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Abstract 
Purpose 
The ability to detect, monitor, and precisely time the morphokinetic stages of human embryos plays 
a critical role in assessing their viability and potential for successful implantation. In this context, the 
development and utilization of accurate and accessible tools for analysing embryo development are 
needed. This work introduces a highly accurate, machine learning model designed to predict 16 
morphokinetic stages of pre-implantation human development, which is a significant improvement 
over existing models. This provides a robust tool for researchers and clinicians to use to automate 
the prediction of morphokinetic stage, allowing standardisation and reducing subjectivity between 
clinics. 

Method 
A computer vision model was built on a public dataset for embryo Morphokinetic stage detection 
containing approximately 273,438 labelled images based on Embryoscope/+© embryo images. The 
dataset was split 70/10/20 into training/validation/test sets. Two different deep learning architectures 
were trained and tested, one using efficient net V2 and the other using efficient-net V2 with the 
addition of post-fertilization time as input. A new postprocessing algorithm was developed to reduce 
the noise in predictions of the deep learning model and detect the exact time of each morphokinetic 
stage change. 

Results 
The proposed model reached an overall test accuracy of 87% across 17 morphokinetic stages on an 
independent test set. If only considering plus or minus one developmental stage, the accuracy rises to 
97.1%. 

Conclusion 
The proposed model shows state-of-the-art performance (17% accuracy improvement compared to 
the best models on the same dataset) to detect morphokinetic stages in static embryo images as well 
as detecting the exact moment of stage change in a complete time-lapse video. 

Keywords: embryo morphokinetics, deep learning, time-lapse imaging, Machine learning, Artificial 
Intelligence 
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Introduction 
Time-Lapse Imaging (TLI) incubators were first introduced into human in vitro fertilisation (IVF) 
clinical laboratories around 2010, to facilitate embryo monitoring [1]. Monitoring embryonic 
development through the capture of periodic images of each embryo, taken 5-15 minutes apart, 
holds promise, as the timings of specific developmental events has demonstrated associations with 
implantation potential, reviewed in [2]. Static images taken minutes apart can be assembled into a 
comprehensive video, chronicling the embryo’s in vitro progression. This offers a dynamic 
perspective on embryo development and growth. 

TLI can therefore be regarded as an advanced approach for enhancing the assessment of embryo 
quality, thereby  aiding the ability to select, deselect and rank embryos and potentially decreasing 
the time to pregnancy during IVF treatments [3] [4] [5]  Numerous studies have subsequently 
identified an association between various morphokinetic parameters (MK)K parameters and the 
likelihood of implantation and ploidy [6][7][8]. [3][4][5]Additionally, the volume of high-resolution 
imagery generated by TLI offers opportunities for the application of Machine Learning (ML) and 
Artificial Intelligence (AI) techniques, including Deep Learning (DL), to increase reproducibility and 
decrease human effort. 

Several methodologies have been proposed to provide an accurate assessment of embryo viability, 
operating on the premise of accurately annotated timings of morphokinetic events[9] [10]  . Rubio et 
al. conducted the first randomised control trial to determine the efficacy of a multivariable 
morphokinetic model on success rates; the authors found a significant increase in implantation and 
ongoing pregnancy rates and a significant decrease in early pregnancy loss for the cohort utilising the 
integrated incubator and multivariable models based on morphokinetic timings [11]. Soon thereafter, 
computational combinations of morphokinetic timings were combined into a Known Implantation 
Determination Day3 Score (KID D3 Score) which utilises a decision tree on timings t2, t3, and t5 to 
predict  embryo viability [12]. However, manual annotation of these events is both labour-intensive 
and subjective, necessitating automation to alleviate the time burden and increase reproducibility. 
Reliability of morphokinetic stage annotation is known to be variable, with good agreement at 
specific time points including t2,3 and t4 and less agreement at tPNa (time of pronuclei appearance) 
and t9+ [12] [13] . Therefore, the wealth of high-resolution imagery generated by TLI offers 
opportunities for the application of Machine Learning (ML) and Artificial Intelligence (AI) techniques, 
including Deep Learning (DL), to increase this reproducibility and decrease human effort. 

Automatic Morphokinetic stage detection 
Machine learning methodologies have been employed in different stages of embryo selection 
processes. Most of these models focus on directly predicting the success rate of an embryo to reach 
the foetal heartbeat stage [14]. Some tools reported surpassing embryologists in the accuracy of 
identifying viable embryos[15]. There are three main approaches to utilise TLI for embryo selection, 
models that work directly with the video generated from TLI images and no frame selection is 
needed by user [15]  [16], methods that only work on single image and user need to select specific 
frame of the TLI images and use that image for prediction [17][18], and there is a hybrid approach 
where timings are extracted manually and then fed into a ML model such as Kidscore [19] [9]. 
 
While approaches such as IDAScore V1 [15] and V2 [16]  utilize embryo time-lapse videos, others 
including ERICA [20], The Life whisperer [17], and Stork [18] rely on a static single image of the 
blastocyst. The pipeline for selecting the blastocyst image is not entirely automated for ERICA [20], 
LIFE whisperer [17], and Stork [18], necessitating manual selection. However, the automation of 
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morphokinetic event detection can streamline the entire process by identifying the most appropriate 
images and incorporating them into the pipeline as a hybrid approach, where timings are extracted 
and then fed into a ML model such as Kidscore [19] [9]. 

Early methods of automatic morphokinetic stage detection relied on manually designed features to 
identify morphokinetic events [21]. For example, Feyeux et al. used grey-level analysis of microscopic 
images to predict morphokinetic stages [10]. In recent years, however, modern approaches have 
primarily utilized deep learning techniques [14], focusing on the supervised training of convolutional 
neural networks to facilitate the automatic annotation of morphokinetic events. Models employing 
ResNet-50, Long Short-Term Memory (LSTM), and ResNet-3D type models are now commonly 
adopted [3]. While the models that predict Morphokinetic events show similar levels of accuracy and 
overall performance, they are developed on proprietary datasets that are not available. Two 
prominent examples are the commercial models for EmbryoScope  [21] and Gerry Incubators [22]. 
Zabari et al. also proposed a DL methodology that leverages video frame-based initial predictions, 
which are further refined through Monotonic regression. This approach aims to mitigate prediction 
noise by limiting predictions to either the current or an immediately subsequent developmental class 
[21]. Recently, Gomez et al. have introduced a large, annotated dataset, comprising 704 videos of 
developing embryos, featuring 337,000 images across 16 developmental stages. This dataset 
provides a critical resource for model benchmarking and development. In this study two different DL 
models were developed and trained on Gomez et.al dataset [3]. a transformer [23] architecture will 
be used to fuse the input image features and information about time post-fertilisation when the 
image was captured. This novel, multimodal methodology incorporates both embryo images and the 
elapsed time since fertilisation as inputs to enhance the model's performance. 

Material and Method 
Dataset 
Time-lapse imaging of human embryos was obtained from Gomez et al. [3]. The dataset contains 704 
Embryoscope videos recorded at 7 focal lengths and  annotated for 16 morphokinetic events  
(Vitrolife ©). This dataset is labelled by one embryologist. To label the videos, the embryologist first 
identified the frame in which each event occurs and assigned the label to these frames. Then, all 
subsequent frames until the next morphokinetic event occurs are assigned the current label [3]. 

Each video has on average, 8 or more events. 499 of the videos are of viable embryos, with the 
remaining 205 non-viable, to attempt to capture the myriad features that can cause embryonic 
development failure, such as high levels of fragmentation, 3PN, necrosis, etc.  Only the central focal 
plane was used and only files that had uncorrupted jpeg images were analysed, resulting in 273,438 
images with labelled events.  

In order to mitigate some of the subjectivity of morphokinetic transitions effect, two images forward 
and backward from the recorded transition time were removed from the training set. All images 
were evaluated in the test set and included in performance metrics. 

During the dataset quality review, it was noted that, as is standard practice, the embryos are 
removed for freezing or transferring on Day 5; however, the label still reflects the last event, i.e. 
expanded blastocyst. This mislabelling of the wells introduces ground truth errors in the dataset. To 
identify and relabel these images, an empty/non-empty model was developed and applied to all 
images(Appendix 1). The results were verified visually, and 9,734 images were labelled as empty. 
Additionally, it was noted that there were only 41 hatched blastocyst images (Table 1). This small 
number of examples makes predicting this class difficult and subject to increased variability. 
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Table 1 presents the data annotations along with the number of samples corresponding to each class 
within the new fixed dataset. 

Table 1 Updated Gomez dataset definitions and number of samples for each class in each train, test, and validation set. 

Annotation Description Number in 
Training set 

Number in 
Test set 

Number in 
Validation 
set 

tPB2 Polar body appearance 5641 1737 880 
tPNa Pronuclei appearance 27762 8156 3839 
tPNf Pronuclei disappearance 4411 1279 643 
t2 Cleavage stage 2 cells 18968 5417 2825 
t3 Cleavage stage 3 cells 2825 958 570 
t4 Cleavage stage 4 cells 18483 5366 2815 
t5 Cleavage stage 5 cells 5009 1336 607 
t6 Cleavage stage 6 cells 5154 1657 758 
t7 Cleavage stage 7 cells 7094 1810 721 
t8 Cleavage stage 8 cells 20133 5276 3250 
t9+ Cleavage stage more than 9 cells 31241 9383 4579 
tM Morula 10402 3061 1608 
tSB Start of Blastulation 10206 2955 1709 
tB Blastocyst 4796 1096 556 
tEB Expanded blastocyst 11002 3928 1761 
tHB Hatched blastocyst 32 9 0 
Empty Empty well 7113 1847 774 

 

 

Deep learning models architecture 
For model 1, the backbone is an efficient net V2 large [24] fine-tuned to categorize 17 morphokinetic 
classes (Table 1). The input to the model was static greyscale JPG images of 380x380 resolution and 
the greyscale values were copied 3 times into the R,G,B channels. Weights were initialised with 
ImageNet dataset [24]. Figure 1 (a) illustrates the structure of this network.  
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Figure 1 Architecture of the proposed models (a) Model 1, utilises efficient-net-V2-large as backbone for feature extraction 
and it has a fully connected layer as classifier head. (b) Model 2, has efficient net-large-V2 as feature extractor, this model 
has two classifier heads one after the feature extraction step and one after the transformer. The transformer in model 2 
fuses the time after fertilization and extracted features from the efficient-net. The two head structure of this network 
ensures the proper gradient flow to backbone. 

 
Model 2 also utilises an Efficient-net V2 L as the backbone for processing images, followed by a 
transformer [23] . The transformer has only one encoder layer with hidden size of 512 with 4 self-
attention heads. The second input to the network is the number of minutes that have elapsed since 
the time of fertilization. As transformers are designed to work on sequences of vectors, the time 
since fertilisation is converted into a binary vector representing two-hour windows of time. This 
approach allows the self-attention mechanism to interact with the image features extracted earlier in 
the pipeline. Specifically, we assume a maximum of seven days incubation time and encode every 
two hour window with a one-hot vector or length resulting in a vector of length 84.  

index = �
minutes
60 × 2

� 

vindex = 1 
Vtime = [v1, v2, … , vindex, … , v84] 

Where all v elements are 0 except of vindex.  For example, if the time is 150 minutes, the index will 

be calculated as � 150
60×2

� = 1 the time vector will be [0, 1, 0, 0, … , 0] , the time vector will be the same 

for 160 minute, but for 240 minutes the index will be � 240
60×2

� = 2 and the time vector will be  
[0, 0, 1, 0, … , 0]. 

Efficient net 
V2

Classification 
layer

Efficient net 
V2 Transformer Classification 

layer

Time after 
fertilization 
(minutes)

vectorize

Classificati
on layer

(a)

(b)
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The time vector and the image features generated by the backbone are passed to the transformer 
layer (Figure 1b) layer before a final Multilayer Perceptron (MLP) layer to make class predictions for 
each image. By design, this model has two classification heads, one immediately after the backbone 
and one after the transformer layer. During the training, two cross-entropy losses are summed. This 
ensures the proper gradient for backbone layers and prevents the model from overfitting only on the 
time vector inputs. 

Model 3 has the same architecture as Model 1, but was trained on the original Gomez dataset that 
did not include the reclassified ‘empty’ well labels. Model 4 was trained with Resnet-50 backbone to 
recreate the previous work by Gomez et al [3] to serve as a baseline model for comparison. 

All models were trained using the Adam optimizer, as provided in the PyTorch 2.0.0  library [25], with 
an initial learning rate of 0.001 with Cross-entropy loss function. The learning rate was dynamically 
reduced upon observing a plateau decrease in the validation set performance. The networks 
underwent training for 50 epochs on the training subset of the dataset and were subsequently 
evaluated on a test subset, which remained unseen during the training phase. 

The issue of class imbalance represents a significant challenge within this dataset, as illustrated in 
Table 1. Such imbalance can induce bias in the neural network towards classes with a higher 
proportion of samples. To mitigate this issue inverse class frequency method was used. This 
technique enables the model to generate regulated gradients for the classes that are represented by 
fewer samples. 

 
Embryo images often exhibit significant variations in brightness, with some regions appearing overly 
bright and others notably dark, while the embryo is typically positioned centrally therefore proper 
image normalization is crucial. The image augmentation techniques employed during the training 
included rotating and shifting the image with a 30% probability, flipping the image with a 50% 
probability, and applying noise or blur with a 50% probability, followed by a final normalization step 
to ensure consistent image quality across the dataset. The augmentation step was conducted using 
the Albumentations library in Python [26]. The normalization step was performed using image 
contrast enhancement (CLAHE) and the normalize function, with average pixel values across RGB 
channels set as (0.485, 0.456, 0.406) and the standard deviation as (0.229, 0.224, 0.225) to align with 
the ImageNet weights. 

Postprocessing algorithm 
The morphokinetic annotation of videos critically depends on the consistency of predictions on all 
video frames. Given the dynamic nature of embryos, there are instances when the classification of a 
frame is ambiguous, resulting in “noisy” predictions. It is essential to accurately identify the precise 
moment when the morphokinetic stage of the embryo changes because these exact time values are 
utilized in subsequent methods that assess the embryo's viability, such as KidScore [12]. A heuristic 
method was developed to address this issue. This method is applied to the predictions made by 
networks for each frame of the embryo's timelapse video. The algorithm accommodates shifts to 
more advanced morphokinetic classes as well as instances of reverse cleavage. It identifies a trend 
within each time interval and corrects mispredictions that disrupt this trend. Mispredictions often 
occur due to embryo movement and the movement of cells within it, where some cells may 
temporarily be obscured in the image, rendering any detection of morphokinetic state changes 
during these moments inaccurate. Consequently, the algorithm initially amends the prediction in our 
models by substituting low-confidence predictions with the last morphokinetic state prediction with 
over 80% confidence. Subsequently, it detects changes by comparing the predicted class with the 
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prediction of the preceding image. Let PI represent the value of the most probable predicted class at 
the index i, changes are defined as Δ : 

Δ(i) = �1 if   Pi ≠ Pi−1
0      otherwise 

 

 
By summing the values of changes within a sequence, various consecutive groups can be delineated 
as follows: 

Gi = �Δ�k�
i

k=0

 

 

The values of GI can be utilized for grouping purposes, indicating that all images possessing identical 
GI values belong to a contiguous group and share the same prediction values without interruption. 
Through the comparison of the length of each continuous group and its neighbouring groups, a 
determination is made regarding whether the current group should be regarded as noise or retained 
as a correct morphokinetic stage change. The algorithm is outlined in the following: 

• Let C = {c1, c2, … , cn} represent the set of unique predicted classes in the video. 
• For each class c in C, create a subset Dc of all the predictions D such that all elements in Dc 

have prediction class equal to c. or each subset Dc, identify unique group values as Gc = {g1
, g2, … , gm}.  

• Calculate the length of each consecutive group g in Gc, denoted as Lg, where Lg is the 
number of elements in Dc that belong to group g. 

• Determine the minimum and maximum values within Gc , denoted as  gmin  and gmax , 
respectively. 

• For each potential group identifier ig  in the range [gmin, gmax], identify if ig  is an 
interruptive group by checking if ig ∉ Gc. For each interruptive group, calculate its length Lig
. 

• All interruptive groups are discarded and only the main groups are kept as final labels 

 

Figure 2 Example of the effect of postprocessing algorithm on predictions of Model 2. Model predictions are uncertain in 
some moments of the video, specifically near the moment that a morphokinetic stage change is recorded. The 
postprocessing algorithm ensures a clean set of predictions by assessing and ignoring noisy predictions 
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Results 
 

After 50 epochs of training, Model 1 showed an accuracy of 93% while Model 2 showed an accuracy 
of 95%; Models 3 and 4 had an accuracy of 93%, and 96%, respectively, on the training set.  

Next, each model’s network was evaluated on a subset of data which remained unseen by the 
models during the training phase (test set). To properly assess the models and postprocessing 
algorithm the evaluation steps are separated, and results are presented in two sections: 

1. Single Image Processing: results of deep learning models on single images that focuses on 
classification performance of the models on single images. 

2. Postprocessing: results after applying the model on a video created by static time lapse 
imaging and applying the postprocessing algorithm to extract the exact time of 
morphokinetic stage changes. 

Single Image Processing 
During the testing step for the Models, standard classification metrics were calculated. All the images 
in the test dataset were processed by the models and the outputs compared with ground truth in the 
dataset. Confusion matrix, accuracy, F1-score, precision, and recall were calculated for each model. 
Figure 3 presents the confusion matrix of Model 2 applied to the test set of the dataset. It is evident 
that certain stages, such as t2 and t4, are easier to identify, whereas other stages, including tB and 
t5, are more challenging for the model to classify accurately. Misclassifications most commonly occur 
between consecutive stages, such as when images of class t5 are misclassified as either t4 or t6. It is 
highly unlikely for the model to confuse an image with a class significantly ahead or behind; for 
instance, an image labeled as t5 has less than a 1% chance of being classified as anything other than 
t4 or t6. 
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Figure 3 Model 2 confusion matrix on the test set in percentages. The blue gradient bar on the right of the matrix indicates 
the percentage graphically with 0% - white and 100% - dark blue. Values of 0.0 indicate that not a single miss classification 
occurred and perfect model prediction would be 100% down the lower right diagonal.  

Standard classification metrics for the proposed models are shown in Table 2. Both exhibit high 
accuracy levels, with Model 2 demonstrating a slightly superior performance on all the metrics.  

Table 2 Model performance of the top two models across a range of performance metrics. Models are down the rows and 
metrics are across the columns. Accuracy is the overall accuracy. 

Model Precision Recall F1-Score Accuracy 
Model 1 0.883 0.871 0.873 0.871 
Model 2 0.886 0.879 0.881 0.879 

 

Table 3 presents the accuracy of the models trained by Gomez et al. alongside those proposed in this 
study. Model 1 and 2 demonstrate an approximate 17% improvement in accuracy compared to the 
models in the original dataset paper [3]. Models 1 and 2 have the best performance, and models 3 
and 4, which did not have empty labels in their dataset, have less accuracy. It can also be seen that 
Model 4 which was trained to represent the Gomez work is performing only slightly better than 
resnet-50 that was reported by Gomez et al [3]. 
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Table 3 Comparison of accuracy of methods in Gomez et al [3] and proposed methods trained on same dataset. Models 
prefixed with Gomez is reported performance on this dataset for comparison purposes. Models 1 and 2 were developed to 
improve discriminatory accuracy. Models 3 and 4 are comparable to the Gomez models directly, as they don’t include our 
updated class of “empty well”.  

Method Test set Accuracy 
Gomez ResNet 0.663±0.041 
Gomez ResNet-LSTM 0.685±0.041 
Gomez Resnet-3D 0.705±0.036 
Model 1 (Efficient net)  0.871 
Model 2 (Efficient-net-transformer 
modality)  

0.879 

Model 3 (Efficient net, without empty 
well labels)  

0.739  

Model 4 (Resnet-50, without empty well 
labels)  

0.689 

 

To visually assess the root causes of misclassification of the models, a random sample of images that 
were mis-predicted by Model 2 for the classes that had highest error rate are shown in Figure 7 to 
Figure 10. 

 

Postprocessing  
After applying the postprocessing method the exact predicted times for each morphokinetic event is 
extracted. For each detected morphokinetic stage change one single time is extracted. In the analysis 
here only the resulting morphokinetic state is considered, for example, changes from t2 to t4, and t3 
to t4 are considered as transition to t4. 

While the model results were accurate, a plus or minus one developmental stage classifications was 
observed in a sequential set of images (Figure 3). This is to be expected due to the embryos moving 
around the incubation dish i.e., not fixed, exposing or obscuring different features. To combat this, a 
heuristic post-processing was implemented. 
 

Upon applying the model and the subsequent postprocessing algorithm to the entire video in the 
test dataset, the timings for changes in the MK stage were extracted. Error is calculated as 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝ℎ the average and standard deviation and 25%, 50%, 75%, 80%, 
85%, 90%, 95%, and 99% percentile of the errors belonging to each class is calculated and presented 
in Table 4. It is evident that errors are small for the majority of cases and large errors are seen in less 
than 5% of cases.  The largest errors belong to tB class. 

Table 4  Quantile analysis of timing prediction errors for each morphokinetic class, count shows the number of events that a 
transformation to the class was detected, mean is the average error and std is standard deviation for the class. The 
quantiles of 25, 50, 75, 80, 85, 95, and 99 percent are also reported for each class. 

 

event tPNa tPNf t2 t3 t4 t5 t6 t7 t8 t9+ tM tSB tB tEB 

count 140 121 136 51 114 66 68 70 112 144 109 95 27 60 

mean 0.54 -0.01 0.26 0.23 -0.74 -0.87 -0.45 -0.07 -0.78 -2.94 -1.03 0.61 1.61 -1.51 

Std 3.43 0.93 1.40 2.01 5.22 3.31 1.65 1.36 3.86 7.84 3.45 2.33 6.10 5.89 
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25% 0.00 -0.30 0.00 0.00 -0.30 -0.45 -0.57 -0.30 -0.85 -3.08 -3.00 -0.30 -0.15 -1.43 

50% 1.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.80 0.20 1.00 -0.40 

75% 2.00 0.20 0.30 0.30 0.30 0.20 0.30 0.60 0.70 0.85 0.20 1.10 2.60 0.70 

80% 2.04 0.20 0.50 0.30 0.50 0.30 0.46 0.72 0.70 1.20 0.74 1.82 3.10 1.02 

85% 2.50 0.30 0.50 0.70 0.70 0.53 0.60 1.00 1.07 1.76 1.28 3.00 7.15 1.41 

90% 2.61 0.60 0.80 1.00 1.20 0.85 1.00 1.20 1.50 2.67 1.74 3.88 9.10 2.05 

95% 3.21 1.70 1.78 1.85 2.24 1.43 1.63 1.50 2.84 4.29 3.46 4.56 11.40 4.03 

99% 10.79 2.44 3.71 7.05 9.51 4.84 1.80 2.00 7.37 8.30 6.10 6.17 12.89 8.20 

 

Time extraction had less average error in some classes such as tPNf with -0.01 hours average error 
while the error is more significant in t9+ with -2.94 average hour error. It is important to note that 
images are 20 minutes apart and only one frame error contributes as 0.33 error.   

 

Due to the significant impact of labeling errors on the accuracy of stage change time extraction, we 
conducted an in-depth assessment of label subjectivity and identified the primary causes of model 
misclassification. Figures 4 and 5 provide examples of the largest errors observed, showcasing a 
random sample of frames from classes with the greatest time detection discrepancies. These visual 
examples help highlight the inconsistencies in labeling and the challenges they pose for model 
accuracy. 

Discussion 
Morphokinetic timings have been linked to predicting the development of embryos to the blastocyst 
stage [6], [19] and their implantation potential [6]. However, current models largely rely on 
subjective manual annotations, which may limit their accuracy and reproducibility. The association 
between morphokinetic parameters and developmental outcomes could shift if more objective and 
standardized timings were utilized; unfortunately, few models employing such objective 
measurements are available [6] [27]. Manual annotation is inherently subjective, and often only a 
limited set of annotations are performed, potentially omitting critical data. To advance the field of 
embryo morphokinetic research, it is crucial to develop models that are tested and validated on 
open-source datasets. While commercially available morphokinetic models like Fairtility [21] and the 
Gerry TLI system [22] exist, they are proprietary, and their performance has not been assessed on 
publicly available datasets, limiting their transparency and comparability. 

Table 3 provides a comparative analysis between the models introduced in this study and those 
developed by Gomez et al. [3], highlighting the superior accuracy of Model 2 with respect to 
performance with 87.9 % accuracy on single frames.  This is consistent with the levels reported by 
Zabari et al. [21]  (94%); however, their model has several shortfalls. Firstly, they can’t detect reverse 
cleavage or any reduction in Morphokinetic stage. Secondly, they remove the most difficult to assess 
stages such as 9 cell, and intra-blastocyst stages (early, expanding, hatching, etc). Both of these 
decisions increase their accuracy overall for a ‘perfect’ embryo but remove the ability to detect 
potentially meaningful associations with embryos of poorer quality. Finally, without evaluating 
models on the same dataset, the performance metrics should be interpreted as a general indication 
and not directly compared. In addition, their study contained fewer classes than the dataset utilized 
in this study, and their dataset consisted of 20,253 labelled embryos. Although the dataset used to 
test the model from the Zabari et al study is not publicly available, the current Gomez class 
definitions were altered to be aligned with Zabari study and recalculated the accuracy and 
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morphokinetic timing detections to be able to compare the model with their study. Using the Zabari 
et al. defined labels, the accuracy of our Model 2 is 91 % on the test set. This illustrates how these 
models are quickly converging to the Zabari model with 100 times less data. As described in Table 3, 
Model 3 has the same architecture and training settings as Model 1. While the model achieved 
73.9% accuracy on the test set of the original Gomez dataset, by adding the empty well class, which 
is only 3.5% of the images in the dataset, the accuracy increased to 87% for Model 1. This shows how 
the mislabel affected the whole network’s learning process. While the empty well images accounted 
for 3.5% of the dataset, fixing them improves the accuracy by almost 9%. 

Misclassifications of stage are clustered around stages that are likely to cause confusion with human 
annotators when only shown a single focal plane image, such as tPNa, t5, t7, tM, tEB, and tHB. The 
inaccuracy of the network on these classes is higher and disagrees with the ground truth labels; 
however, there is more consistency in the model calls than amongst human labellers [28]. For 
example, the difference between an expanded  blastocyst (tEB) and blastocyst (tB) is more subjective 
than the difference between a one-cell (tPNf) and a two-cell (t2) embryo. The labelling accuracy is 
very important for tPNa and tPNf phases because although there is a small difference in visual 
features, biologically one starts a biological processes and mislabelling leads to model confusion. 
Examples for such mislabelling in the dataset is demonstrated in Figure 4. This is also the case for 
other classes such as what denotes an expanded blastocyst (Figure 6). It is evident that subjectivity 
between tEB and tB classes and mislabelling in classes such t4 and t5 exists. Despite these “errors” 
most images in the dataset have correct labels, the network has learned the classes properly and 
generalizes well on the test set. 

The postprocessing algorithm proposed here does not limit the predictions of the embryo stages to 
be monotonically increasing as opposed to both Gomez et al [3], and Zabari. [21] that only allow 
later time predictions to be of the same or more advanced morphokinetic stages during a time-lapse 
video. Thus, annotations provided by our model can be used to detect how often and study the 
effect reverse cleavage might have on embryo viability [29]. 

The difference between the performance of model 1 and model 2 is within a margin of error, as the 
difference in accuracy is only 0.6 %; it shows that the features existing in the images are sufficient for 
morphokinetic stage detection and adding the data about the post-fertilization time of each image 
does not improve the results. It is unclear why this is the case, given the strong relationship between 
time from fertilisation and developmental stage, but a likely cause is the 100s of embryos in our data 
set that fail to develop into blastocysts, reducing the predictive ability of time. This is a positive result 
and lends support to the potential for Model 1 to generalise across clinics with different media and 
embryo conditions that might affect developmental timings. 

The precise timing of MK stages holds significant interest, and through the application of proposed 
models and post-processing algorithms, it was possible to extract these timings accurately; the errors 
predominantly fall within a 1-hour range for the worst class(tB), which is equivalent to 3 frames, 
given the imaging time steps of every 20 minutes. The worst classes in morphokinetic timing 
detections are tB, with an average error of 1.6 hours (96 minutes). While this sounds high, the 
“incorrect” predictions are predominantly 3.7% tSB and objectively defining the transition point to 
blastulation using only the centre focal plane is challenging. Current commercial software, which 
uses 150-400 min, suggests that this time frame of tB detection is acceptable to current lab practice 
[22].  
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Future open-source work on the Gomez dataset could help improve the annotations further, 
enhancing morphokinetic determinations across the field. For example, new annotations introduced 
here included wells that are too dark to observe the embryo and those without embryos as “empty”. 
Using the Gomez dataset as an objective benchmark for commercial morphokinetic software would 
provide a robust, repeatable metric to assess this class of model. Additionally, it would provide 
insight into which features, stages, or images are most difficult to predict on a model-by-model basis.   

There are several limitations to the current approach. The model relies on human-annotated ground 
truth labels and as we showed in Fig 7 and Supp Fig 1,2,3. While we cleaned up the labels a small 
amount by labelling the empty and dark wells as “empty”, there is likely not a consensus embryo 
staging for each image, especially during stage transitions, i.e. t4-t5. Our mitigation attempt was 
based upon removing two images before and after the transition during training but predicting these 
transitions during evaluation on the test set.  
 

Conclusion 
This study introduces a highly accurate machine learning model for detecting the morphokinetic 
stages of human embryos, significantly advancing in vitro fertilization (IVF) technology. The inclusion 
of a novel post-processing algorithm, which is not constrained by monotonicity, allows for the 
detection of reverse cleavage events, providing a more nuanced understanding of embryo 
development. By automating and enhancing the annotation of morphokinetic stages—traditionally a 
subjective and labour-intensive process—the model improves dataset quality and performance. This 
model outperforms previous methodologies, potentially streamlining embryo selection in clinical 
practice and thus decreasing the time of pregnancy. 
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