=0.073 and 0.0045 relative to age 4 and 8 respectively, z test). In MCS, the 536 

incremental R2 of the joint model was 16.7% relative to the baseline. We found that when jointly 537 

fit with the other variables, the parental PGIEA associations became nonsignificant in both cohorts, 538 

though the child’s direct effect estimate did not significantly change (Figure 4A top, Extended Data 539 

Figure 10A). Similarly, the effects of the child’s RVBpLoF and RVBMissense on IQ did not significantly 540 

attenuate in either cohort after controlling for these different exposure variables and PGIEA. The 541 

association between weeks born preterm and IQ was no longer significant in the conditional 542 

analysis in ALSPAC, though this may be due to reduced power in the joint model, whereas in 543 

MCS it remained significant. Maternal and paternal EA showed similar effect sizes to each other 544 

in both cohorts, which were also similar to those captured by the direct genetic effect of the child’s 545 

PGIEA. These results suggest, apart from the parental PGIs, effect estimates were largely 546 

unaffected in a conditional analysis. 547 

 548 

We next considered the influence of genetic scores, parental education and perinatal factors on 549 

the different quantiles of the distribution. In ALSPAC, considering each of the variables separately  550 

(Figure 4B, marginal estimates), we found that paternal and maternal education had similar 551 

magnitudes of main effects as well as uniform effects across quantiles, and we detected a 552 

nominally significant positive age interaction (p=0.029) for paternal education at the 95th 553 

percentile (Figure 4B), although the latter was not replicated in MCS, potentially due to the 554 

different demographics of this cohort. We found substantial heterogeneity in the effect of weeks 555 

born preterm in ALSPAC; this variable showed highly significant main effects at the 95th 556 

percentile (effect size = -0.120, p=8.44x10-6) that significantly attenuated with age (p=0.00421), 557 

as previously observed when examining the effect on mean IQ (Figure 4A bottom), while we 558 

detected no significant effects at the 5th percentile (effect size = -0.022, p=0.389). However, in 559 

MCS we did not find significant heterogeneity of effects of this variable at the tails (Extended Data 560 
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Figure 10B). This difference may be because all the ALSPAC children in this subsample were 561 

born after 32 weeks’ gestation, thus excluding very and extremely premature babies who might 562 

be expected to have the greatest cognitive deficits8. In contrast to the prematurity result, we 563 

detected significant main effects of maternal illness at the 5th percentile (p=5.97x10 -8) in ALSPAC 564 

that attenuated with age (p=5.06x10-4), while the main effect at the 95th percentile was 565 

nonsignificant. These results suggest that different perinatal factors may have varying impacts 566 

across the IQ distribution, with some factors predominantly affecting the upper or lower tails of 567 

cognitive ability. 568 

 569 

We then further explored the differential effects on the different quantiles of the IQ distribution in 570 

a joint model of the genetic and other exposures (Figure 4B, conditional estimates), excluding 571 

“weeks born preterm” in ALSPAC due to high missingness. In ALSPAC, we detected significant 572 

maternal PGIEA main effects on the 5th and 50th percentiles of the IQ distribution (Figure 4B) 573 

which were not observed in the conditional analysis of mean IQ (Figure 4A), suggesting the 574 

heterogeneous effects across the IQ distribution may have masked these associations. This result 575 

suggests that the mother’s PGIEA, independently of its influence on the mother’s actualized EA, 576 

may be associated with the child’s IQ at the lower tail of the IQ distribution either due to genetic 577 

nurture or confounding tagged by the paternal PGIEA. However, we did not replicate this finding 578 

in MCS (Extended Data Figure 10B). Maternal EA did not show heterogeneity of main effects 579 

across the IQ distribution in either cohort (Figure 4B top, Extended Data Figure 10B). However, 580 

in ALSPAC but not MCS, paternal EA did show a significant positive age interaction at the 95th 581 

percentile (Figure 4B bottom) which was not observed when considering the effect on mean IQ 582 

(Figure 4A bottom), suggesting the influence of paternal EA on IQ increases at later stages of 583 

development among those at the top of the IQ distribution. Thus, in summary, our results suggest 584 

that the relative influences of factors that best predict which children will have cognitive difficulties 585 

or will excel cognitively across childhood differ from those that best predict average IQ. However, 586 

given that some specific findings did not replicate across cohorts, there is a need to explore this 587 

in larger sample sizes.  588 

Supplementary Note 7: Results of quantile regressions on genetic scores 589 

pre- versus post-imputation of IQ 590 

The results from the quantile regressions in Figure 3 were based on IQ after imputation of missing 591 

values (Supplementary Note 1). We found that when analyzing pre-imputation IQ, some quantile 592 

regression estimates were not concordant with the observed effects post-imputation, particularly 593 

at age 4. Specifically, we found that, in cross-sectional analyses, there was no significant 594 

association between PGIEA and PGICog and IQ at the 5th percentile, but a large effect at the 95th 595 

percentile (Figure S2A, Table S8). However, by age 8 and 16, where the missingness was 596 

substantially lower, the pre-imputation estimates were similar to the post-imputation estimates 597 

(Figure S2A versus B). When analyzing the pre-imputation measures using mixed-effects quantile 598 

regression, this discordant effect at age 4 led to an observed positive age interaction at the 5th 599 

percentile, a nominal interaction effect at 50th percentile, and none at 95th percentile (Figure S3). 600 

However, in a direct effect analysis, the effect at the 95th percentile was greatly attenuated (Figure 601 

S3) and the age interactions generally mirrored the results observed post-imputation (Figure S3 602 
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versus Figure 3B). Specifically, when examining the direct effects, there was no age interaction 603 

effect at the 5th percentile for either PGI, but there were positive interaction effects at the 50th 604 

percentile for both PGIs and at the 95th percentile for PGICog (Figure S3). These results suggest 605 

that ascertainment bias most likely strongly impacted the PGI results pre-imputation. The fact that 606 

we observed no significant population effect of these PGIs on the 5th percentile of the distribution 607 

at age 4 may be because power has been reduced by ascertainment biases in the IQ test 608 

conducted at this age; of the subsample of participants invited to complete this test, only 81% 609 

accepted, and it may be that those families who declined were particularly biased towards lower 610 

educational attainment. Additionally, children born very prematurely were excluded from the 611 

sample and these were likely to have lower IQ. However, after conditioning on parental PGIs, the 612 

results were largely concordant with the post-imputation analysis.  613 

 614 

The RVBpLoF and RVBMissense results pre-imputation (Figure S3-4) were qualitatively similar to the 615 

post-imputation results (Figure 3), with nominally significant larger main effects at the 5th 616 

percentile relative to the 95th and significant positive age interaction effects only detected at the 617 

lower half of the IQ distribution. 618 

 619 
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