
Supplementary Notes1

Statistical model2

Let y be a length-n vector that denotes the phenotypes of n samples. Denote by X ∈ Rn×p the genotype3

matrix of n individuals based on p markers or SNPs. We standardize X and y such that the variance of the4

phenotype is 1 and the variance of each marker-specific genotype vector is 1. We use an additive genetic5

model for the phenotypes as y = Xβ + ε, where ε is a length-n vector distributed as ε ∼ N(0,σ2
e In). We6

assume both X and β are random, such that ΣΣΣ ≡ E(X⊤X/n) and D ≡ E(ββ⊤). The covariance of the7

effect sizes D is determined by our parameters of interest, such as partitioned heritability and enrichment8

of functional categories, which we denote by θ . We use D(θ) to emphasize the dependence of D on θ .9

Let z = X⊤y/
√

n be the vector of marginal association statistics from OLS. Then the distribution of z,

conditional on the true causal effect sizes can be shown as,

z|β ,X∼ N(n−1/2X⊤Xβ ,n−1X⊤Xσ
2
e ) (1)

z|β ∼ N(n1/2
ΣΣΣβ ,ΣΣΣ) (2)

We emphasize that the distinction between the two distributions above lies in whether the genotype is10

conditioned on or assumed to be fixed. Our estimator is based on (2), which has been derived and used11

previously in the literature1–3. Suppose the causal effect sizes are drawn from a normal distribution,12

β ∼ N(0,D(θ)). Integrating over β leads to the marginal distribution,13

z∼ N(0,nΣΣΣD(θ)ΣΣΣ+ΣΣΣ), (3)

and our estimator of θ comes from maximizing the likelihood function based on this marginal density.14

To make the algorithm computationally feasible, we work with the likelihood of z̃ = P̂z, where P̂ is an15

estimate of ΣΣΣ
−1 based on LDGM, which is extremely sparse. It is easy to show that z̃∼ N(0,M(θ)) where16

M(θ)≡ nD(θ)+ P̂. We directly maximize the likelihood,17
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ℓ(θ) =−1
2

{
log(2π)+ log|M(θ)|+ z̃⊤M(θ)−1z̃

}
, (4)

and the graphREML estimator is defined as θ̂ = argmaxθ ℓ(θ) = argmaxθ logℓ(θ).18

Estimation details19

Quasi-Newtonian algorithm20

We use a quasi-Newtonian algorithm for parameter estimation. This algorithm relies on efficient new

subroutines, leveraging the sparsity of LDGM precision matrices to compute the likelihood function (4),

together with its gradient and approximate Hessian. We iteratively update our estimate of the parameters

as the following,

θ
(k+1) = θ

(k)− (H(k)+ eI)−1
∇
(k),

where ∇(k) and H(k) are the gradient and the approximate Hessian of the likelihood function evaluated at21

the current estimate of the parameters θ (k). e is some small-valued number that is added to the diagonal of22

the Hessian matrix to prevent singularity in estimation. Let M(θ (k)) = nD(θ (k))+ P̂. At each iteration,23

we first perform a Cholesky factorization of the matrix M(θ (k)), which is feasible and computationally24

tractable due to the sparsity of P̂. Denote by ∂Da(θ)
∂θi

a diagonal matrix where the diagonal elements are25

the partial derivatives of the per-SNP heritability with respect to the parameters,
(

∂gθ (a1)
∂θi

, ...,
∂θ (ap)

∂θi

)
. We26

estimate the gradient using chain rule as the following,27

∇
(k+1)
i =

1
2

n
(

z̃⊤(M(k))−1 ∂Da(θ)

∂θi
(M(k))−1z̃−Tr

(
∂Da(θ)

∂θi
(M(k))−1

))
, (5)

where we have used M(k) to denote M(θ (k)) for simplicity of notation, and i indexes the parameters.28

Importantly, this equation is evaluated without computing M(k) explicitly. In particular, the second term29

is evaluated by computing the sparse inverse subset of M(k), as implemented in suitesparse4. We have30

four sparse matrix operations – matrix multiplication, division, log-determinant and matrix inverse. All of31

these functions were added to the LDGM package (see URL).32
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Approximation of the Hessian matrix33

We use a second-order method to solve for the maximum likelihood estimators, which requires computing34

the Hessian matrix. The first derivative of (4) with respect to the i-th parameter at the k-th iteration is,35

∇
(k+1)
i =

1
2

n
(

z̃⊤(M(k))−1 ∂D(θθθ)

∂θθθ i
(M(k))−1z̃−Tr

(
∂D(θθθ)

∂θθθ i
(M(k))−1

))
. (6)

The exact form of the second derivative of the log-likelihood with respect to the i-th and l-th parameters is,

H(k+1)
il =

1
2

n
[

Tr
(

∂ 2D(θθθ)

∂θi∂θl
(M(k))−1

)
−nTr

(
∂D(θθθ)

∂θi
(M(k))−1 ∂D(θθθ)

∂θl
(M(k))−1

)]
− 1

2
n
[

z̃⊤
(
(M(k))−1 ∂ 2D(θθθ)

∂θi∂θl
(M(k))−1−2n(M(k))−1 ∂D(θθθ)

∂θi
(M(k))−1 ∂D(θθθ)

∂θl
(M(k))−1

)
z̃
]
.

(7)

The second line is easy to evaluate, but not the first line, which has two terms. Recall that z̃∼ N(0,M).

Thus, we can use the trace trick for the expectation of a quadratic form and re-write the second term as the

following,

−n2Tr
(

∂D(θθθ)

∂θi
(M(k))−1 ∂D(θθθ)

∂θl
(M(k))−1

)
=−n2E

(
z̃⊤(M(k))−1 ∂D(θθθ)

∂θi
(M(k))−1 ∂D(θθθ)

∂θl
(M(k))−1z̃

)
.

Similarly, we can approximate the first term in as the following,

nTr
(

∂ 2D(θθθ)

∂θi∂θl
(M(k))−1

)
= nE

(
z̃⊤(M(k))−1 ∂ 2D(θθθ)

∂θi∂θl
(M(k))−1z̃

)

Next, we adopt the same trick as used in BOLT-REML5, replacing the expected information with the36

observed information. With this approximation, the terms for the first and second line of equation (7) can37

be canceled out, which leads to the following,38

H(k+1)
il ≈ 1

2
n2z̃⊤

(
(M(k))−1 ∂D(θθθ)

∂θi
(M(k))−1 ∂D(θθθ)

∂θl
(M(k))−1

)
z̃, (8)

3/15



Trust-region algorithm39

We use the trust-region algorithm to control the step size of each update in a principled way, and employ an40

adaptive bound on the maximum change at each iteration (Algorithm 1). This allows us to balance between41

convergence speed and robustness of the updates. We referenced the trust region iterative optimization in42

Loh et al.6 in developing our own algorithm, but modified several aspects of the procedure for graphREML.43

The main differences are that: 1) we compute the actual log-likelihood for the decision rule to accept or44

reject the step size; 2) we do not impose the constraint related to parameter domain, because our link45

function automatically leads to non-negative per-SNP heritability and thus a valid covariance matrix (for46

the effect sizes); 3) we do not explicitly optimize the step size by maximizing the predicted change in log47

likelihood according to the local quadratic model since this optimization can incur further computational48

cost; instead, we simply use the closed-form step size similar to that used in Newton Raphson.49

A key quantity that is central to both step size acceptance and trust region radius update is the50

ratio between the actual and the predicted change of log likelihood, ρ = ∆actual/∆pred . We use the51

hyperparameter values recommended by Gould et al.7 to set up the lower and upper bounds, denoted by
¯
ρ52

and ρ̄ respectively. These parameters, along with the radius change rate µT R, determine the updating of53

the trust region radius adjustment.54

The trust region algorithm is embedded within the Newton Raphson algorithm, such that each update55

involves a step size adaptation. Therefore, each trust-region algorithm takes the current values of the56

parameters as input and output the updated parameter values, along with the selected step size. Note that57

the trust region radius is also adjustable, which is passed down from one iteration to the next. In addition,58

we adopt the safeguard procedure proposed in Loh et al.6, rejecting step sizes that lead to an updated59

gradient whose norm is more than double the norm of the gradient evaluated at the current parameter60

values.61

Convergence Criterion62

We stop the Newton Raphson algorithm either when the maximum number of updates have reached or63

if the convergence criterion is triggered. We use a rather stringent threshold to determine convergence:64
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Algorithm 1: Trust region algorithm for step size selection
Preset :µT R = 10;

¯
ρ = 10−4; ρ̄ = 0.99; K = 20

Input :θ k

Init :λT R = 10−3; k = 0; accept=0
1 while k < K and accept is 0 do
2 k←− k+1;
3 H̃←−H(θ k)+0.01 ·λT R(I⊙H(θ k));
4 s←− H̃−1∇(θ k) ; /* Compute the proposed step size */

5 θ̃ ←− θ k− s;
6 ∆actual ←− ℓ(θ k)− ℓ(θ k);
7 ∆pred ←− s⊤∇(θ k)− 1

2s⊤H(θ k)s
8 ρ = ∆actual/∆pred ; /* Evaluate the step size */
9 if ρ >

¯
ρ then

10 θ k+1←− θ̃ ; accept = 1;
11 else
12 θ k+1←− θ̃ k ; /* Accept or reject the step size */
13 end
14 if ρ <

¯
ρ then

15 λT R = λT R ·µT R;
16 else
17 if ρ > ρ̄ then
18 λT R = λT R/µT R ; /* Update the trust region parameters */
19 end
20 end
21 end

Output :θ k+1;s,λT R;

we set the maximum number of iterations to 50, and declares convergence of the algorithm when the65

change of log-likelihood averaged over three consecutive iterations is less than 10−3. The sensitivity of66

the estimation results with respect to these hyperparameters can vary depending on the dataset and the size67

of the problem (i.e., number of parameters). These parameters can be adjusted easily if needed.68
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Modeling the per-SNP heritability69

S-LDSC assumes an unrealistic linear relationship between the heritability of a SNP and its annotations,70

leading for example to negative per-SNP heritability estimates. In contrast, graphREML can fit essentially71

any heritability model, incorporating a flexible link function to map between the annotations of a SNP to72

its heritability. We assume that D is a diagonal matrix with non-negative diagonal elements that represent73

the per-SNP heritability of SNPs in the model. In other words, we assume that the covariance of z̃ has the74

form,75

M(θ) = n ·diag(σ2
1 , ...,σ

2
p)+ P̂, with σ

2
j = gθ (a j), (9)

where a j denotes the vector of annotation values for SNP j, and θ denotes the conditional enrichment76

coefficients. gθ is a non-negative scalar-valued link function that we choose for estimation. graphREML77

by default uses the softmax link function, g(a j) = log(1+ exp(a⊤j θ)), but a more general form of D and78

other options for the link function are possible.79

Notably, the existing methods can be viewed as special cases of (9), in terms of their assumptions80

about the covariance structure of the causal effect sizes. For example, S-LDSC assumes σ2
j = a⊤j θ , where81

θ is a vector of coefficients that determine the partitioned heritability and enrichment8, 9. SumHer varies82

from S-LDSC in modeling σ2
j as a⊤j θq j/Q, where q j is a weight that explicitly accounts for the frequency-83

dependent and LD-dependent architecture, and Q is the normalizing constant such that Q = ∑
p
j=1 q j

10.84

It is evident from the modeling of σ2
j that the per-SNP heritability estimates from S-LDSC or SumHer85

may be negative and thus invalid. In contrast, graphREML is guaranteed to produce valid non-negative86

per-SNP heritability estimates, as long as a non-negative link g(·) is used.87

Numerical overflow88

One implementation detail associated with the softmax link function is that we observed an numerical

overflow issue when applying the softmax function. To avoid this problem, we rewrote the link as the
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following:

gθ (a j) = log(1+ exp(a⊤j θ))

= log
(
1+ exp

(
a j[−] ·θ [−]+a j[+] ·θ [+]

))
= log

(
exp
(
a j[−] ·θ [−]

)
+ exp

(
−a j[+] ·θ [+]

)
exp
(
−a j[+] ·θ [+]

) )

= a j[+] ·θ [+]+ log
[
exp
(
a j[−] ·θ [−]

)
+ exp

(
−a j[+] ·θ [+]

)]
. (10)

where [+] and [−] indicate the subset of the parameters which are positive and negative, respectively.

We implemented a version of the softmax function using equation (10), which guards against numerical

overflow issues. Analogously, we implemented a more robust version of the link derivative as the following,

g′θ (a j) =
a j[−] · exp

(
a j[−] ·θ [−]

)
1+ exp

(
a j[−] ·θ [−]

) +
a j[+]

1+ exp
(
−a j[+] ·θ [+]

) . (11)

We scale the link and the link gradient functions by one over the number of SNPs. This ensures that any89

non-linear relationships between the SNP’s annotation values and its heritability can be properly captured90

(the softmax function becomes effectively linear when a⊤j θ is very large).91

Differentiability92

We note that it is important for the link function to be differentiable everywhere, because our estimation93

algorithm, the gradient of the likelihood function in particular, entails the first derivative of the link94

function. As we will discuss below, performing a score test for the conditional enrichment of an annotation95

requires taking the second derivative of the link function. For our default link function – the softmax – we96

have ∂g(a j)
∂θk

=
a j,k exp(a⊤j θ)

1+exp(a⊤j θ)
, and ∂ 2g(a j)

∂θkθl
=

a jka jl exp(a⊤j θ)

(1+exp(a⊤j θ))2 . Other smooth candidate link functions include the97

logistic function, g(a j) =
1

1+exp(−a⊤j θ)
.98
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Score test for inference on the joint enrichment99

Here we provide more details on the score test procedure we use for inference on the joint enrichment of a100

new annotation, conditional on a set of baseline annotations. The key observation that enables us to derive101

this test is that the score contributed from a given SNP can be re-written via chain rule into two parts –102

one part is the derivative of the likelihood with respect to the per-SNP heritability; the other part is the103

derivative of per-SNP heritability with respect to the parameters. In particular, when evaluated at the null,104

the score involves the new annotation values only through the second part.105

Let θ̂ = (θ̂1, θ̂2, ..., θ̂K) denote the set of K parameter estimates in the baseline model. Let θ ∗ = (θ̂ ,0)106

denote the parameters fitted under the null i.e., with baseline annotations included and constraining the107

conditional enrichment of the new K +1-th annotation to be zero. The score contributed from SNP j can108

be written as the following,109

U j,K+1(θ
∗) =

∂ℓ

∂σ2
j
·

∂σ2
j

∂θK+1

∣∣∣∣∣
θ=θ∗

= a j,K+1

[
g′(a⊤j θ)

∂ℓ

∂g(a⊤j θ)

∣∣∣∣∣
θ=θ∗

]
j

(chain rule)

= a j,K+1

[
g′(a⊤j θ)

∂ℓ

∂g(a⊤j θ)

∣∣∣∣∣
θ=θ̂

]
j︸ ︷︷ ︸

SNP-specific gradient obtained from the null fit

(θ ∗K+1 = 0 and thus a⊤j θ ∗ = a⊤j θ̂ )

= a j,K+1∇ j(θ̂) (12)

Re-writting the score as equation (12) enables us to separate out the part that solely relies on the null fit110

and the part that entails the new annotation, which is the basis for the score test we developed.111

The procedure we propose is as follows:112

1. Fit graphREML under the null model (with K baseline annotations) to obtain the SNP-specific113

gradients, ∇ j(θ̂) for j = 1,2, ..., p.114
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2. For any new annotation a.K+1, construct the following statistics,115

SK+1 =
UK+1(θ

∗)2

Var(UK+1(θ ∗))
(13)

where UK+1(θ
∗) = ∑ j a j,K+1∇ j(θ̂) is the score aggregated from all markers.116

3. Compare the score statistics against the null distribution SK+1
H0∼ χ2(1) to compute the p-value for117

the enrichment of this new annotation.118

Test of multiple new annotations119

More generally, we can adopt a similar procedure to test the significance of multiple new annotations at the120

same time, conditional on the baseline annotations. To jointly test the significance of L new annotations121

conditional on the K baseline annotations, we can construct the following test statistics,122

S =U(θ ∗)⊤Cov(U(θ ∗))U(θ ∗) (14)

where U(θ ∗) = [UK+1(θ
∗), ...UK+L(θ

∗)]⊤. Under the null, S
H0∼ χ2(L), with which we can compute the123

p-value for the joint enrichment of these L annotations.124

Jackknife covariance estimator125

We adopt a similar procedure as that used in the Wald test to derive a jackknife estimator of the SE. We

take advantage of the LD block structure to calculate the empirical covariance of the scores as the plug-in

variance for the score statistic, First, we compute a set of leave-one-LD-block scores,

Jb
K+1(θ

∗) =UK+1(θ
∗)−∑

j∈b
a j,K+1∇ j(θ̂), ∀b = 1,2, ...B

Then, we use the empirical distribution of the jackknife scores to construct the score test,

1
B−2

(
∑b Jb

K+1(θ
∗)/B

)2

Var(Jb
K+1(θ

∗))

H0∼ χ
2(1).
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Accounting for the uncertainty in θ̂126

We note that θ̂ is not perfectly estimated, which can affect the score test in two ways – one is that the127

estimates upon termination of the Newton updates may not be the actual solution to the score equations or128

the maximizer of the likelihood; the other is that the estimation noise needs to be accounted for through129

the plug-in variance estimator of the score statistic.130

First, we need to account for the fact that the likelihood function evaluated at θ̂ is not the actual

maximum even though it may be sufficiently close, because we stop the Newton updates using a pre-

specified convergence criterion. Denote by θ̃ the true solutions to the score equations under the null. Then

by definition,

Uk(θ)|θ=θ̃
= ∑

j∈[p]
a j,k∇ j(θ̃) = 0,∀k = 1,2, ...,K (15)

which is equivalent to ak ⊥ ∇(θ̃), for all k = 1,2, ...,K. In practice, the estimate we obtain from the null

fit θ̂ may be arbitrarily close but is not exactly θ̃ . We adjust the SNP-specific gradients by projecting ∇(θ̂)

onto the null space expanded by the baseline annotation matrix A,

∇(θ̃)≈ (I−A(A⊤A)−1A⊤)∇(θ̂) (16)

Using the right-hand side of equation (16) ensures that the estimating equations under the null (15)131

indeed hold. In practice, we observed that this adjustment leads to different degrees of modification132

to the gradients. We note that it may be useful and of future interest to develop a statistic based on133

A(A⊤A)−1A⊤∇(θ̂) for diagnostics of convergence.134

Second, we want to account for the variance of θ̂ in order to develop an efficient score test. This135

affects the denominator of the score statistics in equation (13). Denote by θ̂−b the jackknife estimate of136

the parameters with the b-th block excluded. Recall that these values are readily available as they are used137
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to compute the jackknife estimator of the SE. Applying the jackknife variance leads to138

Var(UK+1(θ
∗)) = (B−1)Var(UK+1(θ̂

−b)), (17)

where B is the number of LD blocks or jackknife estimates, and UK+1(θ̂
−b) = ∑ j/∈b a j,K+1∇ j(θ̂

−b) is the

score aggregated from all except the SNPs on block b. However, computing ∇ j(θ̂
−b) for every single LD

block is costly and unwieldy. We propose approximating the jackknife gradient as,

∇ j(θ̂
−b)≈ ∇ j(θ̂)+(θ̂−b− θ̂) ·

∂∇ j(θ)

∂θ

∣∣∣∣
θ=θ̂

, (18)

where the second term serves to explicitly account for the uncertainty in estimating θ̂ . Importantly, both

terms in equation 18 can be obtained from the null fit without involving new annotation we want to test.

Now consider the derivative in the second term. Without loss of generality, consider the partial derivative

with respect to the first coefficient, which is the first element of the vector ∂∇ j(θ)
∂θ

. We have

∂∇ j(θ)

∂θ1
= a j,1

[
g
′′
(a⊤j θ)ℓ

′
j +
(

g
′
(a⊤j θ)

)2
ℓ
′′
j

]

where we use ℓ
′
j, ℓ
′′
j short for ∂ℓ

∂g(a⊤j θ)
and ∂ 2ℓ

∂(g(a⊤j θ))
2 , respectively. This enables us to compute a jackknife
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score (aggregated at the LD level) that incorporates uncertainty in the estimation of θ̂ .

V̂ar(UK+1(θ̂
−b)) = V̂ar

(
∑
j/∈b

a j,K+1∇ j(θ̂
−b)

)

≈ V̂ar

(
∑
j/∈b

a j,K+1

[
∇ j(θ̂)+(θ̂−b− θ̂) ·

∂∇ j(θ)

∂θ

∣∣∣∣
θ=θ̂

])
(first-order approximation by equation 18)

=
1

B−2

B

∑
b=1

(Vb−Vb)
2, (sample variance of Vb across B blocks)

where Vb =

∑
j/∈b

a j,K+1

∇ j(θ̂)+(θ̂−b− θ̂)⊤a j

[
g
′′
(a⊤j θ̂)ℓ

′
j +
(

g
′
(a⊤j θ̂)

)2
ℓ
′′
j

]
︸ ︷︷ ︸

denote by H j j, which is a scalar


 (19)

where we have used the empirical variance across the jackknife scores as the plug-in variance.139

To facilitate the computation of the scores, we re-write the leave-one-LD-block score in equation (19)

using the block-specific scores, such that each SNP-specific score gets aggregated once.

UK+1(θ̂
−b) = ∑

j/∈b
a j,K+1

(
∇ j(θ̂)+H j j(θ̂

−b− θ̂)⊤a j

)
=UK+1−∑

j∈b
a j,K+1∇ j(θ̂)+ ∑

j/∈b
a j,K+1H j j(θ̂

−b− θ̂)⊤a j

(Define UK+1 = ∑ j∈[p] a j,K+1∇ j(θ̂))

=UK+1−∑
j∈b

a j,K+1∇ j(θ̂)+(θ̂−b− θ̂)⊤

[
∑

j∈[p]
a j,K+1H j ja j−∑

j∈b
a j,K+1H j ja j

]
, (20)

where UK+1 is the overall score based on the original parameter estimate (i.e., no jackknife).140

Memory cost141

In order to perform the score test, we save the following quantities from the null fit: ∇ j(θ̂),H j j, both of142

which are vectors of a length that equals to the number of markers. To perform the score test (using the143

variance estimator that accounts for the uncertainty in θ̂ , we also need the annotation matrix for both the144

baseline annotations and the new annotation for testing.145
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Note that the cost of calculating the score statistics is linear in the number of markers and in the146

number of LD blocks, so this test procedure is fast. In terms of memory requirement, ∇ j(θ̂) is a vector of147

the same length of as a single annotation, and ∂∇ j(θ)
∂θ

∣∣∣
θ=θ̂

has the same size as the annotation matrix (i.e.,148

number of markers by number of baseline annotations), which is equivalent to 2 annotations. Therefore,149

our inference procedure does not increase the memory requirement of graphREML drastically.150

Application of graphREML to AMM151

Link functions152

To explicitly model the mediated heritability by the nearest genes in a given gene set, we write per-SNP153

heritability as the following,154

σ
2
j = f (θ⊤b j)◦

(
1+ f (γ)⊤a j

)
, (21)

where we use θ and γ to denote the vectors of parameters for the baseline and nearest gene annotations. We

compute the first derivative of the link with respect to the baseline parameters and the AMM parameters

separately as the following:

∂σ2
j

∂θl
=
(

1+ f (γ)⊤a j

)
f
′
(θ⊤b j)bl

j

∂σ2
j

∂γk
= f (θ⊤b j) f

′
(γ)ak

j

Comparison to the original AMM155

The original AMM work models the per-SNP heritability as the following,

E(β 2
j ) = τ(0)+ τ(A)∑

k
p(k)a(k)j = τ(0)

(
1+∑

k

τ(A)
τ(0)

p(k)a(k)j

)
= τ(0)

(
1+∑

k

τ(k)

τ(0)
a(k)j

)

To estimate pk, one first obtains estimates of τ(k); then we estimate pk as τ(k)

∑l τ(l)
.156
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With the new links defined in the application of graphREML to AMM, we have,

E(β 2
j ) = f (θ⊤b j)

(
1+∑

k
f (γk)a

(k)
j

)
.

Analogously, we first obtain estimates of γk; then estimate pk with the link applied as f (γk)
∑k f (γk)

. The key157

differences between the two models are that 1) graphREML enables the baseline per-SNP heritability to158

be variant-specific; 2) graphREML incorporates a non-negative mapping f (·) to ensure the non-negativity159

of the heritability and to enable a non-linear relationship with the annotations.160
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