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SUPPLEMENTARY FIGURES

Supplementary Fig. 1

Supplementary Fig. 1 | Comparison of gene-cell-type prediction performance across
ancestry-specific snTIMs. Color of each point represents the cell-type (see legend). Comparisons
are for EUR vs AFR (A), EUR vs AMR (B) and AFR vs AMR (C) snTIMs. A. 3,819 genes are imputed
in EUR and not AFR snTIMs, and vice versa for 2,378 genes. B. 7,824 genes are imputed in EUR
and not AMR snTIMs, and vice versa for 1,558 genes. C. 6,795 genes are imputed in AFR and not
AMR snTIMs, and vice versa for 1,970 genes. r: Spearman’s correlation coefficient.



Supplementary Fig. 2

Supplementary Fig. 2 | Spearman’s correlation (A) and Jaccard similarity (B) of cross-ancestry
prediction performance at different cell-type levels. Each point represents a pairwise analysis
(Spearman’s correlation for A and Jaccard index for B, respectively) of R2

CV across all shared
imputable genes (“N”) between ancestries for the same snTIM. Applicable pairwise ancestry
comparisons include EUR-AFR, EUR-AMR and AFR-AMR colored orange, purple and light-blue,
respectively. Point shape denotes snTIM level including snBulk, Class and Subclass. Dashed lines
represent linear regression lines. A. log10(N) is positively associated (p = 1.01×10-5) with Spearman’s
correlation in the linear regression analysis (p = 1.01×10-5, adjusted R2 = 0.21). B. log10(N) is
positively associated (p = 1.91×10-24) with the Jaccard index in a linear regression model (p =
3.81×10-24, adjusted R2 = 0.679).



Supplementary Fig. 3

Supplementary Fig. 3 | Expanded heatmap of S-TWAS significant gene-trait associations by
cell-type hierarchy level. The number within each cell represents the number of FDR33-significant
gene-trait associations (GTAs) within each snTIM and level aggregate. FDR-correction for class and
subclass aggregate categories is performed across all participating models for that hierarchy level.
Color denotes the Jaccard index ( ) of the specific cell (x) against the union of all|𝑥 ∩ 𝑎𝑙𝑙|

|𝑥 ∪ 𝑎𝑙𝑙|

FDR-significant trait-associated genes across Bulk, snBulk, class and subclass. S-TWAS analysis is
limited to EUR ancestry.



Supplementary Fig. 4

Supplementary Fig. 4 | Heatmap of novel GTAs. Number in each cell indicates the number of novel
GTAs (as in Fig. 2C) found in each snTIM and level aggregates. Color of each cell indicates the effect
size of the fisher’s exact test comparing each snTIM to snBulk.



Supplementary Fig. 5

Supplementary Fig. 5 | Expanded gene fine-mapping heatmaps. A, Expanded heatmap of
S-snTWAS individual-cell-type gene fine-mapping. The numbers at the top and bottom of each cell
indicate the count of fine-mapped genes and loci, respectively. Color indicates the genes per locus for
every trait-snTIM combination. Fine-mapping was performed with FOCUS for each cell-type. FOCUS
performs analyses at the LD block level rather than the standard 1 mega base pair window from the
transcription start site which means that dysregulated GReX for a given gene-trait combination may
be driven by more than one locus. In our cell-type-specific snTWAS FOCUS analysis, in most loci one
gene was fine-mapped (PIP ≥ 0.5), with the exception of a few loci prioritizing more than one gene.
Interestingly, in a few instances (e.g. MDD PVM), a gene was fine-mapped in two different LD blocks.
B, Expanded heatmap of S-snTWAS multiple-cell-type gene fine-mapping. The numbers at the top
and bottom of each cell indicate the count of fine-mapped genes and loci, respectively. Color
indicates the genes per locus for every trait-snTIM combination. Fine-mapping was performed with
FOCUS while jointly considering all cell-types at the class level.



Supplementary Fig. 6







Supplementary Fig. 6 | Multivariate adaptive shrinkage (mash) analysis in S-snTWAS traits.
Heatmaps depicting the combinatorial probability that an effect exists in cell-type A and not in

cell-type B at the class level. Only results with a in at least one comparison𝑃(𝐶𝑒𝑙𝑙
𝐴

∩ 𝐶𝑒𝑙𝑙
𝐵
𝐶) ≥ 0. 2

were retained for visualization. The top 20 results (ordered by the maximum row-wise combinatorial
probability) are displayed for BD (A), SCZ (B), AD (C), MS (D), AUD (E), ALS (F), PD (G), Anorexia
(H), Migraines (I), MDD (J), ADHD (K), Insomnia (L). Cell type probabilities are estimated with mash.
Cells are colored gray when the analysis is not applicable.



Supplementary Fig. 7







Supplementary Fig. 7 | Gene-trait association effect size heterogeneity scatterplots. Gene
association effect size heterogeneity (I2) across cell types for BD (A), SCZ (B), AUD (C), Migraines
(D), MDD (E), Insomnia (F). Significance denotes the presence of different effects of individual cell
types in the analysis (Cochran’s Q test). Only genes with significant GTAs in S-snTWAS analysis are
visualized. Color corresponds to cell-type (Extended Data Fig. 2). Only traits with a high enough
sample size in the MVP (see Methods) were evaluated for heterogeneity, due to need for effect size
estimates. AD is visualized in Fig. 3C. ADHD, ALS, Anorexia, MS, and PD are excluded due to few
cases in the MVP. PTSD and Anxiety are excluded due to few significant S-snTWAS associations.



Supplementary Fig. 8

Supplementary Fig. 8 | GTA:BIN1-AD Forest Plot. Significant associations are marked by an
asterisk. Horizontal bars denote the 95% confidence interval.



Supplementary Fig. 9





Supplementary Fig. 9 | Top 10 pathways enriched within all S-snTWAS traits. Pathways were
prioritized by p-value. Hierarchical pruning was performed to deprioritize pathways (see Methods).
For each cell-type, the top 2 significant pathways after hierarchical pruning (if any) were prioritized.



We describe the following traits in each panel: BD (A), MS (B), AUD (C), ALS (D), PD (E), Migraines
(F), MDD (G), ADHD (H), Insomnia (I). AD and SCZ are described within Extended Data Fig. 5B.



Supplementary Fig. 10



Supplementary Fig. 10 | Cross-disorder concordance. A, Fisher’s exact test Heatmap of
cross-disorder significant gene sharing. Lower-Left Triangle: The number in each cell describes the
number of shared significant genes (lower-left triangle) or pathways (upper-right triangle) between
each pair of disorders. Fisher’s exact test p-values were FDR33-corrected, and significant values are
annotated by asterisks. B, Cross-disorder association concordance. Each point represents the
percent of concordant gene-cell-type (Lower-Left Triangle) or pathway-cell-type (Upper-Right
Triangle) combinations (same association z-score sign) under the appropriate p-value threshold in
both disorders. Each progressive point restricts the p-value threshold 10-fold (i.e. p≤1, p≤1×10-1,
p≤1×10-2, …). Red and blue dashed horizontal lines denote a 0.75 (75%) and 0.25 (25%) sign
concordance, respectively. C, snTWAS cross-disorder progressive thresholding correlation analysis
(PTCA). Each line graph tracks the cross-disorder association z-score Pearson’s correlation for
progressively higher ranked (see Methods) gene-cell-type (Lower-Left Triangle) or pathway-cell-type
(Upper-Right Triangle) combinations. Red and blue dashed horizontal lines denote a 0.75 and 0.25
Pearson’s correlation coefficient (r), respectively. Vertical dotted lines denote top 1% of gene-cell-type
and pathway-cell-type combinations for the lower-left and upper-right triangles, respectively.



Supplementary Fig. 11

Supplementary Fig. 11 | LD Score Regression bivariate heritability analysis. Heatmap values
range from -1 to 1 to indicate heritability correlation. Red indicates positive correlation, violet indicates
negative correlation.



Supplementary Fig. 12

Supplementary Fig. 12 | I-snTWAS GTA Heatmap for EUR (A), AFR (B) and AMR (C) ancestries.
The number within each cell represents the number of FDR33-significant gene-trait associations for
the respective snTIM. “Class” and “Subclass” represent the number of FDR-significant genes among
all class- and subclass-level snTIMs, respectively.



Supplementary Fig. 13

Supplementary Fig. 13 | Overlap of cross-ancestry fine-mapping. A, Overlap of TWAS and
fine-mapping in single ancestry and multi-ancestry fine-mapping across the 9 I-snTWAS traits.
Annotated numbers in the barplot indicate the total number of GTAs in each category (i.e. there are
550 fine-mapped GTAs in EUR and 1,636 I-snTWAS significant GTAs). Y-axis indicates the
population in which analysis was performed. “MA” indicates the MA-FOCUS bi-ancestral analysis and
the union of EUR and AFR I-snTWAS significant trait-gene-cell-type combinations for fine-mapping
and TWAS, respectively. B, Overlap of fine-mapped GTAs (FOCUS for EUR and AFR; MA-FOCUS



for bi-ancestral EUR and AFR). C, Distribution of PIP values (FOCUS for EUR and AFR, MA-FOCUS
for bi-ancestral EUR and AFR) amongst I-snTWAS significant trait-gene-cell-type combinations for
each ancestry (“MA” indicates the union of EUR and AFR I-snTWAS significant trait-gene-cell-type
combinations). Square points indicate the median values of each distribution and circular points
indicate the mean values of each distribution.



Supplementary Fig. 14









Supplementary Fig. 14 | MAFOCUS plots for NPD/NDDs. Bi-ancestral (EUR and AFR)
fine-mapping of BD (A), SCZ (B), AD (C), Insomnia (D), MDD (E), Migraines (F), Anxiety (G), PTSD
(H). The top 10 trait-associated genes in the AFR I-snTWAS analysis are visualized across class level
snTIMs. Z-scores are scaled across all genes within each population. AUD is visualized in Fig. 5E.



Supplementary Fig. 15

Supplementary Fig. 15 | Conservation of cross-ancestry concordance of GReX-PheWAS
associations among top trait-gene-cell-type combinations. PheWAS was performed for all genes
found to have a significant (Bonferroni-adjusted p-value ≤ 0.05) association in the I-snTWAS analysis
spanning all snTIMs and ancestries (EUR, AFR and AMR). For each pairwise ancestry combination,
trait-specific PheWAS associations were binned (x-axis) based on the maximum p-value of the
shared gene-cell-type combinations (n=1,757, 880 and 681 in EUR-AFR, EUR-AMR, and AFR-AMR,
respectively); only phecodes with at least 500 cases and 500 controls were considered.
Consequently, the percentage of associations with concordant effect size signs for each ancestry
pairwise combination is visualized among increasing p-value significance thresholds. Shaded region
around each line represents the 95% confidence interval. Size of the point represents the number of
gene-cell-type combinations at that threshold. To visualize a specific p-value threshold, we require a
minimum number of observations corresponding to 2% of the applicable gene-cell-type combinations
(36, 18 and 14 for EUR-AFR, EUR-AMR and AFR-AMR, respectively). Please note that we are
underpowered for the AFR-AMR comparison.



Supplementary Fig. 16

Supplementary Fig. 16 | CELF1 sn-eQTLs for inhibitory and excitatory neurons. Sn-eQTLs for
CELF1 across 2 cell-types. Cell-types were chosen based on the differing association of cell-type
specific CELF1 GReX with various phenotypes. Labeled points indicate SNPs in which there is a
significant (FDR33 ≤ 0.05; threshold for significance is indicated by horizontal dashed lines) effect in
one cell-type but not the other. No SNPs contained significant effects in opposite directions for the
two cell-types. Plotted SNPs were selected using a superset of SNP predictors in both CELF1
snTIMs. Upward arrow indicates positive effect size and downward arrow indicates negative effect
size. The vertical dotted line divides the LD blocks (utilizing EUR LD blocks as previously
described113).



Supplementary Fig. 17







Supplementary Fig. 17 | Clustering of top PheWAS associations in S-snTWAS. PheWAS for the
top 20 gene-cell-type combinations ranked from the S-snTWAS for each trait; each gene is
represented by the cell-type with the lowest association p-value. In addition to each trait (mapped to
the bolded italicized phecode), the top 20 (if at least 20 distinct phecodes are significant amongst the
op 20 gene-cell-type combinations) phecodes among all phecode categories ranked by association p
value are visualized. Ward’s hierarchical agglomerative clustering was performed with Ward’s
criterion preservation. We describe the following traits in each panel: BD (A), SCZ (B), AD (C),
Migraines (D), MDD (E), Insomnia (F). AUD is described within fig. 6C. ADHD, ALS, Anorexia, MS,
and PD are excluded due to few cases in the MVP. PTSD and Anxiety are excluded due to few
significant S-snTWAS associations.



Supplementary Fig. 18

Supplementary Fig. 18 | Comparison of batch effect correction methods. To assess the impact
of different batch effect correction methods on overall power, we utilized the FACS-MG cohort.
“rePEER” refers to the method to perform PEER on each batch separately and again altogether after
aggregation of all PEER-residualized expression data. “PEER” refers to the method to just perform
PEER on all expression data aggregated across all batches. “PEER+PC1:3” refers to the method to
perform PEER on all expression data aggregated across all batches with genotyping PCs 1, 2, and 3
supplied to the PEER algorithm. Each point represents the number of significant eQTLs



(FDR33-adjusted p-value ≤ 0.05) found at each selected number of PEER factors used in each
method (using the second round of PEER for the “rePEER” method).



Supplementary Fig. 19

Supplementary Fig. 19 | GWAS imputation accuracy.We randomly selected SNPs for each GWAS
(Table S17) (mean number of selected SNPs was 23,018 with a standard deviation of 14,334). For all
selected SNPs, we performed GWAS imputation as if the SNP was missing so that we could observe
the accuracy of GWAS imputation on missing data. GWAS imputation is described for each included
trait: BD (A), SCZ (B), AD (C), MS (D), AUD (E), ALS (F), PD (G), Anorexia (H), Migraines (I), MDD
(J), ADHD (K), Insomnia (L), Anxiety (M), PTSD (N). Every plot is annotated with the Pearson’s
correlation coefficient (r) and p-value. Color of the point indicates the imputation r2. Only missing
SNPs with imputation r2 ≥ 0.7 were retained for further analysis. Black diagonal line is a reference line
with a slope of 1.
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