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Supplementary Notes 
Supplementary Note 1: Graph Diffusion 
We applied network diffusion to propagate well-known disease genes throughout the Personalized 
Functional Genomics graphs (PFGs) via its edges (see Supplementary Figure 1). Here we use the 
concept of insulated heat diffusion1, where disease genes are treated as heat sources that retain some 
heat 𝛽 (0 < 𝛽 < 1) and equally distribute the rest to their neighboring nodes. The amount of heat 
propagated by disease genes, called diffused scores, represents the impact of these genes and are 
used as edge weights for the PFGs. The network diffusion requires two inputs: PFGs and prior 
knowledge (disease gene lists). 
  

Let 𝐺! = (𝑉! , 𝐸!) be the PFG for donor 𝑖, with 𝑁! = |𝑉!|	nodes and 𝐸! representing the edges. Let 
𝐴! ∈ ℝ"!×"! 	 be the adjacency matrix and 𝐷! ∈ ℝ"!×"! is its diagonal matrix of the out-degree of nodes. 
The diffusion matrix 𝐹! is calculated as:  
 F$ = β(I	 −	(1	 − 	β)	A$D$%&)%&, (1) 
where 𝐼 ∈ ℝ𝑁𝑖×𝑁𝑖 is an identity matrix and 𝐴!𝐷!%& represents the normalized adjacency matrix. Hence 
𝐹![𝑡, 𝑠] represents the influence of a source node 𝑠 on target node 𝑡.  

Given a collection of disease genes 𝑑( , let 𝑃! ∈ 	ℝ"!×"!  be a diagonal matrix encoding prior 
knowledge for an individual 𝑖: 
 

 . (2) 
We combine the PFG and the prior knowledge to define the final edge weights for 𝐺! as  

 M$ = 𝐹!𝑃! . (3) 

We compute two versions of 𝑀!:	𝑀)*,! , 𝑀,-.,!  using our identified gene lists for AD and SCZ, 
respectively. We refer to 𝑀)* and 𝑀,-. as bio-diffused PFGs, which are used to train our graph neural 
network model. Note that we can also compute these matrices for other gene-of-interest (GOI) lists 
(𝑀/01). In this paper, we focus on AD and SCZ gene lists.  
 
Supplementary Note 2: Knowledge-guided Graph Neural Network (KG-
GNN) Architecture 
KG-GNN uses a self-attention mechanism to calculate attention scores between a node and its 
neighbors (Supplementary Figure 2). These are normalized across the node’s neighborhood using a 
softmax function and further used to update the node’s features. This helps assign different weights to 
different neighbors, offering higher flexibility and interpretability to the model. For a Personalized 
Functional Genomics graph (PFG) 𝐺! (see Supplementary Note 1, Supplementary Figure 1), the set 
of node features ℎ2 	= 	 {ℎ&2 , ℎ32 , . . . , ℎ"!

2 }, ℎ4	2 ∈ 	ℝ6# , where 𝑑2  is the dimension of node features at 𝑙47 
layer. The unnormalized attention coefficient 𝑒4,82  between any node 𝑡 and its neighboring node 𝑠 is: 

 𝑒4,82 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈	(𝑎2$ 	(𝑊2ℎ42 	||	𝑊2ℎ82 )), (4) 



where 𝑊2 	 ∈ ℝ6#%&×6# 	 is a weight matrix, 𝑎2 	 ∈ ℝ36#%& 	is a learnable weight vector, and || denotes vector 
concatenation. We then compute the normalized attention coefficient 𝛼4,82  by normalizing 𝑒4,82 	across the 
node 𝑡’s neighborhood Ω4	using a softmax function: 

 𝛼4,82 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥	V𝑒4,82 W =
9:;(9',)

# )
∑ 9:;(9',*# )*∈,'

	, (5) 

where 	∑ 𝛼4,828∈@' = 1.  
Before we update the node feature ℎ42 , we incorporate prior biological knowledge through edges using 
our bio-diffused PFGs 𝑀)* , 𝑀,-. to get bio-diffused attention scores or priors 𝑏(.),4,82 : 

 𝑏(.),4,82 = B(.)[4,8]E',)
#

∑ B(.)[4,F]E',*#*∈,'
,	   (6) 

and specifically, the learned AD, SCZ and data-driven priors or bio-diffused attention scores are 
computed as follows: 

𝑏)*,4,82 = B01,![4,8]E',)
#

∑ B01,![4,F]E',*#*∈	,'
	, 𝑏,-.,4,82 = B345,![4,8]E',)

#

∑ B345,![4,F]E',*#*∈	,'
	, 𝑏6G4G%6H!I9F,4,82 = B67'7869!:;*,![4,8]E',)

#

∑ B67'7869!:;*,![4,F]E',*#*∈	,'
,	 

where ∑ 𝑏(.),4,82
8∈	@' = 1 and 𝑀6G4G%6H!I9F,! = 𝐴! ∈ ℝ"!×"! is the adjacency matrix of 𝐺!.  

Finally, the updated node feature for the node 𝑡 is computed by aggregating attention scores and 

passing it through a non-linearity 𝜎 (sigmoid) over its neighbors: 

 ℎ42J& = 𝜎V∑ 𝑏(.),4,8
2 𝑊2ℎ828∈@' W.	   (7) 

For multi-head attention, the above operations are replicated 𝐾 times (each with different 

parameters), and the output is aggregated by adding feature-wise: 

 ℎ42J& = 𝜎 ]&
K
∑ ∑ 𝑏(.),4,8

2,L 𝑊2,Lℎ828∈@'
K
LM&	 ^.	   (8)  

Here, we divided the number of heads 𝐾  into AD-driven, SCZ-driven, and data-driven: 𝐾 = 𝑘)* 	+
𝑘,-. + 𝑘6G4G%6H!I9F, and updated ℎ42J& as follows: 

ℎ42J& = 𝜎	(&
K
(∑ ∑ 𝑏)*,4,8

2,L 𝑊2,Lℎ828∈@'
L01
LM&	 + ∑ ∑ 𝑏,-.,4,8

2,L 𝑊2,Lℎ828∈@'
L345
LM&	    

																																															+∑ ∑ 𝑏6G4G%6H!I9F,4,8
2,L 𝑊2,Lℎ828∈@'

L67'7869!:;*
LM&	 )	).	   (9) 

Once trained, the model outputs latent graph embeddings 𝑧! ∈ ℝ6<, where 𝑑N is the dimension of the 
final 𝐿47 layer, for each bio-diffused PFG 𝐺! for an individual 𝑖. This is computed by averaging all the 
node features in the 𝐿47 layer of KG-GNN: 
 𝑧! =

&
"!
∑ ℎ4N
"!
4M&	 .	   (10) 

The KG-GNN model optimizes the following binary cross-entropy loss across all 𝐽 samples:  

 𝐿 = &
O
∑ (𝑦!𝑙𝑜𝑔(𝑀𝐿𝑃(𝑧!)) + (1 − 𝑦!)𝑙𝑜𝑔(1 − 𝑀𝐿𝑃(𝑧!)))
O
!M&	 ,	   (11) 

where we train a Multi-Layer Perceptron (𝑀𝐿𝑃) to classify 𝑧! into AD versus Control class. 



 
Supplementary Note 3: Glossary of Terms 
In this work, iBrainMap performed analysis on multiple phenotype contrasts split into three main 
levels: Disease vs. Control, Disease Progression, and Neuropsychiatric Symptoms. This section 
provides their definitions.  

Disease vs. Control 

1. AD vs. Control 
This contrast compares donors with Alzheimer’s disease and their controls. Donors with AD are defined 
as those who have CERAD scores of 2, 3, or 4, Braak stage of 3 and above, and clinically proven 
dementia. Their respective control group is defined as one donor with a CERAD score of 1 and Braak 
stage within 0-3. 

2. SCZ vs. Control 
SCZ is any individual with SCZ diagnosis (SCZ | Schizoaffective_bipolar | 
Schizoaffective_depressive) and secondary diagnosis is not allowed, except for metabolic and eating 
disorders.  

3. AD-DLBD vs. Control 
DLBD is any individual with DLBD diagnosis (DLBD), and secondary diagnosis can be only AD. 

4. Pathology-cognition (AD-resilient vs. AD-strict vs. Control) 
This contrast integrates pathological and cognitive information to group donors into three categories: 
(1) Donors with a CERAD score of 4, Braak stages above 3, and clinically proven dementia (AD-strict), 
(2) Donors could have CERAD scores of 2, 3, or 4 and must not have dementia (AD-resilient), and (3) 
Donors with a CERAD score of 1 and Braak stage within 0-3 (Control).  

Disease Progression 

1. Braak 
This contrast compares AD progression via Braak stages that measure neurofibrillary tangles, 
irrespective of donors' clinical diagnosis.  

2. Cognitive Dementia Rating Score 
This contrast compares the clinical dementia rating score (CDR score) where (0, 0.5, 1) = Control, (2, 
3) = Mild Cognitive Impairment (MCI), and (4, 5) = Dementia. For SEA-AD2, we renamed their 
Cognitive status phenotype as follows: No Dementia=Control, Dementia=Dementia. 
 
3. CERAD 
This contrast compares AD progression via qualitative variables from neuropathological scoring where 
1=no AD, 2=possible AD, 3=probable AD, and 4=definite AD. For SEA-AD, we renamed their CERAD 
phenotypes as follows: absent=no AD, sparse=possible AD, moderate=probable AD, Frequent=definite 
AD. 



 
 
Neuropsychiatric Symptoms 

1. Depression/Dysphoria vs. Control 
This contrast corresponds to depression and mood dysphoria. One donor is considered to be ‘Case’ - 
if only mood dysphoria appears to be true and ‘Control’ if mood dysphoria is not true and all other 
NPS corresponding to depression and mood are either NA or not true. 

2. DecInt vs. Control 
This contrast corresponds to depression and anhedonia. One donor is considered to be ‘Case’ - if 
only anhedonia appears to be true and ‘Control’ if anhedonia is not true and all other NPS 
corresponding to depression and mood are either NA or not true. 

3. Sleep/WeightGain/Guilt/Suicide vs. Control 
This contrast corresponds to sleep issues (early-, mid-, and late- insomnia, and hypersomnia), weight 
gain, guilt, and suicidal thoughts within AD lenient donors. One donor is considered to be ‘Case’ - if at 
least one of the above symptoms appears to be true and ‘Control’ if none of the symptoms are true. 

4. Depression/Mood vs. Control 
This contrast corresponds to depression and mood disorders. One donor is considered to be ‘Case’ - 
if at least one of the above symptoms appears to be true and ‘Control’ if none of the symptoms are 
true. 

Supplementary Note 4: Training, Testing, and Validation 
Graph Subsampling: We use the graph sampling technique, Neighbor Sampling3, to sub-sample 
PFGs for training the KG-GNN model. In particular, we used the Neighborloader function from 
PyTorch Geometric4 and set parameter num_neighbors to 10 neighbors to be sampled for each node 
for 100 iterations. This ensures connectivity of the subgraphs and information flow throughout the 
network. We set the batch_size (used for mini-batching) based on a hyperparameter to specify the 
number of subgraphs: 

 𝑏𝑎𝑡𝑐ℎ	𝑠𝑖𝑧𝑒	 = 	 FPQR9H	ST	UV/8
FPQR9H	ST	8PR(HG;78

 

We trained and tested our KG-GNN model on individuals from the MSSM cohort for binary 
classification of AD versus Control. Here stratified split individuals into 80% training and 20% held-out 
sets. To find the optimal hyperparameters, we performed a 5-fold cross-validation (CV) and evaluated 
our model’s performance on the held-out set. We also tested our pre-trained model on an independent 
dataset from the RADC cohort. 
 
Cross-Validation: For our model training and evaluation, we use a modified Cross-validation (CV) and 
testing scheme as the MD-AD model5, in which we perform five separate rounds of model tuning with 
CV followed by evaluation in a test set. For a single round, one-fifth of all samples are assigned to a 
held-out test set. Then using the remaining 4/5ths of the samples, we perform a five-fold CV to select 



hyperparameters with the best prediction performance. We then train the selected model using the full 
training set (4/5ths of the original data) and then report performance on the held-out test set. In order 
to evaluate the robustness of our evaluation metrics under different splits, we initially split the full 
dataset into five separate groups and repeated the above process five total times, where each one-fifth 
of the data acted as a held-out test set once. We note that across these iterations, different training 
sets selected different configurations of hyperparameters, and for each train/test round, we trained the 
full training set on the specific configuration selected by CV in that training set.  

Hyperparameter Tuning: We tuned our model over a range of hyperparameters: optimizer ∈ [Adam, 
SGD, Adagrad], learning rate ∈ [1e-4, 5e-4, 1e-3, 5e-3], weight decay ∈ [0, 5e-3, 5e-4], dropout ∈ [0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8], batch size ∈ [5, 10, 15], diffusion parameter 𝛽 ∈ [0.1, 0.3, 0.5, 0.7, 0.9], 
number of subgraphs ∈ [2, 3, 5, 10] and number of attention heads ∈ [2, 4, 6, 8], number of GAT layers 
in KG-GNN model ∈ [1, 2, 3], GAT input layer dimension ∈ [2048, 1024], hidden GAT layer dimensions 
∈  [2048, 1024, 512, 256, 128, 64], MLP hidden dimensions ∈  [128, 64]. We show our model’s 
performance under various hyperparameters in Supplementary Figure 4. 
 
Performance metrics: We evaluated our model’s performance using metrics such as balanced 
accuracy (BACC) and the area under the receiver operating characteristic curve (AUROC) to address 
the imbalanced nature of our training data. The following terms are used to compute BACC and AUROC 
in Figure 2, Supplementary Figures 3, 4, 5, 6: 
 

𝐵𝐴𝐶𝐶 =
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 + 	𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2  

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑁 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃	 + 	𝑇𝑁 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃	 + 	𝑇𝑁 

where 𝑇𝑃 is true positive, 𝑇𝑁 is true negative, 𝐹𝑃 is false positive, 𝐹𝑁 is false negative, 𝑇𝑃𝑅 is true 
positive rate, and 𝐹𝑃𝑅 is false positive rate. 
 

Our final model was picked based on the best average performance on the held-out test set 
based on the BACC and AUROC metrics for the AD classification task. Supplementary Table 1 
reports the final model layers, hyperparameters, and training details. 

Supplementary Note 5: Benchmarking machine learning algorithms for 
AD versus Control classification  
We benchmarked our knowledge-guided graph neural network (KG-GNN) model with other state-of-art 
graph learning algorithms like graph attention network (GAT) and graph convolution networks (GCN) 
with the personalized functional genomics graphs (PFGs) as inputs for the AD donors vs. Controls 
classification task (see Supplementary Figure 2a). Additionally, we also benchmarked other machine 
learning algorithms like Support Vector Machine (SVM), Logistic Regression (LR), and Multi-Layer 
Perceptron (MLP) to classify average cell-type gene expression for each donor into AD vs. Control 
groups (see Supplementary Figure 2b). We ran these models using default settings from the Python 



package scikit-learn6. The results demonstrate that our model outperformed others giving high 
classification scores across the different metrics. 

Supplementary Note 6: Classifying graph embeddings across AD 
phenotypes 
We classified the graph embeddings into different AD phenotypes using machine learning algorithms 
like Support Vector Machines (SVM), Logistic Regression (LR), and Multi-layer Perceptron (MLP) using 
the Python package Scikit-learn6. To do this, we performed 5-fold cross-validation where the dataset 
was stratified split into training and held-out for each fold using a 4:1 ratio. We evaluated the 
performance using metrics like AUROC and BACC and picked the best model based on average 
AUROC across five folds. The results are shown in Figure 2b across several phenotypes for binary 
and multi-class classification tasks for donors from the MSSM cohort (Extended Figure 1c): (1) Binary 
classification: includes phenotypes SCZ, AD-DLBD, Dysphoria, DecInt, S/WG/G/S, D/M; (2) Multi-class 
classification: includes phenotypes Braak (early vs mid vs late stages), CERAD (No AD vs. AD Possible 
vs. AD Probable vs. AD), Cogdx (Dementia vs. MCI vs. Controls). 

Supplementary Note 7: Node importance score computation 

We use edge importance scores to derive node importance scores. For a node 𝑣!, let 𝑁!F be the indegree 
of the node and 𝑁SP4be the outdegree. We first calculate the indegree and outdegree importance 
scores of the node using the following formula: 

𝐼!F = 𝑙𝑛(1 +l𝑁!F𝑏L,W!
W

)	 

𝐼SP4 = 𝑙𝑛(1 +	l𝑁SP4𝑏L,!W
W

)	 

where 𝑏𝑘,𝑗,𝑖 and 𝑏𝑘,𝑖,𝑗 are incoming and outgoing importance scores of an edge between nodes 𝑣! and 
𝑣W respectively and k can be AD-driven, SCZ-driven, data-driven attention heads. Then the importance 
score of a node is computed using the formula:  

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒 = 𝜆 ∗ 𝐼!F 	+ 	(1 − 𝜆) ∗ 𝐼SP4	 

where 𝜆 ∈ [0, 1] is a parameter to balance the indegree and outdegree importance scores. We 
empirically set 𝜆	 = 	0.3 based on the weighted average of the average indegree and outdegree of all 
nodes to give equal importance to both incoming and outgoing importance scores. 

Supplementary Note 8: Cross-modal imputation and classification of 
graph embeddings 
Here we used an optimal transport-based approach, CMOT7, to impute graph embeddings for genotype 
data (e.g. ROSMAP dataset). Here, we trained the imputation model using the graph embeddings 
generated by the pre-trained KG-GNN model and genotype data for individuals from the MSSM cohort. 
We tried to impute embeddings for early versus late Braak stages in the ROSMAP data (Extended 
Figure 3).  To classify the imputed graph embeddings, we applied the sklearn.svm.SVC() function from 
scikit-learn5. 



Supplemental Figures  

 
Supplementary Figure 1: Flowchart for constructing of bio-diffused PFGs. Bio-diffused PFGs are constructed from 
two inputs: snRNA-seq of donors and biological (GOI)). First, personalized functional genomics graphs are built for each 
donor from their snRNA-seq using tools like CellChat and Scenic (see Supplementary Note 1). Each PFG has three node 
types: cell types, transcription factors (TFs), and target genes (TGs), connected by directed edges. Each edge captures 
distinct regulatory relations, for e.g., cell type interactions and cell type TF-TG regulation. We then computed bio-diffused 
PFGs using the concept of insulated heat diffusion for each donor with the help of adjacency and diagonal matrices of their 
PFGs. In particular, the resulting bio-diffused PFG MAD,i, MSCZ,i, and MGOI,i correspond to gene sets coming from known 
disease genes of AD, SCZ, and other genes-of-interests (GOI) for donor i. The Mdata-driven,.is simply a matrix of ones. 

 



 
Supplementary Figure 2: Architecture of knowledge-guided graph neural network (KG-GNN) Given a PFG Gi, the 
inputs to the KG-GNN model include its bio-diffused PFG (MAD,i, MSCZ,i, ..., Mdata-driven,i) and node features h. The KG-GNN 
uses a self-attention mechanism to calculate attention scores between a node t and its neighbors sj and incorporates prior 
biological knowledge through edges using our bio-diffused PFGs MAD,i, MSCZ,i to get bio-diffused attention scores or priors 
bAD,t,sj, bSCZ,t,sj, …, bdata-driven,t,sj. These are normalized across node t’s neighborhood and are used to compute a linear 
combination of the node features corresponding to them using a softmax function to further update the t’s node features.  
(see Supplementary Note 2) 

 

 

Supplementary Figure 3: Graph embedding classifications for held-out data and disease pathology phenotypes. a, 
Balanced accuracy (BACC) plot for classifying KG-GNN graph embeddings for AD donors vs. Controls in the MSSM held-
out (AD (n=62) vs. Controls (n=30)) and RADC+SEA-AD (AD (n=93) vs Controls (n=68)) datasets described in Extended 
Figure 1c. b, Average five-fold cross-validated BACC for classification of KG-GNN graph embeddings across phenotype 
contrasts from Extended Figure 1c.  

 



 

Supplementary Figure 4: Benchmarking KG-GNN model performance for AD vs. Control classification a, ROC 
curves and BACC comparing KG-GNN with state-of-art graph learning models: graph convolution networks (GCN), graph 
attention networks (GAT). b, ROC curves and BACC comparing different combinations of attention heads in the following 
order: AD, SCZ, Data-Driven. c, ROC curves and BACC comparing values for diffusion parameter 𝜷. (see Supplementary 
Note 4) 

 

 

 



Supplementary Figure 5: Benchmarking classification performance of donors with AD vs. Controls for three machine 
learning models: Multi-linear Perceptron (MLP), Support Vector Machines (SVM), and Logistic Regression (LR). Here we 
classify each donor's average cell type gene expression into AD or Control groups using the three models across all cell 
types reporting metrics area-under-the-curve (AUC) and balanced accuracy (BACC) (see Supplementary Note 5). 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Figure 6: Predicting SCZ on HBCC using graph embeddings from the iBrainMap model. a, ROC 
curve of predicted SCZ classification. b, Precision-recall curve of predicted SCZ classification. 

 

 

Supplementary Figure 7: Density plots showing the distribution of neuropsychiatric symptoms (NPS) across 
individuals a, Depression: Mood (P < 1.85e-02), b, Depression: current to 2 weeks (P < 2.70e-02), c, DecInt (Anhedonia) 
(P < 1.84e-02), and d, Psychomotor agitation (P < 2.01e-02) across NPS phenotypic pseudotimes. 

 
 
 
 



Supplementary Figure 8: Cell type importance scores for AD (top) and SCZ (bottom) samples. Circles indicate 
importance scores, and triangles represent cell fractions. 



 

Supplementary Figure 9: Correlation comparison of gene importance score and gene expression of some select 
genes. 

 
 
 
 
 
 



 
 
Supplementary Figure 10: Correlation comparison of gene importance score and gene expression across multiple 
phenotypes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure 11: Importance scores for cell type TF-TG links between AD and control based on different 
priors. Different significance levels are shown using the number of stars (* = p-value < 0.05, ** = p-value < 0.01, *** = p-
value < 0.001).  



 

Supplementary Figure 12:  Determination of conserved and individual genes across ancestries. a-c, Histogram of 
edges scoring in the top 5% of importance scores among the European (n = 792) population and GO-term enrichments (bar 
plots) for genes in the resultant highly conserved (top 2%, orange), conserved (top 2-4%, purple), and unique (top 4-6%, 
green) edge groups. d-f, The same population analysis in (a-c) repeated for African (n = 120) populations. g-i, The same 
population analysis in (a-c) repeated for admixed American (n = 99) populations. j-l, (a) repeated for the whole dataset. 
More details for this approach can be found in Supplementary Notes 4.2 and 4.3. 

 



 
Supplementary Figure 13: Cell counts per cell type across all donors. The X-axis indicates the cell types, and the y-
axis is the cell counts in the log scale for each cell type. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplemental Tables  

Supplementary Table 1: KG-GNN final hyperparameters, training, and model details 
 
 
 
 
 
 
 
 
 
 

 

Hyperparameters: 

Learning rate 1e-4 

Batch size 5 

Diffusion Parameter (𝛽) 0.3 

Dropout  0.6 

Number of subgraphs 3 

Number of attention heads  8 

Training: 

Epochs 23 

Memory (Mb) per epoch 36,406 

Total runtime (s) 1096.56 

Model: 

GATConv–>BatchNorm–>LayerNorm 4 (2048, 1024, 512, 256) 

Linear–>ReLU–>Dropout 2 (128, 64) 

Linear–>softmax 1 



Phenotype Clinical Phenotype mean_corr_ 
importance_score 

mean_corr_ 
gene_expression p-value 

AD_c15x Age 0.0978 0.0644 2.01E-07 

AD_c15x CDR 0.1144 0.0819 6.29E-08 

AD_c15x Cog_Tau_Resilience 0.1274 0.0550 1.85E-30 

AD_c15x PLAQUE 0.0773 0.0590 0.0165 

AD_c15x prs_AD2 0.1237 0.0656 7.78E-12 

AD_resiliency Age 0.2008 0.0615 1.22E-07 

AD_resiliency CDR 0.1657 0.0923 1.25E-21 

AD_resiliency Cog_Tau_Resilience 0.1811 0.0893 7.53E-21 

AD_resiliency PLAQUE 0.1547 0.2037 0.0311 

AD_resiliency prs_AD2 0.2095 0.1103 6.58E-31 

EarlyInsom Age 0.2071 0.1187 3.00E-12 

EarlyInsom CDR 0.1960 0.1044 6.57E-14 

EarlyInsom Cog_Tau_Resilience 0.2173 0.1473 1.57E-05 

EarlyInsom PLAQUE 0.2085 0.1360 1.29E-07 

EarlyInsom prs_AD2 0.2831 0.1364 1.79E-20 

LateInsom Age 0.2107 0.1123 7.95E-08 

LateInsom CDR 0.1735 0.1111 3.09E-05 

LateInsom Cog_Tau_Resilience 0.2229 0.0988 5.76E-10 

LateInsom PLAQUE 0.2145 0.1093 3.03E-09 

LateInsom prs_AD2 0.3454 0.1688 3.03E-10 

MSSM_SWGS Age 0.1490 0.0924 3.78E-13 

MSSM_SWGS CDR 0.1521 0.0998 1.26E-12 

MSSM_SWGS Cog_Tau_Resilience 0.1678 0.0856 9.56E-25 

MSSM_SWGS PLAQUE 0.1579 0.0936 1.91E-18 

MSSM_SWGS prs_AD2 0.2139 0.0999 4.43E-31 

MidInsom Age 0.2440 0.1370 3.95E-07 

MidInsom CDR 0.2275 0.0963 7.95E-12 

MidInsom Cog_Tau_Resilience 0.2487 0.1254 5.23E-08 

MidInsom PLAQUE 0.2248 0.1127 2.30E-08 

MidInsom prs_AD2 0.2955 0.1375 7.19E-15 



Supplementary Table 2: Correlation comparison of gene importance score vs gene expression and 
different phenotypes. 
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SCZ_c07x Age 0.1221 0.0802 3.60E-08 

SCZ_c07x CDR 0.1266 0.0865 1.18E-14 

SCZ_c07x Cog_Tau_Resilience 0.1342 0.0586 3.34E-48 

SCZ_c07x PLAQUE 0.1020 0.0892 0.1738 

SCZ_c07x prs_AD2 0.1443 0.0740 1.02E-19 


