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Supplementary Materials 1 

The “vaccinatable” population and doses requiring a decision 2 

Assume that we have 𝐷 vaccine doses for deployment. In order to consider our question of 3 
deploying vaccine doses as first or second doses we only wish to model the impact of those 4 
fraction of the doses that we actually have a choice to deploy as second doses. I.e. if 𝑘 5 
individuals have received a first dose, and have not yet been infected, and 𝑘 < 𝐷, then only 𝑘 6 
of our total doses 𝐷 require a decision of deploying as a first or second dose. On the other 7 
hand, if 𝑘 ≥ 𝐷, then we can choose to deploy all of our doses as second doses. Thus, we only 8 
consider the doses of vaccine for which a deployment decision is required, (we call this 9 
quantity 𝑑 = min	(𝑘, 𝐷)). 10 

Therefore, for the vaccine doses, 𝑑 we can either deploy them to a group of 𝑑 people who 11 
have already received 1 dose (and who we assume have not been infected, call this 12 
population, 𝑁! = 𝑑), or a different group of 𝑑 people who have not received a first dose (call 13 
this population, 𝑁" = 𝑑). Therefore, we define the “vaccinatable” individuals as these 𝑁! +14 
𝑁" = 2𝑑 individuals in our total population to whom we could choose to deploy our 𝑑 15 
vaccine doses (either as a first dose or a second dose). We assume that the individuals with 1 16 
dose already (𝑁!) received their first dose 𝑠 weeks before the current vaccine deployment 17 
decision of interest and that 𝑠 is at least 4 weeks (given the MVA-BN vaccine schedule 18 
recommends a second dose not earlier than 4 weeks after the first).  19 

Generalising the comparison of one and two dose strategies when the force of infection 20 
is not constant with time. 21 

Within our analysis we calculate the expected number of cases that occurs within the 22 
vaccinatable population (𝑑). This analysis used a constant force of infection to model the case 23 
numbers and the resulting ratio of cases averted is given by (methods equation 3), 24 

𝑅𝐶𝐴(𝑡) =
𝐶𝐴!(𝑡)
𝐶𝐴#(𝑡)

=
∫ 𝑉𝐸!(𝑥)𝑑𝑥
$
" + ∫ 𝑉𝐸!(𝑥 + 𝑠)𝑑𝑥

$
"

∫ 𝑉𝐸#,&(𝑥)𝑑𝑥
$
"

. (1) 25 

This quantity translates to the ratio of the average vaccine effectiveness across a group of 26 
people (unvaccinated individuals contribute 0 to average effectiveness).  27 

Applying a more sophisticated model, we can model case numbers when the infection rate 28 
varies with time. That is, consider an unvaccinated susceptible population, 𝑆', with a varying 29 
rate of exposure over time. The number of susceptible unvaccinated individuals over time, 𝑡, 30 
is described by,  31 

𝑑𝑆'
𝑑𝑡 = −𝑟(𝑡)𝑆', 

(2) 

 32 

where 𝑟(𝑡) is the infection rate at time, 𝑡. Here we ignore effects of individuals becoming 33 
susceptible again (i.e. we assume infected individuals acquire a high level of immunity for 34 
the duration of our analysis). Similarly, for a susceptible vaccinated population, 𝑆(, we 35 
describe this rate of infection being reduced by one minus the vaccine effectiveness (VE), 36 
and so the number of vaccinated, susceptible individuals is described by, 37 
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𝑑𝑆(
𝑑𝑡 = −?1 − 𝑉𝐸(𝑡)@𝑟(𝑡)𝑆( . 

(3) 

 38 

Solving, equations (2) and (3) we find that the number of unvaccinated and vaccinated 39 
susceptible individuals at a time 𝑡 are given by, 40 

𝑆'(𝑡) = 𝑆'(0)𝑒)∫ +(-)/-!
"  (4) 

and 41 

𝑆((𝑡) = 𝑆((0)𝑒)∫ +(-)0!)12(-)3	/-!
" = 𝑆((0)𝑒)∫ +(-)/-!

" 𝑒∫ +(-)12(-)	/-!
"  (5) 

respectively.  42 

Therefore, the total number of cases that have occurred between time 𝑡 = 0 and time 𝑡 in the 43 
unvaccinated and vaccinated populations are given by, 44 

𝐼'(𝑡) = 𝑆'(0) − 𝑆'(0)𝑒)∫ +(-)/-!
"  (6) 

and  45 

𝐼((𝑡) = 𝑆((0) − 𝑆((0)𝑒)∫ +(-)/-!
" 𝑒∫ +(-)12(-)	/-!

"  
 

(7) 

respectively.  46 

The deployment strategies 47 

We now consider three scenarios 48 

i. Baseline reference scenario 49 

First, as a reference, we consider a scenario of a naïve population. Under this scenario a 50 
group of 2𝑑 naïve individuals are exposed to the force of infection 𝑟(𝑡). Thus, from equation 51 
(6) above, and noting that in our case we have 𝑆'(0) = 𝑆((0) = 2𝑑, the total number of 52 
cases by time 𝑡 is given by, 53 

𝐼56&7(𝑡) = 2𝑑 D1 − 𝑒)∫ +(-)/-!
" E 

 

(8) 

ii. Two dose scenario 54 

Under this scenario, the doses 𝑑 are deployed to the group 𝑁! as second doses. This provides 55 
these individuals with the VE of two doses, but provides individuals in the group 𝑁" with no 56 
protection. The second dose is administered at the time of the decision point 𝑡 = 0 and the 57 
vaccine effectiveness of this group is given by 𝑉𝐸#,&(𝑡), where 𝑠 is the space between the first 58 
and second dose (since VE is influenced by dose spacing). Thus, from equations (6) and (7) 59 
the total number of cases that will occur by time 𝑡 under this scenario is given by, 60 

𝐼#/8&7(𝑡) = 𝑑 D2 − 𝑒)∫ +(-)/-!
" − 𝑒)∫ +(-)(!)12#,%(-))	/-

!
" E (9) 
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The number of cases averted in the two dose scenario can be calculated by comparing the 61 
total number of cases under this scenario with the number of cases under the baseline 62 
scenario. Therefore the number of cases averted under the two dose scenario, 𝐶𝐴!(𝑡), is given 63 
by: 64 

𝐶𝐴#(𝑡) = 𝐼56&7(𝑡) − 𝐼#/8&7(𝑡) = 𝑑 D𝑒)∫ +(-)(!)12#,%(-))	/-
!
" − 𝑒)∫ +(-)/-!

" E (10) 

 65 

iii. One dose scenario 66 

Finally, we consider the scenario where the 𝑑 doses are deployed as first doses to the 𝑁" 67 
group. This leaves the 𝑁! group with the waning protection of their first dose given 𝑠 + 𝑡 68 
earlier. From equation (7) it follows that the total number of cases by time 𝑡 under this 69 
scenario is given by, 70 

𝐼!/8&7(𝑡) = 𝑑 D2 − 𝑒)∫ +(-)(!)12&(-))	/-
!
" − 𝑒)∫ +(-)(!)12&(-9&)	)/-

!
" E 

 

(11) 

 71 

The number of cases averted in the one dose scenario can be calculated by comparing the 72 
total number of cases under this scenario with the number of cases under the baseline 73 
scenario. Therefore the number of cases averted under the one dose scenario, 𝐶𝐴"(𝑡), is given 74 
by: 75 

𝐶𝐴!(𝑡) = 𝐼56&7(𝑡) − 𝐼!/8&7(𝑡)
= 𝑑 D𝑒)∫ +(-)(!)12&(-))	/-

!
" + 𝑒)∫ +(-)(!)12&(-9&)	)/-

!
"

− 2𝑒)∫ +(-)/-!
" E. 

(12) 

 76 

Under the above scenarios we have calculated the cases averted using either the one or two 77 
dose vaccination strategy. To simplify these relationships further, we now make first order 78 
approximation of the exponential terms in equations (10) and (12). This first order 79 
approximation assumes that the total force of infection over the relevant time interval is small 80 

(in an unvaccinated cohort is small – i.e. ∫ 𝑟(𝜆)	𝑑𝜆$
" ≪ 1, which is akin to an assumption of 81 

rare events – of note, since VE is between 0 and 1, it follows that ∫ 𝑟(𝜆)𝑉𝐸(𝜆)	𝑑𝜆$
" <82 

∫ 𝑟(𝜆)	𝑑𝜆$
" ≪ 1). Under this assumption second order and larger terms in the Taylor 83 

expansion of an exponential function, given by, 84 

𝑒: = 1 + x +
x#

2! +
x;

3! + ⋯ 85 

will be very small and thus, we assume, 86 

𝑒)∫ +(-)(!)12#,%(-)	)/-
!
" ≈ 1 − M 𝑟(𝜆) D1 − 𝑉𝐸#,&(𝜆)E 	𝑑𝜆

$

"
 87 
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𝑒)∫ +(-)12&(-9&)	/-
!
" ≈ 1 −M 𝑟(𝜆)(1 − 𝑉𝐸!(𝜆 + 𝑠))	𝑑𝜆

$

"
 88 

𝑒)∫ +(-)12&(-)	/-
!
" ≈ 1 −M 𝑟(𝜆)(1 − 𝑉𝐸!(𝜆))	𝑑𝜆

$

"
 89 

and  90 

𝑒)∫ +(-)	/-!
" ≈ 1 −M 𝑟(𝜆)𝑑𝜆

$

"
. 91 

Substituting these approximations into equations (10) and (12) gives, 92 

𝐶𝐴#(𝑡) = 𝑑 NM 𝑟(𝜆) D𝑉𝐸#,&(𝜆)E 	𝑑𝜆
$

"
O 

(13) 

 93 

and 94 

𝐶𝐴!(𝑡) = 𝑑 NM 𝑟(𝜆)?𝑉𝐸!(𝜆 + 𝑠)@𝑑𝜆
$

"
+M 𝑟(𝜆)(𝑉𝐸!(𝜆))	𝑑𝜆

$

"
O. 

(14) 

 95 

It is clear from the above that the ratio of cases averted (equations 13 and 14) will not be 96 
independent of the force of infection, as was the case when the force of infection was 97 
constant (main text). However, instead we can look at the difference in cases averted in these 98 
two cases, 99 

𝐶𝐴!(𝑡) − 𝐶𝐴#(𝑡)

= 𝑑 NM 𝑟(𝜆)?𝑉𝐸!(𝜆 + 𝑠)@𝑑𝜆
$

"
+M 𝑟(𝜆)(𝑉𝐸!(𝜆))	𝑑𝜆

$

"

−M 𝑟(𝜆) D𝑉𝐸#,&(𝜆)E 	𝑑𝜆
$

"
O. 

 

(15) 

Therefore, it follows that for the cases averted by the one dose strategy to be greater than the 100 
two dose strategy we require that, 101 

𝐶𝐴!(𝑡) − 𝐶𝐴#(𝑡)

= 𝑑 NM 𝑟(𝜆)𝑉𝐸!(𝜆)	𝑑𝜆
$

"
+M 𝑟(𝜆)𝑉𝐸!(𝜆 + 𝑠)	𝑑𝜆

$

"

−M 𝑟(𝜆)𝑉𝐸#,&(𝜆)	𝑑𝜆
$

"
O > 0 

(16) 

and this can only be true when 102 

NM 𝑟(𝜆)𝑉𝐸!(𝜆)	𝑑𝜆
$

"
+M 𝑟(𝜆)𝑉𝐸!(𝜆 + 𝑠)	𝑑𝜆

$

"
−M 𝑟(𝜆)𝑉𝐸#,&(𝜆)	𝑑𝜆

$

"
O > 0, 

 

(17) 

 103 

since 𝑑 > 0. Combining these integrals, we see that we require that 104 
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NM 𝑟(𝜆) D𝑉𝐸!(𝜆) 	+ 𝑉𝐸!(𝜆 + 𝑠) − 𝑉𝐸#,&(𝜆)E
$

"
𝑑𝜆O > 0. 

 

(18) 

We notice that under the strict condition that 𝑉𝐸!(𝜆) 	+ 𝑉𝐸!(𝜆 + 𝑠) − 𝑉𝐸#,&(𝜆) > 0 for all 105 
0 < 𝜆 < 𝑡, equation (18) will hold true. Thus, rearranging this expression, we see that the one 106 
dose strategy will avert more cases than the 2 dose strategy if the ratio (which we call the 107 
vaccine effectiveness of the vaccinatable population, RVE),  108 

𝑅𝑉𝐸(𝑡) =
𝑉𝐸!(𝑡) + 𝑉𝐸!(𝑡 + 𝑠)

𝑉𝐸#,&(𝑡)
> 1, 

(19) 

at all time-points in our time interval of interest (2 years in the main text).  109 

In the same way the cases averted by the two dose strategy will be greater than the one dose 110 
when the ratio 𝑅𝑉𝐸(𝑡) < 1 at all time-points. 111 

Importantly, this ratio is greater than 1 at all time points for the MVA-BN vaccine regimens 112 
we are considering (figure S1). Therefore, our result that more cases will be averted by 113 
administering limited vaccine doses as first doses to as many individuals as possible rather 114 
than as second doses to those already vaccinated in the main text holds independently of 115 
assumptions of a constant force of infection. 116 

 117 

Figure S1: The ratio of vaccine effectiveness at each time point, 𝑅𝑉𝐸(𝑡), from equation (19) 118 
when the space between doses is, 𝑠, 4 weeks. Since this ratio is always greater than 1 over the 119 
2 year period of interest, it follows (as described above) that a one-dose vaccination strategy 120 
will avert more cases than a two dose strategy, given limited vaccine supply.  Note that the 121 
same result holds whether the spacing of doses is 6 months or 1 year (not shown).  122 

 123 
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Considering a time varying force of infection along with different risks of infection or 124 
severe outcomes 125 

Finally, we consider the case of a time varying force of infection and two groups with 126 
different force of infection. We assume the force of infection in the high risk group is given 127 
by 𝑟<(𝑡) = 𝑟<ℎ(𝑡) and the risk in the low risk group is given by 𝑟=(𝑡) = 𝑟=ℎ(𝑡), where ℎ(𝑡) is 128 
the time varying component of the force of infection. Under this assumption the relative risk 129 
between the two groups is constant over time, but the absolute force of infection for each 130 
group is time varying. Under this assumption we see that, 131 

𝐼#/8&7(𝑡) = 𝑑 D2 − 𝑒)+' ∫ <(-)/-!
" − 𝑒)+( ∫ <(-)/-!

" 𝑒+( ∫ <(-)12#,%(-)	/-
!
" E (20) 

and  

𝐼!/8&7(𝑡) = 𝑑 D2 − 𝑒)+' ∫ <(-)/-!
" 𝑒+' ∫ <(-)12&(-)	/-

!
"

− 𝑒)+( ∫ <(-)/-!
" 𝑒+( ∫ <(-)12&(-9&)	/-

!
" E 

The difference in cases averted between these two strategies is given by, 

(21) 

𝐶𝐴!(𝑡) − 𝐶𝐴#(𝑡)
= 𝑑 D𝑒)+' ∫ <(-)/-!

" + 𝑒)+( ∫ <(-)/-!
" 𝑒+( ∫ <(-)12#,%(-)	/-

!
"

− 𝑒)+' ∫ <(-)/-!
" 𝑒+' ∫ <(-)12&(-)	/-

!
"

− 𝑒)+( ∫ <(-)/-!
" 𝑒+( ∫ <(-)12&(-9&)	/-

!
" E 

 
Taking a first order approximation, as above, and expanding and simplifying we 
find that 
 

(22) 

𝐼!/8&7(𝑡) − 𝐼#/8&7(𝑡)

≈ 𝑑 N𝑟=M ℎ(𝜆)𝑉𝐸!(𝜆)	𝑑𝜆
$

"
+ 𝑟<M ℎ(𝜆)𝑉𝐸!(𝜆 + 𝑠)	𝑑𝜆

$

"

− 𝑟<M ℎ(𝜆)𝑉𝐸#,&(𝜆)	𝑑𝜆
$

"
O. 

(23) 

 132 

Thus, as above  𝐼!/8&7(𝑡) − 𝐼#/8&7(𝑡) > 0 only when,  133 

M ℎ(𝜆) D𝑟=𝑉𝐸!(𝜆) + 𝑟<𝑉𝐸!(𝜆 + 𝑠) − 𝑟<𝑉𝐸#,&(𝜆)E 	𝑑𝜆
$

"
> 0. 

(24) 

Equation (24) will be satisfied whenever  134 

𝑟=𝑉𝐸!(𝜆) + 𝑟<𝑉𝐸!(𝜆 + 𝑠) − 𝑟<𝑉𝐸#,&(𝜆) > 0 (24) 

for all 0 < 𝜆 < 𝑡. 135 

Thus, the one dose strategy will avert more cases than the 2 dose strategy whenever, 136 
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𝑟<
𝑟=
>

𝑉𝐸!(𝑡)
𝑉𝐸#,&(𝑡) − 𝑉𝐸!(𝑡 + 𝑠)

 
(25) 

for time points in our analysis. From this we see that in the case of a time varying force of 137 
infection, we can define a critical relative risk threshold between high risk and low risk 138 
individuals, such that when the ratio in equation 25 is satisfied, we can be confident the one 139 
dose-strategy is superior. This proof leaves open the possibility that even in some cases 140 
where equation (25) is not satisfied, the one-dose strategy may be optimal.  141 


