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Abstract  21 

Background: Antiretroviral therapy (ART) suppresses viral replication in most people living 22 

with HIV-1 (PLWH). However, PLWH remain at risk of viral rebound. HIV-1 infection 23 

modifies the content of extracellular vesicles (EVs). The changes in microRNA content in EVs 24 

are biomarkers of immune activation and viral replication in PLWH. Moreover, viral molecules 25 

are enclosed in EVs produced from infected cells. Our objective was to assess the value of EV-26 

associated HIV-1 RNA as a biomarker of immune activation and viral replication in PLWH. 27 

Methods: Plasma samples were obtained from a cohort of 53 PLWH with a detectable viremia. 28 

Large and small EVs were respectively purified by plasma centrifugation at 17,000 x g and by 29 

precipitation with ExoQuick™. HIV-1 RNA and microRNAs were quantified in the EV 30 

subtypes by RT-qPCR. 31 

Findings: HIV-1 RNA content was higher in large EVs of ART-naive PLWH. Small EVs HIV-32 

1 RNA was equivalent in ART-naive and ART-treated PLWH and positively correlated with 33 

CD4/CD8 T cell ratio. In ART-naive PLWH, HIV-1 RNA content of large EVs correlated with 34 

small EV-associated miR-29a, miR-146a and miR-155, biomarkers of viral replication and 35 

immune activation. A receiver operating characteristics analysis showed that HIV-1 RNA in 36 

large EVs discriminated PLWH with a high CD8 T cell count.   37 

Interpretation: HIV-1 RNA in large EVs was associated with viral replication and immune 38 

activation biomarkers. Inversely, HIV-1 RNA in small EVs was related to immune 39 

restoration.  Overall, these results suggest that HIV-1 RNA quantification in purified EVs could 40 

be a useful parameter to monitor HIV-1 infection. 41 

Funding: Canadian Institutes of Health Research (CIHR) grants MOP-391232; MOP-188726; 42 

MOP-267056 (HIV/AIDS initiative) 43 

Keywords (3-5): extracellular vesicles subtypes, HIV-1 RNA, immune activation, virological 44 

failure 45 
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 46 

Research in context 47 

Evidence before this study 48 

Antiretroviral therapy (ART) suppress viral replication to make HIV-1 infection manageable, 49 

but fails to clear the virus from people living with HIV-1 (PLWH). Hence, the infection 50 

becomes a chronic condition characterized by a dysfunction of the immune system caused by 51 

repeated activation and a persistent risk of a resurgence of viral replication (viral rebound). New 52 

biomarkers are required to improve the care of PLWH by identifying the individuals with a 53 

greater immune dysfunction and/or a higher risk of viral rebound. HIV-1 infection modifies the 54 

abundance, size and content of plasmatic extracellular vesicles (EVs). Specific host microRNAs 55 

enrcichment in EVs correlates with immune activation and viral rebound. In addition, viral 56 

proteins and genomic material are found within EVs. Various EV subtypes are released by 57 

infected cells, all using different biogenesis machinery. The distribution of HIV-1 RNA in EV 58 

subtypes has never been assessed and this novel parameter could provide information on the 59 

infection progression. 60 

Added value of this study 61 

This study provides the first quantification of HIV-1 RNA in two EV subtypes, large and small, 62 

from the plasma of PLWH. Large EVs HIV-1 RNA was lower in ART-treated PLWH and 63 

decreased with the duration of treatment. HIV-1 RNA associated to large EVs was a better 64 

predictor of immune activation than the standard plasma viral load. Inversely, the HIV-1 RNA 65 

concentration in small EVs was unaffected by ART and linked to better immune functions. 66 

Overall, the results presented in this study suggest that HIV-1 RNA in large EVs originates 67 

from ongoing viral replication, while HIV-1 in small EVs is the produce of proviral 68 

transcription. 69 

Implications of all the evidence 70 
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The standard procedure for the clinical care of PLWH is to quantify HIV-1 RNA in the whole 71 

plasma, disregarding the context of its production. We show that the differential distribution of 72 

HIV-1 RNA in large and small EVs seems to be an indicator of disease progression. The 73 

purification of plasmatic EVs is considered as a non-invasive liquid biopsy to assess the 74 

progression of diseases. PLWH could benefit from the analysis of their plasmatic EVs to 75 

monitor the infection with an improved precision.  76 
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1. Introduction 77 

Forty years have passed since the outbreak of the HIV-1 pandemic (1). The greatest progress 78 

in fighting HIV-1 infection was the discovery of molecules that inhibit HIV-1 replication (2). 79 

This led to the implementation of antiretroviral therapy (ART), which remains to this day the 80 

only way to manage HIV-1 infection (3). ART blocks HIV-1 replication in people living with 81 

HIV-1 (PLWH), but viral reservoirs persist.  Consequently, ART must be taken daily by PLWH 82 

to avoid viral rebound and plasmatic viral load has to be measured every six months to ensure 83 

viremic control (4).  84 

 85 

Virological failure is either caused by treatment resistance or loss of treatment adherence (5). 86 

Due to virological failure, CD4 T lymphocyte count plummets and the treatments must be 87 

optimized (6). Some PLWH have a detectable low-level viremia defined as non-suppressible 88 

viremia (NSV) (7, 8). Despite many years of ART, NSV occurs without the apparition of 89 

treatment resistance, and cannot be suppressed by treatment intensification (9). NSV originates 90 

from defective or replication-competent provirus transcriptional activity of infected T cell 91 

clones rather than new infection events (7). PLWH with NSV have an immune activation level 92 

similar to ART-suppressed PLWH (10). To summarize, a positive viral load assay could 93 

indicate an ongoing virus replication that requires immediate treatment optimization, or viral 94 

expression from latently infected cells for which treatment optimization is unnecessary (8). 95 

Thus, there is a need to understand better the mechanisms and the context behind detectable 96 

viremia in PLWH to facilitate their clinical care (8).  97 

 98 

In recent years, the roles of extracellular vesicles (EVs) as biomarkers and a non-invasive tool 99 

to monitor the HIV-1 disease progression have emerged (11-13).  EVs are nanoparticles 100 

enclosed by a bilayered lipid membrane (14). They are separated into two major subclasses 101 
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depending on their origin. The first class, microvesicles, is named large EVs in this article. 102 

Large EVs are the product of the membrane budding (15). The second class is exosomes, called 103 

small EVs in this paper. Small EVs originate from the inward budding of endosomes and are 104 

released in the extracellular environment when endosomes merge with the plasma membrane 105 

(16). The endosomal sorting complex required for transport (ESCRT) machinery is the major 106 

pathway of small EVs biogenesis (16). Cargo selection in EVs subtypes is simultaneously a 107 

passive and active process. It is passive because cytoplasm and membrane content can be 108 

randomly selected in EVs. As a result, component concentration in EVs changes according to 109 

cellular expression. The EV biogenesis machinery drives the active cargo selection process. 110 

Consequently, active cargo selection varies between EV subtypes and can increase cargo 111 

concentration independently of cellular expression changes (17). 112 

 113 

HIV-1 infection modifies the host microRNA content of EVs (18).  Enrichment of miR-29a, 114 

miR-146a and miR-155 in small EVs of PLWH under ART was a predictor of detectable 115 

viremia (12). MiR-155 in large EVs of PLWH under ART was a predictor of immune activation 116 

(19). MiR-155-enriched EVs enhanced HIV-1 infection and promoted inflammation in 117 

recipient cells (18). Due to the similarities between EVs and HIV-1 biogenesis, infected cells 118 

release EVs harbouring viral RNA and proteins (20, 21). The unspliced genomic RNA of HIV-119 

1 and the transactivation response element (TAR) RNA sequence were measured in the EVs 120 

released by infected cells (20-22). Inhibition of the ESCRT pathway lowers HIV-1 RNA 121 

concentration in EVs, showing its role in viral RNA sorting to EVs (22). Moreover, HIV-1 122 

RNA in EVs persists despite ART, even when the plasma viral load is indetectable (23).  123 

 124 

Since EV subtypes have different biogenesis pathways and we have shown differential 125 

biomarker roles for large and small plasmatic microRNA in EVs, we hypothesized that ART 126 
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influences the viral RNA distribution in both EVs subtypes of PLWH. This new measurement 127 

could be a future biomarker for HIV infection management. The present study showed that 128 

large EVs were more abundant and contained more HIV-1 RNA in ART-naive PLWH and 129 

HIV-1 RNA in small EVs was unaffected by ART but correlated with the CD4/CD8 ratio.   130 
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2. Methods 131 

2.1 Study participants 132 

The cohort of PLWH present in this study (n = 53) was selected from a larger cohort of PLWH 133 

recruited in Bobo-Dioulasso and Ouagadougou (Burkina Faso) (12, 19, 24). These participants 134 

were selected because they had a detectable plasma viral load at their recruitment. All 135 

participants were anonymous volunteers and provided written informed consent. 136 

 137 

2.2 Plasma EVs purification 138 

Plasma EVs purification was performed according to a well-established procedure (11, 24, 25). 139 

Platelet-free plasma (250 µL) was thawed at room temperature and treated with proteinase K 140 

(1.25 mg/mL) for 10 minutes at 37 ℃ to eliminate protein aggregates and extravesicular RNA. 141 

Then, the plasma was centrifuged at 3,000 x g for 15 minutes to discard apoptotic vesicles, and 142 

at 17,000 × g for 30 minutes to pellet large EVs. The remaining supernatant was mixed with 63 143 

µL ExoQuick™ (System Biosciences) reagent and incubated at 4 ℃ overnight. A centrifugation 144 

at 1,500 × g for 30 minutes precipitated small EVs. EV pellets were washed with 0.22 µm 145 

filtered PBS and resuspended in 250 µL of 0.22 µm filtered PBS. 146 

 147 

2.3 Hydrodynamic size measurement  148 

Quality, homogeneity and size of EV samples were analyzed by dynamic light scattering (DLS) 149 

with a Zetasizer Nano ZS (Malvern Instruments). Hydrodynamic diameter measurements were 150 

done in duplicate at room temperature. 151 

 152 
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2.4 EV quantification by flow cytometry 153 

Absolute EVs quantification by flow cytometry was performed as previously described (12). 154 

EVs were stained with lipophilic carbocyanine DiD dye and CellTraceTM CFSE (ThermoFisher 155 

Scientific), at a final concentration of 5 µM. DiD+ and CFSE+ events were considered EVs. 156 

EV concentration in our samples was determined with 15 µm silica beads (Polybead® 157 

Microspheres, Polysciences). The acquisition was performed on a modified BDFACS canto II 158 

with a photomultiplicator on the forward scatter (FSC) channel to improve nanoparticle 159 

detection. 160 

 161 

2.5 RNA extraction 162 

RNA was extracted from 50 µL of purified EVs (diluted in three volumes of Trizol® LS 163 

(ThermoFisher Scientific) using the phenol/chloroform method and resuspended in 15 µL of 164 

Tris/EDTA buffer (18, 26). RNA concentration was measured using a BioDrop™ 165 

spectrophotometer (Montreal Biotech Inc.).  166 

 167 

2.6 HIV-1 RNA quantification 168 

RT-PCR was performed on 5 µL of RNA with the Superscript IV reverse transcriptase kit 169 

(ThermoFisher Scientific) according to the manufacturer instructions with a final concentration 170 

of 10nM of primer set on a GeneAmp® PCR System 9700 (Applied Biosystems) (27). The 171 

primers were obtained from Integrated DNA Technologies: forward: 5’-172 

GCCTCAATAAAGCTTGCCTTGA-3’; reverse: 5’- GGCGCCACTGCTAGAGATTTT -3′ to 173 

target the 3’ LTR region of the HIV-1 genome (NCBI accession number: K03455.1). CDNA 174 

was pre-amplified as described before (28). QPCR reactions were performed with the 175 

QuantiTech SyBr Green kit (Qiagen) according to the manufacturer’s instructions on a CFX384 176 

Touch Real-Time PCR Detection System (Bio-Rad) (28).  177 
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 178 

2.7 MiRNA quantification by RT-qPCR 179 

Reverse transcription was achieved using the miScript RT kit (Qiagen) in a GeneAmp® PCR 180 

System 9700 (Applied Biosystems) (18). Quantitative PCR was conducted in 96-well plates 181 

(Multiplate™, BioRad©) with miScript SyBr® Green from Qiagen© using a CFX Connect™ 182 

Real-time system (Bio-Rad©). The primers for miR-29a (Cat: MS00003262), miR-146a (Cat: 183 

MS00006566) and miR155 (Cat: MS00031489) were purchased from Qiagen©.  184 

 185 

2.8 Statistical analysis 186 

Normal and lognormal distribution tests were carried out for all data sets. Data sets with a 187 

lognormal distribution were transformed to obtain a normal distribution for statistical analysis. 188 

Statistical analyses were carried out using GraphPad Prism software version 10.2.2 with p-189 

values below 0.05 considered statistically significant.  190 

  191 
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3. Results 192 

3.1 HIV-1 RNA and microRNA distribution in large and small plasmatic EVs 193 

of PLWH  194 

The distribution of viral RNA between large and small EVs and the impact of ART treatment 195 

were analyzed in a cohort of 53 PLWH with detectable viral load. Clinical characteristics 196 

presented in Table 1 show that 14 were ART-naive and 39 were ART-treated. The median age 197 

of ART-naive and ART-treated participants was 37 (interquartile range (IQR) 28-43) and 32 198 

(27-43), respectively (p = 0.4165). ART-naive participants were living with HIV-1 for a median 199 

duration of 5 months (IQR 1-51) and ART-treated for 26 (IQR 10-43) (p = 0.2497). Treated 200 

participants were receiving ART for 24 months (IQR 7-66). The median CD4 T cell count, CD8 201 

T cell count, and CD4/CD8 ratio were respectively 607 (IQR 264-762), 837 (IQR 515-1043) 202 

and 0.7 (IQR 0.4-1.2) for ART-naive participants and 332 (IQR 182-469), 667 (IQR 522-926) 203 

and 0.5 (IQR 0.2-0.7) for ART-treated participants. The plasma viral load median was higher 204 

for the ART-Naive at 18,622 copies/mL (IQR 4,472-55,063) than for the ART-treated 205 

participants at 9,373 (300-52,038). 206 

Table 1. Characteristics of the study participants. 207 
 208 

 
ART-Naive 

(n = 14) 

ART 

(n = 39) 
p-value 

Men, n (%) 5 (35.7) 19 (48.7)  

Women, n (%) 9 (64.3) 20 (51.3)  

Age (years); median (IQR) 37 (28-43) 32 (27-43) 0.4165 

HIV duration (months); 

median (IQR) 
5 (1-51) 26 (10-43) 0.2497 

CD4 T cells/µL; median 

(IQR) 
607 (264-762) 332 (182-469) 0.0467 

CD8 T cells/µL; median 

(IQR) 
837 (515-1043) 667 (522-926) 0.6006 

CD4/CD8 ratio; median 

(IQR) 
0.7 (0.4-1.2) 0.5 (0.2-0.7) 0.0403 

ART duration (month); 

median (IQR) 
NA 24 (7-66)  

Plasma viral load 

(copies/mL); median (IQR) 
18,622 (4,472-55,063) 9,373 (300-52,038) 0.6159 

ART: antiretroviral therapy; IQR: Interquartile range; NA: not applicable 
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Large and small EVs were purified from the plasma of PLWH with a detectable viral load as 209 

previously described (11, 12). As expected, large EVs from ART-naive PLWH (324 ± 31 nm) 210 

and ART-treated (364 ± 24 nm) had a bigger hydrodynamic diameter than the small EVs of 211 

ART-naive PLWH (86 ± 8.9 nm) and ART-treated (87 ± 4.8 nm) (Figure 1A). Absolute 212 

quantification by flow cytometry revealed that ART-naive PLWH large EVs were more 213 

concentrated (1.52 x 107 ± 1.80 x 106 EVs/mL) than ART-treated PLWH (8.46 x 106 ± 1.15 x 214 

106 EVs/mL) (Figure 1B). In addition, ART did not affect the count of small EVs since ART-215 

naive PLWH small EVs were at a concentration of 1.76 x 107 ± 3.51 x 106 EVs/mL and ART-216 

treated PLWH small EVs concentration was 1.35 x 107 ± 2.67 x 106 EVs/mL (Figure 1B).  217 
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 218 
Figure 1. Viral RNA distribution in plasmatic EV subtypes from PLWH. 219 
EVs were purified from platelet-free and proteinase K-treated plasma by centrifugation at 17,000 x g to pellet large 220 
EVs, followed by ExoQuick precipitation to obtain small EVs. A. EV hydrodynamic size measurement by dynamic 221 
light scattering. B. Large and small EVs absolute concentration was determined by flow cytometry. C. Comparison 222 
of large and small EV-associated HIV-1 in ART-naive and ART-treated PLWH. D. The number of copies of HIV-223 
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1 RNA per mL of sample was divided by the number of EVs per mL of sample to estimate the number of HIV-1 224 
copies per EV. Statistical analysis was carried out by one-way ANOVA (* p < 0.05; ** p < 0.01; **** p < 0.0001). 225 
ART: antiretroviral therapy; EV: extracellular vesicles; PLWH: people living with HIV-1. 226 
 227 

Then, HIV-1 RNA was quantified by RT-qPCR in both types of EVs. HIV-1 RNA 228 

concentration was higher in large EVs (1.48 x 105 ± 4.02 x 104 copies/mL) and small EVs (1.07 229 

x 105 ± 2.09 x 104 copies/mL) than in the plasma (5.57 x 104 ± 1.61 x 104 copies/mL) (Figure 230 

S1). The difference between ART-treated (2.72 x 105 ± 1.24 x 104 copies/mL) and ART-naive 231 

PLWH (1.03 x 105 ± 3.05 x 104 copies/mL) was most notable in large EVs (Figure 1C). HIV-1 232 

RNA concentration in small EVs was similar in ART-naive (1.41 x 105 ± 6.02 x 104 copies/mL) 233 

and ART-treated PLWH (9.49 x 104 ± 1.87 x 104 copies/mL) (Figure 1C). With absolute EV 234 

concentrations, HIV-1 RNA copies per EV was calculated. In terms of HIV RNA per EV, 235 

differences between ART-naive (large: 0.021 ± 0.007 copies/mL; small: 0.014 ± 0.007 236 

copies/mL) and ART-naive PLWH (large: 0.017 ± 0.005 copies/mL; small: 0.011 ± 0.003 237 

copies/mL) were minimal (Figure 1D). Thus, the higher HIV-1 RNA content in large EVs of 238 

ART-naive PLWH was likely the result of increased production of large EVs containing HIV-239 

1 RNA rather than the enrichment of HIV-1 RNA in large EVs. The results showed that ART 240 

decreased HIV RNA concentration in large EVs. 241 

 242 

We previously showed a link between viral rebound and immune activation in PLWH and miR-243 

29a, miR-146a and miR-155 content in plasmatic EVs (12, 19). Quantification of three 244 

microRNAs in large and small EVs by RT-qPCR showed that miR-155 was predominant in 245 

large EVs of ART-naive PLWH (Figure S2A-B), while miR-146 and miR-29a were 246 

significantly enriched in small EVs (Figure S2C-F). A correlation analysis showed that large 247 

EVs and small EVs HIV-1 RNA in ART-naïve PLWH correlated with miR-29a, miR-146 and 248 

to a lesser extent with miR-155 concentration in small EVs (Figure 2A and C). These results 249 

strengthened the viral rebound biomarker potential of miRNAs in small EVs. Conversely, in 250 
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ART-treated PLWH, no correlation was found between large or small EVs HIV-1 RNA and 251 

small EVs miRNA content (Figure 2B and D).  In addition, no correlation was found between 252 

large or small EVs HIV-1 RNA and large EVs miRNA content (Figure S3). 253 
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 254 
Figure 2. Separated correlation analysis between EV-associated viral load and miRNAs in ART-receiving 255 
and ART-naive PLWH. 256 
EVs were purified from platelet-free and proteinase K-treated plasma by centrifugation at 17,000 x g to pellet large 257 
EVs, followed by ExoQuick precipitation to obtain small EVs. Viral load and miRNAs content in EVs were 258 
quantified by RT-qPCR in large and small EVs. A. Correlation analysis between HIV-1 RNA concentration in 259 
large EVs and miRNAs concentration in small EVs of ART-naive PLWH. B. Correlation analysis between HIV-260 
1 RNA concentration in large EVs and miRNAs concentration in small EVs of PLWH under ART. C. Correlation 261 
analysis between HIV-1 RNA concentration and miRNAs concentration in small EVs of ART-naive PLWH. D. 262 
Correlation analysis between HIV-1 RNA concentration and miRNAs concentration in small EVs of PLWH under 263 
ART. ART: antiretroviral therapy; EV: extracellular vesicles; PLWH: people living with HIV-1. 264 
 265 
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3.2 HIV-1 RNA in plasmatic EV subtypes of PLWH is associated with 267 

biomarkers of HIV-1 pathogenesis 268 

Correlation analysis between large and small EVs HIV-1 RNA content and clinical parameters 269 

was performed to determine if HIV-1 RNA quantification in EVs is a better predictor of disease 270 

progression than the conventional plasma measurement. HIV-1 RNA measurement in the 271 

plasma correlated with the large EVs HIV-1 RNA measurement (Figure 3A). In ART-treated 272 

PLWH, large EVs HIV-1 RNA diminished with time under ART (Figure 3B). Conversly, in 273 

small EVs, HIV-1 RNA concentration was unaffected by ART (Figures 1C and 3B) There was 274 

a positive association between HIV-1 RNA in small EVs and the CD4/CD8 ratio (Figure 3C).  275 
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 276 
Figure 3. Correlation analysis between EV-associated HIV-1 RNA and biomarkers of infection progression.  277 
EVs were purified from platelet-free and proteinase K-treated plasma by centrifugation at 17,000 x g to pellet large 278 
EVs, followed by ExoQuick precipitation to obtain small EVs. HIV-1 RNA was quantified by RT-qPCR in large 279 
and small EVs. A. Correlation analysis between the plasma viral load and the purified EV-associated viral load. 280 
B. Correlation analysis between the time receiving ART and plasma and EVs HIV-1 RNA. C. Correlation between 281 
the CD4/CD8 ratio and plasma and EVs viral load. ART: antiretroviral therapy; EV: extracellular vesicles. 282 
 283 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted November 4, 2024. ; https://doi.org/10.1101/2024.11.01.24316593doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316593


16 

Next, we evaluated the potential of EV-associated HIV-1 RNA as a parameter to discriminate 284 

PLWH with immune activation and dysfunction. Among the 53 participants, those with a CD8 285 

T cell count above 500 cells/µL were designated with immune activation (n = 41). The 286 

remaining participants with a CD8 T cell count below 500 cells/µL were in the control group 287 

(n = 12). A receiver operating characteristics (ROC) curve analysis was performed to determine 288 

which HIV-1 RNA concentration in the plasma, large EVs or small EVs discriminates PLWH 289 

with immune activation. HIV-1 RNA in the plasma (AUC = 0.50; 95% CI = 0.29-0.71; p = 290 

0.9661) (Figure 4A) and the small EVs (AUC = 0.62; 95% CI = 0.43-0.80; p = 0.2257) (Figure 291 

4C) could not distinguish PLWH with immune activation. HIV-1 RNA concentration in large 292 

EVs had the best diagnosis performance (AUC = 0.66; 95% CI = 0.50-0.83; p = 0.0852) (Figure 293 

4B). PLWH with a CD4 count below 500 cells/µL (n = 38) or a CD4/CD8 ratio below 1 (n = 294 

45) was designated with immune impairment. The participants with a CD4 T cell count above 295 

500 cells/µL (n = 15) or a CD4/CD8 ratio above 1 (n = 8) were the controls. HIV-1 RNA in the 296 

plasma discriminated PLWH with immune impairment (Figure S4A and D), while HIV-1 RNA 297 

in large (Figure S4B-E) and small EVs (Figure S4C-F) did not. Overall, HIV-1 RNA in the 298 

plasma discriminated PLWH with low CD4 T cell count and CD4/CD8 ratio, while HIV-1 RNA 299 

in large EVs best discriminated PLWH with high CD8 T cell count. 300 

0 20 40 60 80 100

0

20

40

60

80

100

Plasma

100% - Specificity%

S
e
n

s
it

iv
it

y
%

A

AUC = 0.50
95% CI = 0.29-0.71

p = 0.9661

0 20 40 60 80 100

0

20

40

60

80

100

Large EVs

100% - Specificity%

S
e
n

s
it

iv
it

y
%

B

AUC = 0.66
95% CI = 0.50-0.83

p = 0.0852

0 20 40 60 80 100

0

20

40

60

80

100

Small EVs

100% - Specificity%

S
e
n

s
it

iv
it

y
%

C

AUC = 0.62
95% CI = 0.43-0.80

p = 0.2257

 301 
Figure 4. Diagnosis performance of immune activation by HIV-1 RNA concentrations in the plasma and 302 
EVs subtypes.  303 
HIV-1 RNA concentrations in the plasma and EV subtypes were used for ROC analysis to discriminate participants 304 
with immune activation. The participants with a CD8 T cell count below 500/µL were the controls. A CD8 T cell 305 
count above 500/µL defined immune activation. A. ROC curve of HIV-1 RNA concentration in the plasma. B. 306 
ROC curve of HIV-1 RNA concentration in large EVs. C. ROC curve of HIV-1 RNA concentration in small EVs. 307 
ROC: Receiver Operating Characteristics  308 
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 309 

4. Discussion 310 

Decades of suppressive ART fails to clear viral reservoirs. Hence, PLWH are permanently at 311 

risk of viral rebound (4). When viremia is detected in PLWH, ART regimen modification or 312 

intensification is not always necessary and characterization of the virus in the plasma of PLWH 313 

could assist in HIV-1 infection management (8). This study aimed to quantify HIV-1 RNA in 314 

both types of plasmatic EVs of PLWH towards a more personalized HIV-1 infection 315 

management. We found that the value of small and large EV-associated HIV-1 RNA are 316 

biomarkers of disease progression and viral replication. 317 

 318 

We previously reported an increase in total EVs concentration in ART-naive PLWH (13). Here, 319 

only the large EVs concentration was higher in ART-naive PLWH than PLWH under ART. 320 

Our results suggest that large EVs probably caused the increase in total EV concentration 321 

observed by Hubert et al. (13). The large EVs HIV-1 RNA level was higher in ART-naive 322 

PLWH than in treated PLWH. In PLWH under ART, HIV-1 RNA in large EVs was negatively 323 

correlated with time under ART. Interestingly, HIV-1 RNA concentration in small EVs was 324 

unaffected by ART. The persistence of HIV-1 RNA in small EVs despite ART is reminiscent 325 

of NSV, which is unaffected by ART (9). NSV has been more associated with men (29). Our 326 

results showed that men’s small EVs were richer in HIV-1 RNA than women’s (Figure S5). 327 

This data suggests again that the HIV-1 RNA in small EVs could be linked to NSV. 328 

 329 

HIV-1 RNA in large EVs was susceptible to treatment, suggesting it is the product of active 330 

viral replication. These observations corroborate the previous assessment of viral RNA in large 331 

and small EVs in humanized mice (28). In that study, mice treatment lowered HIV-1 RNA in 332 

large EVs only. HIV-1 RNA in humanized mice small EVs correlated positively with the CD4 333 
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and CD4/CD8 ratio. The same correlation was observed in PLWH small EVs with a positive 334 

CD4/CD8 ratio. Viral replication causes a loss of CD4 T lymphocytes and expansion of CD8 335 

T lymphocytes (6, 30). This strengthens the hypothesis that HIV-1 RNA in small EVs is not the 336 

product of viral replication. The hypothesis that large EVs contain HIV-1 RNA from active 337 

viral replication and small EVs contain HIV-1 RNA from provirus transcription could be 338 

explored by RNA sequencing. Viral replication will result in more genetic diversity due to the 339 

error-prone reverse transcriptase (31). On the contrary, HIV-1 RNA from NSV is less diverse 340 

since it comes from the transcriptional activity of clonally expanded CD4 T lymphocytes (7, 341 

32). The Nanopore sequencing technology efficiently detects genetic divergence caused by 342 

viral replication (33) and mutations associated with ART resistance (34). Nanopore additionally 343 

offers the possibitiy to sequence the full length HIV-1 genome (35). This novel technology 344 

could further characterize the viral RNA associated with EVs subtypes. 345 

 346 

This is the first report of comparative HIV-1 RNA quantification in EV subtypes of PLWH. 347 

Viral proteins and genetic material have been generally linked to small EVs (exosomes) because 348 

their biogenesis intertwines (36). Viruses can be formed in multivesicular bodies with exosomes 349 

(37). HIV-1 assembly also occurs at the plasma membrane (38). Both secretion mechanisms 350 

are involved in viral replication in infected cells but their relative contribution to HIV-1 351 

pathogenesis has never been explored. Different biogenesis machinery incorporates disparate 352 

RNA and microRNA content in large and small EVs (39). This could explain the differential 353 

distribution of HIV-1 RNA in large and small EVs among PLWH. In addition, viruses would 354 

be associated with different host components whether they form at the plasma membrane or in 355 

multivesicular bodies. For example, miR-155 is enriched in large EVs during HIV-1 infection, 356 

promoting viral replication in the recipient cell (18). Therefore, viruses related to large EVs 357 

could be more infectious due to miR-155 transfer. 358 
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 359 

In this study, we showed a differential distribution of HIV-1 RNA in plasmatic EVs subtypes 360 

of PLWH. Viral replication was linked to HIV-1 RNA in large EV. Besides, HIV-1 RNA in 361 

small EVs was associated with immune restoration. This novel parameter could help us predict 362 

HIV-1 infection progression in PLWH and decipher the cause of a viral rebound. Combined 363 

with a miRNA analysis, we could establish a nucleic acid profile in EVs associated with 364 

immune dysfunction and virological failure to improve PLWH monitoring.  365 
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