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Abstract 

The complexity of Alzheimer’s disease (AD) manifests in diverse clinical phenotypes, including 
cognitive impairment and neuropsychiatric symptoms (NPSs). However, the etiology of these 
phenotypes remains elusive. To address this, the PsychAD project generated a population-level 
single-nucleus RNA-seq dataset comprising over 6 million nuclei from the prefrontal cortex of 1,494 
individual brains, covering a variety of AD-related phenotypes that capture cognitive impairment, 
severity of pathological lesions, and the presence of NPSs. Leveraging this dataset, we developed a 
deep learning framework, called Phenotype Associated Single Cell encoder (PASCode), to score 
single-cell phenotype associations, and identified ~1.5 million phenotype associate cells (PACs). We 
compared PACs within 27 distinct brain cell subclasses and prioritized cell subpopulations and their 
expressed genes across various AD phenotypes, including the upregulation of a reactive astrocyte 
subtype with neuroprotective function in AD resilient donors. Additionally, we identified PACs that link 
multiple phenotypes, including a subpopulation of protoplasmic astrocytes that alter their gene 
expression and regulation in AD donors with depression. Uncovering the cellular and molecular 
mechanisms underlying diverse AD phenotypes has the potential to provide valuable insights towards 
the identification of novel diagnostic markers and therapeutic targets. All identified PACs, along with 
cell type and gene expression information, are summarized into an AD-phenotypic single-cell atlas for 
the research community. 

Main 
Alzheimer's disease (AD) is a complex, progressive neurodegenerative disorder, which is 
characterized by a combination of pathological, cognitive, and neuropsychiatric symptoms (NPSs) 
that affect millions of individuals worldwide1. Due to the heterogeneity of AD, the disease can be 
characterized by various phenotypes, including cognitive decline, NPSs, and neuropathological 
lesions, which vary based on the stage of disease progression. Furthermore, some individuals with 
AD pathologies are cognitively normal and are referred to as ‘resilient’ to AD2. In addition, the role of 
NPSs in AD is understudied3 but they are important clinical features of AD progression associated 
with accelerated cognitive impairment4. These different phenotypes are categorized as high-level 
physiological abnormalities, the causes of which can usually be traced back to molecular alterations 
of cells5. Thus, pinpointing the cell states (subpopulation), genes and gene modules that are 
associated with certain AD phenotypes could facilitate the uncovering of disease mechanisms, 
prognostic gene biomarkers and novel therapeutic targets2,6. 

The PsychAD Consortium generated population-level single-nucleus RNA sequencing data 
(snRNA-seq) consisting of more than 6.3 million nuclei isolated from the dorsolateral prefrontal cortex 
(DLPFC) of 1,494 donors7. The DLPFC is a key brain region for AD, for instance, it can be impaired in 
AD patients with memory loss8. The PsychAD cohort represents a variety of AD-related phenotypes, 
including Braak stages that measure progression neurofibrillary tangle pathology9, Clinical Dementia 
Rating (CDR)10, resilience to AD and a range of NPSs (such as depression and agitation) that capture 
the heterogeneity of AD across different stages of the disease. By inferring cell subpopulations and 
gene expression patterns associated with the aforementioned phenotypes, this dataset provides a 
unique opportunity to dissect the cellular and molecular mechanisms underlying AD. 

To accomplish this, we developed the Phenotype Associated Single Cell encoder (PASCode), 
which is a deep learning framework that identifies phenotype associated cells (PACs). For robust 
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inference, this framework ensembles several computational methods to detect cell subpopulations 
with differential abundance across phenotypes (Supplementary Table 1)11,12. Although those 
methods have been used to improve identification of disease related genes and pathways in, for 
example, COVID-19 and cancer11,13, they have not been widely applied to study AD. Therefore, after 
benchmarking and showing the outperformance of PASCode compared to existing methods, we 
applied it to the PsychAD dataset to infer PACs associated with various AD phenotypes in order to 
dissect the cellular and molecular etiology of AD. We present our results in four major sections. First, 
AD associated PACs were identified, followed by prioritization of specific glial (e.g., microglia, 
astrocyte) and neuronal subpopulations important for AD. Second, we identified PACs associated 
with the severity of AD progression, as well as cell subpopulations, such as reactive astrocytes, 
intratelencephalic excitatory neurons and SST inhibitory neurons that appear to confer resilience to 
AD. Third, we prioritized several cell subpopulations, such as protoplasmic astrocytes, that reveal the 
potential contribution of inflammation and Endoplasmic Reticulum stress pathways to depression in 
AD donors. Furthermore, we performed gene expression, cell trajectory and gene regulatory network 
analyses for various types of PACs, providing additional mechanistic insights into gene regulation in 
different AD phenotypes. Finally, we summarize our PACs into an AD-phenotypic single-cell atlas, 
and provide an open-source tool and web app for general use by the scientific community. 

Phenotype scoring of single cells 

 

Fig. 1: Phenotype scoring of single cells by Phenotype Associated Single Cell encoder (PASCode) with 
applications to the PsychAD dataset. a, PASCode takes a population-scale single-cell sequencing (e.g., 
snRNA-seq) dataset with phenotype labels as input. Multiple methods that identify phenotypic differentially 
abundant cells were applied to the dataset, followed by Rank Aggregation14 to generate robust ‘aggregated 
phenotype labels’ for all cells including Positive labels (Pos. aggr. label): cells associated with the positive 
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condition of the phenotype; Negative labels (Neg. aggr. label): cells associated with the negative condition of 
the phenotype; Non-label: cells associated with neither condition. A graph attention network (GAT)15 model 
was trained to use the single-cell gene expression and the cell-cell similarity graph for predicting the 
‘aggregated phenotype labels’. The trained GAT outputs a phenotype association score for each cell (PAC 
score), while providing a latent space that further subdivides cell types into subpopulations based on their 
cellular phenotypic association. More method details are in Supplementary Note 1. b, PASCode is applied to 
the snRNA-seq data from PsychAD consortium, which includes over 6 million single nuclei, 27 cell subclasses 
and 65 cell subtypes from 1,494 donors (dorsolateral prefrontal cortex, DLPFC). We specifically focused our 
analysis on 6 AD and neuropsychiatric symptoms (NPSs) phenotype contrasts (Supplementary Note 1.3) 
including Controls: AD, pathology-cognition (AD-strict and AD-resilient), AD progression (Braak stages), 
WeightGain/Sleep/Suicide, WeightLoss/PMA (weight loss and psychomotor agitation) and Depression/Mood. 

Our Phenotype Associated Single Cell encoder (PASCode) is a deep learning framework for scoring 
phenotype associations of cells (Fig. 1a). First, PASCode takes the population-level single-cell 
sequencing (e.g. snRNA-seq) dataset as input, with available donor-level phenotype information. 
Then, it applies a Robust Rank Aggregation algorithm14 to ensemble multiple differential abundance 
(DA) methods (Supplementary Tables 1, 2) and assigns aggregated phenotype labels to all cells 
(Supplementary Notes 1.1.1, 1.1.2). Given one phenotype contrast between a positive condition 
(e.g., AD) and a negative condition (e.g., Control), DA methods measure the per-cell importance for 
each condition12, followed by an aggregation that assigns ‘aggregated phenotype labels’ to each cell: 
‘positive (negative) aggregated label’ assigned to cells consistently ranked as important for the 
positive (negative) condition across all the DA methods, while ‘non-label’ is applied to cells important 
for neither condition. For robust label assignment, we benchmarked several DA methods with 
synthetic data (Supplementary Note 1.2.1 and Supplementary Figs. 1, 2, 4) and selected the most 
accurate ones for aggregation (Supplementary Note 1.1.2). Benchmark experiments validated that 
such an ensemble approach improved the accuracy of single-cell phenotype label assignment 
(Supplementary Figs. 1, 2). 

Second, PASCode trains a graph attention network (GAT) model to classify the ‘aggregated 
phenotype labels’ of cells based on their gene expression (Supplementary Note 1.1.3, 
Supplementary Note 1.2.2, and Supplementary Fig. 3). After classification, the GAT model can 
assign a probability to quantify how one cell is associated with each aggregated label. We then 
defined the phenotype association score of the cell as its probability difference between positive and 
negative labels (i.e., phenotype associated cell score, or PAC score; Supplementary Note 1.1.3). 
The pre-trained GAT model can be used to efficiently predict PAC scores for unseen cells15, while 
providing a latent space that further divides cell types into subpopulations based on cellular 
phenotypic associations. The GAT model can also be used to predict PAC scores for cells from 
donors with missing phenotypes, providing potential novel insights into phenotypes affecting these 
donors. With the predicted PAC scores, we can also prioritize important cell types for the phenotype 
using methods such as Random Forest16 and SHapley Additive exPlanations (SHAP)17; see 
Methods. Also, cells from each cell type can be subdivided into three subpopulations by cutting their 
PAC scores based on a predefined threshold (Supplementary Note 1.1.4): 𝑃𝐴𝐶! cells associated 
with the positive condition (e.g., 𝐴𝐷-𝑃𝐴𝐶! for AD); 𝑃𝐴𝐶" cells associated with the negative condition 
(e.g., 𝐴𝐷-𝑃𝐴𝐶" for Control); 𝑁𝑜𝑛-𝑃𝐴𝐶 cells not significantly associated with the phenotype of interest. 
Various analyses (e.g. differential gene expression, trajectory and gene regulatory network analysis) 
can be performed with these PACs to pinpoint the molecular mechanisms underlying the phenotype. 

We applied PASCode to the population-level PsychAD consortium snRNA-seq data and 
scored the phenotype association of cells for multiple AD and NPS phenotypes. In total, PsychAD 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 2, 2024. ; https://doi.org/10.1101/2024.11.01.24316586doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.01.24316586


 5 

includes over 6 million cells (including 27 cell subclasses and 65 cell subtypes) from the DLPFC of 
1,494 brain specimens (Fig. 1b, PsychAD dataset in Supplementary Information). We further 
preprocessed the data and performed feature selection and cell type annotation (Methods)7. Here, 
we focused on 584 donors with extensive AD phenotypic information (e.g., diagnosis, Braak stage, 
NPSs, Extended Fig. 1a) across various demographic conditions (e.g., ethnicity, sex, age), thereby 
covering a wide spectrum of AD-related phenotypes, including diagnosis, cognitively resilience, AD 
progression (Braak stages) and presence or absence of various NPSs (Extended Fig. 1b, 
Supplementary Note 1.3). Using the PAC scores of these phenotypes, we further identified cell-
subpopulation-level associated genes and regulatory networks for AD and NPSs, as well as disease 
progression trajectories for the pathology-cognition contrast. 

 
Extended Fig. 1: Phenotypic and demographic information of donors from the PsychAD consortium for 
single-cell phenotypic scoring. a, Columns: Donors (n=584). Rows: Phenotype contrasts and demographic 
categories (Methods and Supplementary Note 1.3), including AD diagnosis (AD vs. Control), Braak stages 
(0-6), Pathology-cognition (AD-resilient, AD-strict, and Control), NPS diagnoses (WeightGain/Sleep/Suicide, 
WeightLoss/PMA forweight loss and psychomotor agitation, Depression/Mood, and Control), Sex (Male vs. 
Female), Ethnicity (AFR: African; AMR: Admixed American; EUR: European; EAS_SAS: Asian), and Age. Grey 
color represents unknown labels. b, Proportion of donors with AD (upper left), Depression/Mood (upper right), 
WeightGain/Sleep/Suicide (lower left), and WeightLoss/PMA (weight loss and psychomotor agitation, lower 
right) across Braak stages, Sex and Ethnicity groups. 
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Prioritizing cell subpopulations and genes in AD 
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Fig. 2: Alzheimer’s Disease associated cells to prioritize important cell types, genes and pathways for 
AD. a, Uniform manifold approximation and projection (UMAP)18 plots of gene expression (Top panel, Left: 
colored by cell subclasses; Right: colored by donor AD diagnosis) and PASCode latent space (Bottom panel, 
Left: colored by cell subclasses; Right: colored by AD-PAC score); b, The AD-PAC score predictions for three 
validation datasets: (1) PsychAD_heldout with AD (n=11) vs. Control (n=11), created by subsampling PsychAD 
AD vs. Control contrast after the training dataset donors were excluded, (2) SEA-AD19 with AD (n=39) and 
Control (n=39), and (3) ROSMAP20 with AD (n=24) and Control(n=24). The cells were grouped based on the 
pre-calculated aggregated labels: Purple - Positive Aggregated label (Pos. Agg. label) for AD. White - Non-
label. Green - Negative Aggregated label (Neg. Agg. label) for Control.***: p < 10-4 based on Wilcoxon rank-
sum test. c, Averaged AD-PAC scores of the 27 cell subclasses across PsychAD training dataset donors 
(n=100 AD vs. 100 Control). Rows: donors. Columns: cell subclasses. d, ROC curves for classifying AD vs. 
Controls in the three validation datasets described in (b). The classification was performed by the Random 
Forest model using the average AD-PAC scores of 27 cell subclasses of donors in (c). Label transferring 
function ‘scanpy.tl.ingest’ in the Scanpy library21 was used to ensure SEA-AD and ROSMAP have the same 
cell type annotations with PsychAD (Supplementary Fig. 5). e, SHAP values for prioritizing AD associated cell 
subclasses using the Random Forest model in (d). Top 10 subclasses were displayed. f, AUCell scores on 
three known AD associated gene pathways of microglia at Donor-level (cells from AD vs. Control) versus PAC-
level (𝐴𝐷-𝑃𝐴𝐶! vs. 𝐴𝐷-𝑃𝐴𝐶"). Since genes in these pathways can be either upregulated or downregulated, we 
only included those upregulated genes as reported by Mathys et al.20 when calculating the AUCell scores. 
Statistical tests to compare: (1) AD vs. Control AUCell score distributions at both PAC- and donor-level, and (2) 
the differences observed between AD and Control within PAC-level vs. donor-level, were conducted as 
described in Supplementary Note 2.3 and tabulated in Supplementary Tables 3, 4. These tests suggest that 
PACs provide better separation between AD vs. Control compared to the donor-level. g, Statistical significance 
(adjusted p-values) of differential expression genes identified by comparing at Donor- vs. PAC-level (i.e., the 
difference between AD and Control captured by all the cells vs. by PACs) for microglia. Only genes with log2 
fold change larger than 0.5 and adjusted p-value less than 0.05 were labeled. Genes highlighted in purple are 
those only found at the PAC-level, and in orange are those only found at the donor-level. Bolded genes are 
from three known AD associated microglia pathways (GO:001540, Amyloid-beta (Aβ) binding; GO:0048156, 
Tau protein binding; KEGG: hsa05010, Alzheimer disease-Homo sapiens) (Supplementary Data 1). 

We first applied PASCode to calculate the AD association score (AD-PAC score) of cells using AD 
diagnosis information of the PsychAD donors: AD (n=314) and Control (n=111) (Supplementary 
Note 1.3). Equal numbers (n=100) of AD and Control donors with balanced male/female ratio were 
randomly selected as the training dataset (including 776,273 cells). As shown in Fig. 2a (top), cells 
from AD and controls were mixed in each cell subclass within the gene expression based UMAP 
plots. However, they became well separated in the trained PASCode latent space by both AD-PAC 
scores (Fig. 2a, bottom) and ‘aggregated phenotype labels’ for AD (Supplementary Fig. 6a). We 
then constructed three independent validation datasets, all from prefrontal cortex, to evaluate the pre-
trained PASCode model (Methods and Supplementary Note 2.1): (1) PsychAD_heldout: 
subsampled 11 AD vs. 11 Control donors after excluding the 200 training dataset donors; (2) Seattle 
Alzheimer's Disease Brain Cell Atlas (SEA-AD): 39 AD vs. 39 Control donors19; (3) ROSMAP: 24 AD 
vs. 24 Control donors20. These cohorts were input to the pre-trained PASCode model for predicting 
AD-PAC scores and compared them with the pre-calculated ‘aggregated phenotype labels’ as the 
ground truth (Supplementary Fig. 6b). Significant separation of AD-PAC scores was observed 
across cells of different ‘aggregated phenotype labels’: p < 10-4 using Wilcoxon rank-sum test (Fig. 
2b), validating the capability of pre-trained PASCode models to predict PAC scores for unseen cells. 

Utilizing the AD-PAC scores, we further prioritized cell subclasses important for AD. To this 
end, for each donor in the training dataset (Fig. 2c, row), we averaged the PAC scores for each cell 
subclass to represent phenotype association on the cell subclass level (Fig. 2c, column). A Random 
Forest classifier that predicts AD versus Control was trained on the averaged PAC scores (Fig. 2d) 
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and its SHAP values were utilized to prioritize cell subclasses important for AD (Fig. 2e, 
Supplementary Data 1). Among these, microglia were ranked the highest, followed by astrocytes, 
both of which have previously been associated with AD22–24. Although oligodendrocytes appear as the 
most prominent cell subclass with the greatest number of cells (Extended Fig. 2a), they were ranked 
relatively low, suggesting the PAC based cell type prioritization is not influenced by cell abundance25, 
unlike existing methods that utilize the number of differentially expressed genes25,26. We then 
grouped cells into PACs (i.e., 𝐴𝐷-𝑃𝐴𝐶!, 𝐴𝐷-𝑃𝐴𝐶", 𝑁𝑜𝑛-𝑃𝐴𝐶) based on their PAC scores 
(Supplementary Note 1.1.4), and compared the proportion of 𝐴𝐷-𝑃𝐴𝐶!/" within each cell subclass 
(Extended Fig. 2a). Neuronal subclasses, including both excitatory and inhibitory neurons, exhibited 
higher levels of 𝐴𝐷-𝑃𝐴𝐶" compared to 𝐴𝐷-𝑃𝐴𝐶!, especially inhibitory neurons of the SST subclass 
(IN_SST) that showed ~10 fold-change. This finding confirmed recent reports describing depletion of 
IN_SST in AD patients27,28. In contrast, non-neuronal subclasses, such as microglia, astrocytes, 
oligodendrocytes, and VLMC, showed an opposite trend, underscoring their different roles in AD.  

Subsequent investigations focused on the expression of known AD genes within our predicted 
AD-PACs. AUCell was used to assess the enrichment of a given gene subset within each cell. Briefly, 
we first curated a list of upregulated genes in three known AD-related gene enrichment and pathway 
terms (e.g., tau-protein binding) for microglia (Supplementary Note 2.2 and Supplementary Data 1) 
and investigated their enrichment in microglia at both the PAC-level (i.e., 𝐴𝐷-𝑃𝐴𝐶! vs. 𝐴𝐷-𝑃𝐴𝐶") and 
donor-level (AD vs. Control cells based on donor phenotype labels) (Fig. 2f). Statistical tests using 
bootstrap subsampling and the Mann-Whitney U rank test (Supplementary Note 2.3) indicated that 
the AUCell scores are statistically more enriched in 𝐴𝐷-𝑃𝐴𝐶! than in 𝐴𝐷-𝑃𝐴𝐶". Furthermore, the 
difference observed between AD and Control at the PAC-level is statistically more significant than 
that at the donor-level (Supplementary Tables 3, 4). 

Additionally, we obtained a higher number of differentially expressed (DE) genes at the PAC-
level than at the donor-level in microglia. Most DE genes identified at the donor-level overlapped with 
PAC-level DE genes (n=1,148 DE genes at the PAC-level vs. 220 DE genes at the donor-level, with 
198 overlapping), although the statistical significance of donor-level DE genes was much lower (Fig. 
2g). Notably, many of the PAC-level specific DE genes were related to known AD microglial 
functions, e.g., tau-protein binding and Aβ binding (Fig. 2g, Supplementary Data 1). We also 
extended the DE analysis to the other five top prioritized cell subclasses: astrocytes, VLMCs, two 
intratelencephalic (IT) excitatory neuronal cell types and oligodendrocytes, allowing us to achieve 
greater statistical significance for DE genes at the PAC-level compared to the donor-level across all 
these subclasses (Extended Fig. 2b and Supplementary Fig. 7a-d). 

Lastly, we examined how PAC-level DE genes are enriched in the validation datasets. 𝐴𝐷-
𝑃𝐴𝐶! upregulated genes were curated for each cell subclass (Supplementary Data 1) and used as 
gene expression signatures (𝐴𝐷-𝑃𝐴𝐶!_𝑔𝑒𝑛𝑒_𝑠𝑒𝑡). We calculated the AUCell scores using 𝐴𝐷-
𝑃𝐴𝐶!_𝑔𝑒𝑛𝑒_𝑠𝑒𝑡 for the entire PsychAD cohort (i.e., both training and test datasets) and visualized 
their distributions at the donor-level (cells from AD vs. Control) versus PAC-level (𝐴𝐷-𝑃𝐴𝐶! vs. 𝐴𝐷-
𝑃𝐴𝐶") (Extended Fig. 2c). The differences within PACs were much more significant than those at the 
donor-level (Supplementary Tables 5, 6, Supplementary Notes 2.2, 2.3). We also extended our 
analysis to two independent datasets for validation (SEA-AD and ROSMAP) (Extended Fig. 2d, e). 
Together, these results provided two forms of validation: (1) PAC-level DE genes were consistently 
enriched within the AD donors of independent datasets at both the PAC- and donor-level, indicating 
that these DE genes are indeed AD related; and (2) the AUCell score differences at the PAC-level 
were more significant than those at the donor-level in the independent datasets, indicating the utility 
of using PACs (compared to using all cells) for disease biomarker identification. Additionally, we 
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employed Gene Set Variation Analysis (GSVA, Supplementary Note 2.2) to validate the 𝐴𝐷-
𝑃𝐴𝐶!_𝑔𝑒𝑛𝑒_𝑠𝑒𝑡 within another independent AD bulk RNA-seq dataset29. We found that the 
enrichment scores significantly increased along the AD Braak stage (Extended Fig. 2f-h, 
Supplementary Fig. 7e-g), especially for those prominent cell subclasses such as microglia, 
astrocytes and oligodendrocytes, suggesting potential roles for genes within the 𝐴𝐷-𝑃𝐴𝐶!_𝑔𝑒𝑛𝑒_𝑠𝑒𝑡 
in AD progression.  

 

Extended Fig. 2: Validation of prioritized Alzheimer’s disease related cell subclasses and genes. a, Left 
y-axis: Proportion of the numbers of 𝐴𝐷-𝑃𝐴𝐶!/", i.e., cells associated with AD (𝐴𝐷-𝑃𝐴𝐶!) or Control (𝐴𝐷-
𝑃𝐴𝐶") within each cell subclass. Only the top 10 prioritized cell subclasses are displayed (Fig. 2e). Orange 
curve represents the number of cells within each cell subclass as indicated on the right y-axis. b, Differentially 
expressed (DE) genes between 𝐴𝐷-𝑃𝐴𝐶! and 𝐴𝐷-𝑃𝐴𝐶" within the six top prioritized cell subclasses. c, AUCell 
score distribution for donor-level (top) and PAC-level (below) for PsychAD. AUCell scores were calculated 
based on the upregulated DE genes of their corresponding cell subclasses in panel (b). Statistical tests to 
compare (1) AD vs. Control AUCell score distributions at both PAC-level and donor-level (Mann-Whitney U 
rank test), and (2) the differences observed between AD and Control compared at PAC-level vs. donor-level 
(bootstrap subsampling), were conducted as described in Supplementary Note 2.3 and tabulated in 
Supplementary Tables 5, 6. d-e, Similar analysis as in panel (c) for independent datasets SEA-AD (d) and 
ROSMAP (e). Several cell subclasses were removed from the SEA-AD and ROSMAP analysis due to the lack 
of predicted PACs to perform statistical analysis. Related statistics are tabulated in Supplementary Tables 5, 
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6. f-h, Gene Set Variation Analysis (GSVA) enrichment of AD bulk RNA-seq dataset29 on upregulated DE 
genes in (b) significantly correlated with donor Braak stages for microglia (f), oligodendrocytes (g), and 
astrocytes (h) (Jonckheere-Terpstra trend test p-values <2.42×10-5, 8.28×10-5, 3.82×10-6, respectively). FPKM 
gene expression values were quantile normalized and batch effect removed as previously described30.  

Gene expression dynamics in AD progression and 
resilience 
Alzheimer's disease is characterized by progressive accumulation of neuropathological lesions and 
cognitive decline31. To describe the severity of AD progression, metrics such as Braak stage, CERAD 
score, and CDR score have been developed32. However, these clinical measurements are generally 
heterogeneous and hysteretic, and, although studies focusing on evaluating neuropathological 
pseudotime have been conducted, they have primarily used bulk RNA-seq or imaging based 
approaches33,34. Here, we sought to understand AD progression at single-cell level by scoring cells 
associated with Braak stage (i.e., 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶). To do this, we first isolated 30 donors from 
Braak stage 0, representing control or early-Braak-stage donors, and 30 donors from Braak stage 6, 
representing late-Braak-stage donors (Fig. 3a, right), as training data for PASCode (Fig. 3a, left). The 
trained PASCode model allows scoring AD progression association for cells from donors of the 
intermediate Braak stages (i.e., Braak stages 1-5). Similar to Fig. 2 analysis, we trained a Random 
Forest classifier on the averaged 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶 score across cell subclasses. The classifier 
output indicates the similarity of the donors’ PAC scores compared with the training donors (i.e., 
Braak stages 0,6), and can be taken as ‘AD progression stage time’ that mimics the pseudo-
progression of AD (Methods). As shown in Fig. 3b, the predicted ‘AD progression stage time’ 
significantly correlated with Braak stages (p < 10-4 based on Jonckheere-Terpstra test), suggesting 
that the neurofibrillary tangles changes observed with AD progression were captured by the ‘AD 
progression stage time’. Although with much fewer donors with AD (n=30) vs. Control (n=30) than 
Fig. 2 analysis with AD (n=100) vs. Control (n=100), cell subclass prioritization resulted in highly 
consistent rankings (Fig. 2e, Supplementary Fig. 8b), indicating the robustness of PASCode.  

Interestingly, the ‘AD progression stage time’ distributed differently across AD-resilient 
(potential AD resilience) and AD-strict donors of the pathology-cognition contrast (Supplementary 
Note 1.3), especially within the late Braak stages (p < 0.86, 0.052, 0.021, 0.041 by one-sided 
student’s t test for Braak stages 3,4,5,6 respectively. Fig. 3c-d, Supplementary Fig. 8a). This 
suggests that AD donors with preserved cognition may have distinct molecular mechanisms that 
differentiate them from their cognitively compromised counterparts, even at the same stage of 
neurofibrillary tangle pathology (Braak). To identify the cell subclasses that most differ across AD-
resilient and AD-strict, we conducted statistical tests using the Random Forest SHAP values (Fig. 3e, 
Supplementary Data 2) and showed that the majority of neuronal cell subclasses (EN and IN) were 
significantly differentiated, indicative of an important role for neuronal cells in resilience to AD. Among 
them, IT ENs (EN_L3_5_IT_3, EN_L3_5_IT_2, EN_L2_3_IT) were ranked as the most differentiated, 
followed by several IN subclasses (IN_PVALB_CHC, IN_SST, IN_LAMP5_RELN, IN_LAMP5_LHX6, 
IN_VIP). These observations are supported by recent studies that found IT EN28 and some IN cell 
subclasses27,28 like IN_SST, IN_LAMP5_RELN are associated with cognitive resilience in AD. Also, 
astrocytes and microglia were among the most differential cell subclasses identified in our analysis. 
Notably, Mathys et al. also identified astrocytes to associate with cognitive resilience in a recent 
study35. Thus, these results suggest the ‘AD progression stage time’ based on 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶 
scores capture the underlying molecular mechanisms of resilience to AD progression. 
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Fig 3. Phenotype associated cells capture the cell-subpopulation-level gene expression dynamics in 
Alzheimer's disease progression and resilience. a, PASCode latent space based UMAP plots depicting cell 
subclasses (left) and 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶 scores (right). Only the training dataset (n=30 donors each from 
Braak stages 0 and 6) is included for visualization. b, ‘AD progression stage time’ (defined based on 𝐴𝐷-
𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶, see Methods) distribution of donors across all Braak stages. c, ‘AD progression stage time’ 
distribution across the pathology-cognition contrast (Supplementary Note 1.3, Green: Control, Cyan: AD-
resilient, Maroon: AD-strict) within each Braak stage. d, ‘AD progression stage time’ distribution across 
pathology-cognition contrast for all donors. ***: p < 1.22×10-10 based on one-sided student’s t test. e, Bubble 
plot to show the difference of SHAP values across AD-resilient and AD-strict donors. Both Y-axis and bubble 
size represent minus log10 Wilcoxon rank-sum test p-values comparing the SHAP values. To exclude the 
stochastic effects, we trained 100 Random Forest models with different random seeds, and averaged their 
SHAP values for comparison. X-axis is the difference in the median values of the averaged 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-
𝑃𝐴𝐶 score between AD-resilient and AD-strict donors. f, DE genes across AD-resilient vs. AD-strict donors for 
EN_L3_5_IT_3, EN_L3_5_IT_2, and EN_L2_3_IT. DE gene analyses were conducted using 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-
𝑃𝐴𝐶! cells (i.e., cells associated with late-Braak-stages) with sex and Braak stage groups as covariates. Only 

genes that satisfy adjusted p-value ≤ 0.05 and |log2(fold change)| ≥ 0.5 are depicted in the heatmap (number of 

total DE genes without the fold change threshold, EN_L2_3_IT: 213, EN_L3_5_IT_2: 10, EN_L3_5_IT_3: 20). 
g, AD progression trajectory of EN_L2_3_IT based on the top 5000 highly variable genes in 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-
𝑃𝐴𝐶!. The cells are colored based on inferred pseudotime (Methods). h, Pseudo-temporal variation of AD 

progression genes that are differentially expressed across AD-resilient (left) and AD-strict (right) PACs. Genes 

were selected by overlapping AD progression genes (trajectory driver genes with Moran’s I score ≥ 0.1 and q-

value < 0.01) and DE genes in Supplementary Data 2 corresponding to panel (f). Bar plots represent the 
Moran’s I score, average gene expression, and the log2(FC) values obtained from AD-strict vs. AD-resilient DE 
gene analysis. The heatmap depicts the standardized gene expression variation along pseudotime. 

To identify gene expression differences underlying AD progression between AD-strict and AD-
resilient donors, we conducted DE analysis comparing 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!/" within the top 3 IT 
cell subclasses: EN_L2_3_IT, EN_L3_5_IT_2, and EN_L3_5_IT_3 (Fig. 3f and Supplementary Data 
2). The DE analysis was conducted using MAST36 with sex and Braak stage as covariates. For 
instance, the BRD1 gene is highly enriched in AD-strict within EN_L3_5_IT_3 subclass and was 
reported to contribute to cognitive impairment in mice37. TENM2 (Teneurin transmembrane protein 2) 
is among the genes downregulated in AD-strict EN_L3_5_IT_3 cells and is associated with spine 
genesis and synapse maturation38. UNC5A is upregulated in AD-strict EN_L3_5_IT_2 cells, and 
animal models suggest it contributes to AD via activating death-associated protein kinase 1 
(DAPK1)39. Logan et al.40 have demonstrated that RUNX1 promotes neuronal differentiation to 
facilitate repair of neuronal function following injury. Being enriched in AD-resilient cells could 
potentially be an indication of the RUNX1 gene’s role in protecting cognitive function in AD patients. 
Schizophrenia and ASD-associated gene41 CXXC4, encoding a transcription factor antagonizing Wnt 
signaling, was also found to be enriched in AD-resilient EN_L3_5_IT_3. The gene KCNT2, encoding 
KNa1.2 a chloride-activated potassium channel, is among the most down-regulated genes in AD-strict 
EN_L2_3_IT. Loss of function of KNa1.2 in mice leads to motor deficits and enhances seizure 
susceptibility42, and could be one of the critical genes that differentiate impaired and preserved 
cognition, which has been associated with AD43. 

To further investigate genes related to AD progression, we inferred a single-cell trajectory for 
EN_L2_3_IT, the most affected subclass in AD-resilient compared to AD-strict donors, using the top 
5000 highly variable genes within 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! (Fig. 3g, and Extended Fig. 3a,b). 
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Differential progression along the pseudotime (Extended Fig. 3c) shows variation across AD-resilient 
vs. AD-strict donors (left) and Braak stages (right). As expected, Early-Braak (i.e., Braak stages 0-2) 
are clustered at earlier times, and the severity of AD increases with the inferred pseudotime. 
Similarly, most AD-resilient cells spread in early-mid pseudotime, while AD-strict cells spread more in 
mid-late pseudotime. Gene Ontology (GO) functional enrichment of the AD progression driver genes 
(Supplementary Data 2) (Moran’s I score > 0.1 and q.value < 0.01) displayed many synapse-related 
terms (glutamatergic synapse), dendrite-related terms (dendritic tree44) and cellular organization and 
survival (catenin complex45, calcium−dependent cell−cell adhesion via plasma membrane cell 

adhesion molecules46,47. Among them, the glutamatergic synapse has previously been reported as a 
factor leading to calcineurin that contributes to the phosphorylation of tau and ubiquitin proteins48–50.  

To investigate gene expression dynamics across AD progression and resilience, we 
overlapped AD-progression driver genes with DE genes across AD-resilient and AD-strict (Fig. 3f, 
Supplementary Data 2). Fig. 3h depicts the pseudo-temporal variation of these genes in AD-resilient 
(left) and AD-strict (right) groups. BRINP3, KCNH5, TRPC6 and SOX5 were found to be highly 
variable along the AD progression with a Moran’s I score >0.3. KCNH5 is upregulated in our AD-
resilient cells, supporting a previous observation in neuronal cells of mice that are resistant to AD51. 
TRPC6, encoding a receptor to activate the calcium channel, exhibited a more dramatic change in 
AD-strict than AD-resilient. TRPC6 dysfunction has been associated with cognitive deficits in AD52 
and activation of TRPC6 has been used as a potential target for antidepressants53. SOX5 is a known 
candidate gene for late-onset AD that plays an important role in neuronal development54. The 
increasing activity of SOX5 along AD progression correlates with Braak stages in both AD-strict and 
AD-resilient cells, suggesting that SOX5 may be involved in regenerative responses. Interestingly, the 
layer L2/3 glutamatergic neuronal marker, CCBE155, also showed dynamic variation along AD 
progression and was upregulated in AD-resilient cells. 

One common observation from both the donor-level ‘AD progression stage time’ (Fig. 3c) and 
PAC-level pseudotime analysis (Extended Fig. 3c) is that, while AD-resilient donors/cells spread 
across mid-late stages of AD progression, AD-strict donors/cells mainly clustered in the later stages. 
AD-strict donors correspond to more severe progression than AD-resilient donors across later Braak 
stages (Fig. 3c). Thus, comparison across AD-strict vs. AD-resilient would be more accurate if similar 
disease stage donors are considered. Therefore, we estimated the cell subtype level rankings for 
donors with Braak stages above 3 (Extended Fig. 3d). Similar to Fig. 3e, neuronal cell subtypes 
show the highest significance of SHAP value differences across AD-resilient and AD-strict. Among 
non-neuronal cells, astrocyte subtype Astro_PLSCR1 shows the highest significance, followed by 
Astro_ADAMTSL3 and Immune_B subtypes. Notably, astrocytes subtypes show a considerable 
variation in SHAP value differences, highlighting the importance of conducting analysis in 
subpopulations of the canonical cell types. As such, we focused our analysis on the four astrocyte 
subtypes using 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! and examined the gene expression in neurotoxic (A1) and 
neuroprotective (A2) reactive astrocytes56 (Extended Fig. 3e). Among the neurotoxic (A1) markers, 
FKBP5 appears to be expressed in all astrocyte subtypes across both AD-resilient and AD-strict 
donors. However, pairwise comparison (Extended Fig. 3f, top) indicates Astro_ADAMTSL3 and 
Astro_PLSCR1 subtypes show increased expression in AD-strict cells. High levels of FKBP5 have 
been associated with cognitive deficits in animal models57. On the other hand, the neuroprotective 
markers, EMP1 and CD109 are expressed mainly in Astro_PLSCR1 and Astro_ADAMTSL3, 
respectively. EMP1 expression in Astro_PLSCR1 depicts a significant upregulation in AD-resilient 
cells (Extended Fig. 3f). EMP1 is a membrane protein involved in cell survival of cancer cells58 and 
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its function in astrocytes, or in the brain, is largely unknown. Reduced EMP1 expression levels have 
been found in a population of patients with major depressive disorder59. This differential expression of 
neuroprotective and neurotoxic markers across AD-resilient and AD-strict indicates that the 
Astro_PLSCR1 subtype may contribute to neuronal damage resistance in AD-resilient individuals. 

 
Extended Fig. 3. Alzheimer’s disease progression trajectory analysis using AD-progression-PACs 
within EN_L2_3_IT cells and the role of reactive Astrocytes in cognition. a-b, EN_L2_3_IT cell trajectory 
colored by AD-resilient/strict (a) and Braak stage (b) (Early-Braak: 0-2, Intermediate-Braak: 3-4, Late-Braak: 5-
6). c, Bar plots showing the differential progression of AD-resilient/strict (left) and Braak stage (right) along 
pseudotime (Methods). d, Prioritizing cell subtypes that are most different across AD-resilient and AD-strict 
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donors. Only donors with Braak stages 4, 5 and 6 were considered. Both Y-axis and the bubble size represent 
minus log10 Wilcoxon rank-sum test p-values comparing the SHAP values. To exclude stochastic effects, we 
trained 100 Random Forest models with different random seeds, and averaged their SHAP values for 
comparison. X-axis is the difference in the median values of averaged AD-progression-PAC scores between 
AD-resilient and AD-strict donors. Astrocyte subtypes are colored in green. e, Gene expression markers of 
neurotoxic (A1) and neuroprotective (A2) reactive astrocytes across astrocyte subtypes and pathology-
cognition. f, Violin plots for FKBP1 and EMP1 genes and their statistical significance across AD-resilient and 
AD-strict donors. The pairwise comparisons were conducted with the Wilcoxon rank-sum test. 

Depression associated cells in AD 

 

Fig. 4. Depression associated cells to pinpoint cell subpopulations important for depression within AD. 
a-b, UMAP visualization of cells from AD donors with available depression information. Cells are colored by 
cell subclasses (a) and Depression-PAC score (b). c, Proportion of 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!/" (i.e., cells associated 
with depression (𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!) or control (𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶")) within each of the top 10 prioritized 
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depression associated cell subclasses shown in (d). Orange curve represents the number of cells within each 
cell subclass as labeled on the right y-axis. d-e, SHAP values for prioritizing depression associate cell types at 
subclass-level (d) and subtype-level (e); top 10 prioritized cell types are shown. f, Cell clusters that are 
significantly overlapped between 𝐴𝐷-𝑃𝐴𝐶! and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!. Only clusters with more than 1000 cells, a 
percentage of 𝑃𝐴𝐶! greater than 5%, and p-values less than 0.01 (with hypergeometric test) were considered. 
g, Detailed information of significant overlapped cell clusters in (f). Left: log10 transformed hypergeometric p-
values of the overlapping significance between 𝐴𝐷-𝑃𝐴𝐶! and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! within each cluster. Middle: 
log10 transformed hypergeometric p-values of the overlapping significance of each cell cluster and cell 
subclass. Right: Fraction of 𝐴𝐷-𝑃𝐴𝐶! and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!within each cluster. 

Clinical studies suggest links between depression symptoms and AD60. We applied PASCode to 
score depression (Depression/Mood contrast, Supplementary Note 1.3) associated cells by 
comparing AD donors (AD-resilient donors excluded) with (n=100) and without depression (n=110) 
(Fig. 4a), thus excluding AD-specific signals. Interestingly, we observed 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!/" 
distributed across all the cell subclasses (Fig. 4b, 4c), indicating a global alteration of cell states as a 
result of depression in AD. In particular, astrocytes and oligodendrocytes were prioritized as the top 
two cell subclasses associated with depression (Fig. 4d,). Furthermore, zooming into cell subtype 
level also showed Astro_WIF1 (wnt inhibitory factor 1-expressing), Oligo_OPALIN (Oligodendrocytic 
Myelin Paranodal And Inner Loop Protein), Astro_GRIA1 (astrocytes expressing AMPA receptor 
GluA1 can modulate neural transmission of neurons), and Astro_ADAMTSL3 (ADAMTS Like 3) as 
the highest prioritized cell subtypes (Fig. 4e, Supplementary Data 3). Astro_WIF1, a major 
component of protoplasmic astrocytes61, contributes to regulating synaptic transmission and 
supporting metabolically neurons62, while Astro_ADAMTSL3 is a part of fibrous astrocytes61. 
Together, these observations suggested astrocytes and oligodendrocytes likely play important roles 
in depression symptoms within AD donors. DE gene analysis between 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!/" 
(Supplementary Data 3) revealed activation of inflammation within depression associated astrocytes 
(Extended Fig. 4a), consistent with previous studies63–66. We, therefore, screened for common 
inflammation markers and found IL18 was significantly upregulated in 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! compared to 
𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" astrocytes (Extended Fig. 4b, c). Besides astrocytes, IL18 was also upregulated 
by 𝑃𝐴𝐶! in other cell types (Extended Fig. 4c), substantiating the importance of this cytokine in 
depression67–71. 

Further, cells associated with both AD and depression (overlap of 𝐴𝐷-𝑃𝐴𝐶! with 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-
𝑃𝐴𝐶!, hereafter referred as AD-Depression-PACs) may represent the mechanistic interplay between 
these phenotypes. To determine cell subpopulations significantly enriched with AD-Depression-PACs, 
we first clustered cells from all the donors based on their gene expression similarity. Then, for each 
cluster, we used hypergeometric tests to evaluate the overlapping significance between 𝐴𝐷-𝑃𝐴𝐶! 
and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! (Fig. 4f, Supplementary Figs. 9, 10). Cell subpopulations significantly 
enriched with AD-Depression-PACs belong to Astro_WIF1 and Oligo_OPALIN subtypes (Fig. 4g), 
which were also prioritized as the most important subtypes for depression (Fig. 4e). Unlike for 
depression, only the protoplasmic astrocyte subpopulation (i.e., Astro_WIF1) was identified as 
contributing to both AD and depression. WIF1 (wnt inhibitory factor 1-expressing) is an inhibitory 
factor of the Wnt/β-catenin signaling pathway72, activation of which results in neuroprotection against 
Aβ73 and depression74. Finally, we analyzed genes significantly upregulated (n=271) in AD-
Depression-AstroWIF1-cluster compared to the rest of the Astro_WIF1 cells (Supplementary Data 
3). GO enrichment analysis found that they are enriched in Endoplasmic Reticulum stress pathways 
(Extended Fig. 4d), suggesting that protein misfolding may contribute to both AD75 and depression76. 
In addition, the enrichment of AD-Depression-PACs within Oligo_OPALIN, a subtype important for 
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oligodendrocyte differentiation77, suggests that neuro-regeneration may also play a role in AD 
associated depression. 

 
Extended Fig. 4. Gene and GO enrichment analysis of depression associated astrocytes in AD. a, GO 
enrichment analysis of significantly upregulated genes (log2 fold change > 0.5 and adjusted p-value < 0.05) 
within 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! (i.e., cells associated with depression) compared with 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶"(i.e., cells 
associated with control) within astrocytes. b, Bar plot depicting the IL18 gene expression difference across 
𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶". Significant difference observed within astrocytes (p < 3.24×10-3 
based on one-sided Wilcoxon rank-sum test). c, Common inflammation markers differentially expressed 
between 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" cell subclasses, p-values and fold changes are shown. Cell 
subclasses with over 100 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" are shown. d, GO enrichment analysis 
(Supplementary Data 3) of genes significantly upregulated in ‘AD-Depression-AstroWIF1-cluster’ of Fig. 4g 
compared with all the other Astro_WIF1 cells. GO enrichment was determined with Metascape 78. 

Astrocyte gene networks in depression 
Given the capability of PASCode to detect phenotype associated cells (PACs), we were next 
interested in a systems-level analysis to illuminate processes that drive gene regulatory mechanisms 
manifesting in these PACs. The regulation of gene expression often involves the interplay between 
several transcription factors (TFs). Regulatory modules, or sets of co-regulated genes, tend to cluster 
in networks and are often functionally related79,80. At the single-cell level, network modules can 
pinpoint pathways and genes that are dysregulated in disease phenotypes. 

Given that astrocytes are implicated as the most distinct cell type across 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" 
and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! (Fig. 4), we focused on examining gene network modules underpinning 
depression. To achieve this, we constructed gene co-regulation networks by connecting genes 
regulated by similar TFs (Methods and Supplementary Note 3). Subsequent clustering of these 
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networks unveiled a robust modular organization within 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! 
astrocytes (i.e., gene co-regulation modules; Supplementary Data 4). These modules are enriched 
with expected pathways and disease ontology terms, providing a comprehensive representation of 
astrocyte subtype biology (Fig. 5 a-c, Supplementary Fig. 11, Supplementary Data 4). For 
instance, Module 2 (M2) and Module 9 (M9) in depression associated astrocytes are enriched with 
genes related to neuroinflammation and glutamatergic signaling, and cholesterol biosynthesis, 
respectively (Fig. 5a). Genes within M2 and M9 are relatively more highly expressed in PLSCR1 and 
GRIA1 subtypes, respectively (Fig. 5b), reflecting the generalized role of these subtypes in overall 
astrocyte function. Interestingly, disease ontology enrichment analysis suggests the presence of 
depression-related modules within 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! cells and the absence of AD-related modules 
within these cells (Fig. 5c). This indicates a good separation of depression associated cells and 
related pathways within astrocytes in AD. 

 

  
Fig. 5. Gene network modules in depression associated astrocytes. a, The gene co-regulation network for 
𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! within astrocytes with individual genes represented as circles connected based on the 
overlap between their predicted regulators (i.e., gene co-regulation network modules; Methods and 
Supplementary Note 3). Genes are colored based on module membership. b, Average expression of genes 
within each module is shown across different astrocyte subtypes. c, The network modules identified in (a) were 
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subjected to enrichment analysis against the DisGeneNet database81. Disease terms with statistical 
significance (FDR corrected hypergeometric test p-value < 0.1) are colored black in the heatmap grids. d, Top 
rewired TFs (y-axis) and their differential usage of 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! M9 geneset (x-axis) in 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! 
versus 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" astrocytes networks in (a). The heatmaps matrix is colored along a black gradient 
indicating normalized edge importance scores with darker colors indicating a stronger relationship between the 
TF and its target. The top row of each TF split represents 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" and the bottom row represents 
𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!. 

We further probed co-regulation modules to identify interesting TFs that rewire between 
𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! cells and found several instances of differential usage of 
target genes by TFs. For instance, the geneset in M9 exhibits considerable rewiring of its regulators 
in the 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!. The TF, ANXA1 (Annexin A1), known for its neuroprotective effects82, 
appears to exhibit weaker connection to its predicted targets in the M9 geneset in 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! 
compared to 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" astrocytes (Fig. 5d). GRHL3 is primarily known as a regulator of 
neurodevelopment and its deficiency has been shown to lead to deficits in brain and spinal cord 
development83. Our analysis also implicates LMO2 as another example with differential targets in 
𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! cells. LMO2 has been reported as a part of a transcriptional 
complex important in neurogenesis in chick embryos84. This suggests that GRHL3 and LMO2 may 
have altered interactions with their target genes in the context of 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!, leading to 
changes in astrocyte function and potentially impacting neuroinflammatory processes and neuronal 
support. Understanding these changes could be crucial for identifying new molecular targets for 
therapeutic intervention in depression. 

Phenotypic single-cell atlas for AD and NPS 
In addition, we scored cells association with other NPS phenotypes (Supplementary Note 1.3) in the 
PsychAD cohort and summarized the results as a phenotypic single-cell atlas. We anticipate that this 
atlas will serve as a valuable resource of gene expression and regulation mechanisms underlying AD 
and related phenotypes, and will facilitate more extensive studies of AD. Overall, this atlas 
encompasses ~2.3 million single cells with phenotype association scores, ~1.5 million PACs 
(Supplementary Data 5), and differentially expressed (DE) genes identified from the PACs. To 
understand the relative functional importance of the cell types in each phenotype, we prioritized the 
27 subclasses based on their averaged PAC scores (Supplementary Data 6). For example, 
microglia and astrocytes have been prioritized as crucial for differentiating AD donors from controls 
(Fig. 6b). More complicated analyses can be conducted with PACs, such as the astrocytes 
subpopulations we found to be important for pathology-cognition (Extended Fig. 3) and AD-
Depression interplays (Fig. 4f-g). We also summarized and compared the DE genes in AD with all 
the NPSs to gain insights into their possible relationships. For example, within oligodendrocytes, we 
identified 11 intersected upregulated genes between AD with WeightGain/Sleep/Suicide, 9 with 
WeightLoss/PMA (weight loss and psychomotor agitation), and 3 with Depression/Mood (Fig. 6c). 
These overlapped genes exhibit similar expression patterns across the relevant phenotypes, 
suggesting their potential roles in multiple phenotypes. A comprehensive summary of PAC-based DE 
genes for all the cell subclasses is provided in Supplementary Data 7. To facilitate the use of this 
atlas, we provide a web application for exploring these identified PACs (Methods). The pre-trained 
PASCode models are also provided to enable phenotype scoring of other single-cell datasets 
(Methods, Fig. 6d). 
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Fig. 6. Phenotype scoring of single cells and differentially expressed genes atlas for AD, 
WeightGain/Sleep/Suicide, WeightLoss/PMA, and Depression/Mood in PsychAD. a, Proportion of 
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𝑃𝐴𝐶!/"associated with AD, WeightGain/Sleep/Suicide, WeightLoss/PMA (weight loss and psychomotor 
agitation) and Depression/Mood across subclasses. b, Cell type prioritization based on the mean absolute 
SHAP values across the four phenotypes. c, Number of overlapped upregulated genes between AD and NPS 
within oligodendrocytes. Bars are log2 transformed, and the exact numbers of overlapped genes are shown on 
top of each bar, such as AD and WeightGain/Sleep/Suicide (n=11), AD and WeightLoss/PMA (n=9), AD and 
Depression/Mood (n=3). d, PASCode models pre-trained on PsychAD facilitate assigning PAC scores for 
future snRNA-seq datasets. 

Discussion 
In this work, we used PASCode to score phenotype association (PAC score) of cells with various 
Alzheimer's disease phenotypes, including progression, potential resilience, and associated 
neuropsychiatric symptoms. Our results suggest that PAC scores have improved the discovery of 
disease associated cell types, genes and pathways in AD. For instance, analysis based on AD-
progression-PAC scores prioritized reactive astrocytes and several neuronal subpopulations as 
important in AD resilience during disease progression. Specific astrocyte subpopulations with 
upregulated inflammation pathways were also found to play an important role in AD associated 
depression. Network analysis further demonstrated that a systems-level approach of PAC analysis 
can recapitulate gene regulatory mechanisms and implicate cell subpopulation gene modules in 
specific phenotypes such as depression. However, this work only covers limited phenotypes within 
PsychAD. Future work will aim to summarize PACs for a broader spectrum of phenotypes. Using the 
atlas, researchers can directly explore genes or cells of interest within or across phenotypes. More 
complicated analysis of this atlas, such as the PAC mediated prediction of phenotype related gene 
regulatory networks, can also be performed. 

PASCode can also be generalized to find associated single cells for other disease types and 
clinical phenotypes using population-scale single-cell data. The pre-trained PASCode model can also 
predict PACs in single-cell datasets from new donors, even without phenotype information. A recently 
published approach85 that can accomplish a similar purpose uses scArches 86 to map the new cells 
into a common latent space and then uses Milo87 to determine PACs within the latent space. Unlike 
PASCode, scArches and Milo must be re-run whenever new donors are available. The authors found 
that involving a healthy reference atlas for learning the latent space could improve PAC identification 
accuracy. Thus, in the future, PASCode can easily incorporate a healthy reference atlas as negative 
training samples for model training, or through transfer learning architectures88. We can further 
extend our analysis to other brain regions (e.g., middle temporal gyrus within SEA-AD19), resulting in 
an AD phenotypic atlas for the whole human brain. Moreover, we can integrate emerging single-cell 
multimodal data, such as scATAC-seq or spatial data, leading to a more comprehensive functional 
genomic atlas of disease associated cells. 

Methods 

PsychAD snRNA-seq data, data preprocessing, feature selection and 
cell type annotation 
The PsychAD data description is available in “PsychAD dataset” (See Supplementary Information). 
We preprocessed PsychAD snRNA-seq data as described in Lee et al.7. Briefly, batch correction was 
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performed with Harmony89 on the log2CPM gene expression values. The 50 Harmony Principal 
Components were used for constructing the KNN graph as input for the DA tools and GAT model. We 
identified the top 5,000 highly variable genes (HVGs) using the ‘highly_variable_genes()’ function in 
Scanpy (v.1.9.3)21 and focused on the 3,401 protein coding genes among them as features for PAC 
identification. To obtain the list of HVGs, each gene’s expression values across all cells were 
transformed to a standardized score with zero mean and unit standard deviation. Then, normalized 
variance of each gene was calculated from the transformed scores and genes exhibiting the largest 
variance were selected as HVGs. As described by Lee et al.7, 27 cell subclasses and 65 cell 
subtypes were identified based on their marker genes. We analyzed PACs distribution across these 
annotated cell types in this work. 

Phenotypes and neuropsychiatric symptoms in Alzheimer’s disease  
This work predicted and analyzed phenotype associated cells (PACs) obtained for multiple 
phenotypes and neuropsychiatric symptoms (NPSs) in AD. Specifically, PsychAD leveraged a set of 
19 NPSs commonly associated with AD and related dementias, which significantly impact daily 
functioning and quality of life4. Thus, to decipher the possible relationship across these phenotypes, 
we focused our analysis within the cohort (Mount Sinai NIH Neurobiobank, MSSM)7 containing 
clinical information of both AD phenotypes and NPSs. Out of the 1,042 MSSM donors, we selected 
584 donors with extensive phenotypic information (e.g., diagnosis, Braak stage, NPSs; Extended 
Fig. 1a). Hierarchical clustering analysis also found that the 19 NPSs tend to form three distinct 
clusters, generally consistent with known associations7. Therefore, considering the sample sizes, 
instead of studying each symptom separately, PsychAD defined 3 NPS contrasts based on those 
aggregated groups7. Therefore, in total, we covered six phenotype contrasts (Supplementary Note 
1.3): AD vs. Control, AD progression, Pathology-cognition, WeightGain/Sleep/Suicide vs. Control, 
WeightLoss/PMA vs. Control and Depression/Mood vs. Control.  

Phenotype prediction and cell type prioritization using phenotype 
association scores of single cells 
The phenotype association scores of single cells (PAC scores) calculated by PASCode can be used 
to predict phenotypes for unseen donors and donors with missing phenotypic labels. This is achieved 
by taking the averaged PAC scores for each cell type and each donor to construct a donor-by-cell-
type feature matrix. Specifically, for 𝑀 donors and 𝐾 cell types, the donor-by-cell-type feature matrix 
𝑃 ∈ ℝ$×& is defined by 𝑃'( =

1	
|+!"|

∑ 𝑠(-)-∈+!" , where 𝐶'( represents the set of cells from donor 𝑚 that 

are annotated as cell type 𝑘, |𝐶'(| denotes the size of the set 𝐶'(, and 𝑠(-) is the PAC score for cell 𝑖. 
The averaged PAC score reflects the cumulative phenotype association across cells within each cell 
type for each donor. Subsequently, we fit a Random Forest classifier16 (RF) on 𝑃, which then predicts 
the phenotype for unseen donors. The trained RF model can also be applied for prioritizing cell types 
important to particular phenotypes. This is achieved by applying SHapley Additive exPlanations 
(SHAP)17, which takes the RF and the donor-by-cell-type feature matrix 𝑃 as input, and ranks cell 
types according to their contributions to the RF model accuracy. To ensure statistical robustness and 
mitigate the effects of random variability in model training, we repeated 100 runs with different 
random seeds and used their averaged SHAP values. 
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Independent validation datasets 
Two datasets, SEA-AD19 and ROSMAP20, were utilized for independent validation. We preprocessed 
the datasets using Scanpy (v1.9.3). In SEA-AD, to retain donor number balance, we randomly 
selected 39 donors with dementia and 39 donors without dementia DLPFC region single-cell data. 
Furthermore, we transferred the cell type labels from PsychAD (as a reference dataset) to annotate 
single cells in SEA-AD and ROSMAP (Supplementary Fig.5). Refer to Supplementary Note 2.1 for 
further details on these preprocessing steps. 

Differential gene expression analysis 

AD vs. Control 
To investigate the importance of inferring PACs over using phenotypes at donor level, two 
differentially expressed (DE) gene analyses were performed for each cell type. They are donor-level 
DE gene analysis (i.e., AD vs. Control) and PAC-level DE gene analysis (i.e., 𝐴𝐷-𝑃𝐴𝐶! vs 𝐴𝐷-𝑃𝐴𝐶"). 
It should be noted that our PACs were predicted from both phenotype donors. As an example, for the 
AD vs. Control contrast, our predictions classify a small number of cells from Control donors as AD-
PACs. These cells were removed from the AD-PACs when we performed the PAC-level DE analysis. 
We only considered the protein-coding genes for the DE gene analyses, and the analyses were 
conducted separately for each cell type. We used the ‘rank_genes_groups()’ function with the 
‘Wilcoxon rank-sum’ method implemented in Scanpy (v1.9.3) to identify DE genes using thresholds of 
adjusted p-value smaller than 0.05. The obtained DE genes for the AD vs. Control contrast (Fig. 2, 
Supplementary Fig. 2) were evaluated using three methods 1) based on statistical significance, 2) 
based on AUCell enrichment scores, and 3) based on Gene Set Variation Analysis (GSVA) 
enrichment. More on these evaluations and the corresponding statistical analysis were detailed in 
Supplementary Notes 2.2 and 2.3, respectively. 

AD progression 
Based on the cell type prioritization depicted in Fig 3e, we identified three cell types EN_L2_3_IT, 
EN_L3_5_IT_2, and EN_L3_5_IT_3 that showed the highest difference across AD-resilient and AD-
strict donors. Thus, we conducted DE analysis for these three cell types across their 𝑃𝐴𝐶! cells (i.e., 
cells that are associated with higher Braak stages). We conducted the DE analysis using MAST36 and 
used Braak stages, sex, and cellular detection rate as covariates. Significant DE genes (i.e., adjusted 
p-value < 0.05 and |log2(fold change)| >= 0.5) for the three cell types were depicted in Fig. 3f and 
Supplementary Data 2. 

Neuropsychiatric symptoms 
We conducted DE analysis for the three neuropsychiatric symptoms, WeightGain/Sleep/Suicide, 
WeightLoss/PMA (weight loss and psychomotor agitation) and Depression/Mood at cell subclass 
level using the ‘rank_genes_groups()’ function with the ‘Wilcoxon rank-sum’ method implemented in 
Scanpy (v1.9.3). Statistically significant DE genes, with adjusted p-value less than 0.05, were 
provided in Supplementary Data 7. 
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AD progression stage time 
To investigate the gene expression dynamics of cells associated with AD progression, we included a 
small proportion of donors (n=30) with Braak-stage 0 and donors (n=30) with Braak-stage 6 as the 
training dataset (Fig. 3a, left) to identify AD-progression-PACs (Fig. 3a, right) across all Braak 
stages. A Random Forest classifier was trained on the averaged PAC scores of AD-progression-
PACs, which outputs a probability to quantify the donors’ phenotypic similarity with Braak-stage 6 
donors based on PACs analysis. The higher the probability is, the more severe the donor’s Braak-
stage is. It reflects the pseudotime for AD Braak-stage progression, thus is termed ‘AD progression 
stage time’. 

Trajectory inference 
To further understand the AD progression in terms of Braak stages, we inferred a single-cell trajectory 
for EN_L2_3_IT using the top 5000 highly variable genes 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! cells 
(Supplementary Data 2). It should be noted that we isolated only the 𝐴𝐷-𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! cells 
coming from AD-resilient and AD-strict donors with the intention of capturing the contrast effects of 
pathology-cognition and AD progression together. The highly variable genes were identified using the 
Seurat (v4.3.0.1) function ‘FindVariableFeatures()’ with the selection method ‘vst’ and 5000 features. 
Then, these 5000 highly variable genes were scaled and principal components were calculated using 
the standard Seurat functions. The nearest neighbors were inferred using the top 50 principal 
components. Then, the UMAP embedding dimensions for the trajectory were estimated and used for 
trajectory inference using the R package, Monocle3 (v1.3.1)90. Using the package Monocle3, we first 
identified partitions using the ‘cluster_cells()’ function and then inferred the trajectory using 
‘lerarn_graph()’ function with modified graph control settings (i.e., euclidean_distance_ratio: 3, 
geodesic_distance_ratio: 1, minimal_branch_len: 1, orthogonal_proj_tip: False, prune_graph: True, 
scale: False, rann.k: NULL, maxiter: 20, eps: 10-5, L1.gamma: 0.005, L1.sigma: 0.01). Then, the 
pseudotimes were estimated using Early-AD (Braak 0-2) cells as the root cell group. The root 
trajectory node, where pseudotime is set to zero, was selected based on the highest percentage of 
cells coming from the Early-AD cells. 

Differential progression genes in AD resilience  
Differential progression of AD-resilient and AD-strict PACs as well as Braak stage groups (Extended 
Fig. 3c) were obtained by binning the cells into 10 groups based on inferred pseudotimes. Using the 
‘graph_test()’ function in Monocle3, we identified the trajectory driver genes (i.e., AD progression 
genes). It used the spatial autocorrelation method, Moran’s I test, to estimate dynamically varying 
gene expressions with the principal graph. Then, the genes that have q-value < 0.01 and Moran’s I 
score > 0.1 were isolated (Supplementary Data 2) for downstream analysis. Gene set enrichment 
analysis of these genes was performed to identify related enrichment terms using Metascape78 online 
platform. A custom list of background genes (i.e., top 5000 highly variable genes) was provided for 
the analysis to ensure the accuracy of enriched terms. The enrichment results are depicted in terms 
of bubble plots, and all the identified enriched terms are provided in Supplementary Data 2. Notably, 
we overlapped the DE genes identified in Fig. 3f with the AD progression genes (i.e., trajectory driver 
genes) to investigate the AD progression genes differentially expressed across AD-resilient and AD-
strict in Fig. 3h using a heatmap depicting the averaged pseudo-temporal variation of gene 
expression.  
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Screening for blood inflammation markers 
We screened several common blood inflammation marker genes (SAA1, TNF, IL1B, IL6, IL10, IL12A, 
IL18, IFNG) by comparing 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! with 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶" within the same cell subclass. 
The Scanpy (v1.9.3) function ‘scanpy.tl.rank_genes_groups’ with Wilcoxon test was applied to identify 
the p-value and log-fold-change (logFC). Cell subclasses with less than 100 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! or 
𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶"cells were excluded for comparison. 

Phenotype associated cell subpopulation shared by AD and 
depression 
We used the Scanpy (v1.9.3) function ‘sc.tl.leiden’ with resolution=5 to identify 89 leiden clusters from 
donors that have both AD and depression information (Supplementary Figs. 9, 10). Hypergeometric 
test was performed to determine the significance of overlapping between 𝐴𝐷-𝑃𝐴𝐶! and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-
𝑃𝐴𝐶! within a leiden cluster. Specifically, for each of the 89 clusters, we used python 
‘scipy.stats.hypergeom(M, n, N)’, where ‘M’ is the population size that equals the total number of cells 
within the cluster, ‘n’ represents the number of 𝐴𝐷-𝑃𝐴𝐶! cells within the cluster, and ‘N’ is the number 
of cells chosen without replacement from the population ‘M’, which equals the number of 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-
𝑃𝐴𝐶! cells within the cluster. Assuming ‘k’ equals the observed number of cells that are both 𝐴𝐷-
𝑃𝐴𝐶! and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!, then the p-values were determined as the likelihood of obtaining a 
greater number of overlapping cells than 'k' purely by chance which can be modeled by a 
hypergeometric distribution. Benjamini-Hochberge procedure was used to calculate the FDR values, 
and only clusters with FDR<0.05 were considered as significant ones shared between 𝐴𝐷-𝑃𝐴𝐶! and 
𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶!. 

Construction of gene regulatory networks  
We were interested in applying network biology techniques to better understand dysregulated gene 
interactions in depression associated astrocytes. To do this, we applied the following procedure to 
two sets of astrocytes labeled as	𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶! and 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛-𝑃𝐴𝐶". First, the log-normalized 
gene by cell CPM matrix was filtered to retain 5000 highly variable genes identified using the 
‘highly_variable_genes()’ function in Scanpy (v1.9.3) library21. The gene expression matrices with 
remaining genes, along with the list of genes annotated as TFs, were supplied to GRNboost2 to infer 
potentially regulatory links between TFs and target genes based on their expression profiles91. From 
the resulting gene regulatory network, which links TFs to genes, we computed the overlaps between 
the predicted TFs of every pair of genes. The overlap was quantified as the Jaccard’s Index and 
arranged as an adjacency matrix (A) with values ranging from 0 to 1, essentially depicting gene-gene 
co-regulation strength. The adjacency matrix was used to find clusters of coregulated genes, or 
modules, as described below.  

Predicting network modules  
The adjacency matrix A depicting strength of co-regulation between every pair of genes was utilized 
to find network modules. First, a dissimilarity matrix was calculated as 1 - A and clustered using 
hierarchical clustering using the average linkage method. The cutreeDynamic function of WGCNA 
was used to cut the hierarchical clustering dendrogram and find network modules. A minimum 
module size of 30 was chosen to guarantee enrichment and statistical analysis of the resulting 
modules. All these operations were performed using the WGCNA package in R92. The resulting 
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modules were annotated by statistical enrichments based on disease and gene ontology catalogs, as 
well as regulatory enrichments based on overlaps with predicted TF targets (Supplementary Note 
3).  

PASCode web application 
We provide an interactive web application for users to explore PACs in this study. Users have custom 
options for UMAP embeddings, donor phenotypic labels, and PAC scores for different visualization 
purposes. Specifically, we offer the choice of various UMAP embeddings, including those of gene 
expression profiles and PASCode latent spaces, for each of the 5 phenotypes. Additionally, users can 
select donor-level phenotypic labels to color the UMAP, including demographic information such as 
sex, age, and ethnicity, and AD/NPS phenotypic labels. Five types of PAC scores corresponding to 
the phenotypes are also available for UMAP coloring. The web application can be accessed at 
https://daifengwanglab.shinyapps.io/PASCodeDB. 

PASCode pre-trained models  
We provide our pre-trained models corresponding to the AD/NPS phenotypes (i.e., AD, AD 
progression, WeightGain/Sleep/Suicide, WeightLoss/PMA and Depression/Mood) for the community 
to use. These models were pre-trained on the PsychAD data with million-scale single-cell gene 
expression profiles, and can be used to annotate the PAC scores for independent single-cell gene 
expression datasets, as exemplified by our analysis for the AD vs. Control contrast. Tutorials of 
PASCode and demos on the use of the pre-trained models are provided at 
https://github.com/daifengwanglab/PASCode.  

Data availability 
Raw and processed PsychAD data can be accessed via Sage Bionetworks. Phenotype associated 
cells and their gene analysis can be interactively visualized at 
https://daifengwanglab.shinyapps.io/PASCodeDB. Further information on the interactive Web App 
can be found in Methods. All other data is included in the main paper or the Supplementary Data. 

All PsychAD data are also available via the AD Knowledge Portal 
(https://adknowledgeportal.org). The AD Knowledge Portal is a platform for accessing data, analyses, 
and tools generated by the Accelerating Medicines Partnership (AMP-AD) Target Discovery Program 
and other National Institute on Aging (NIA)-supported programs to enable open-science practices and 
accelerate translational learning. The data, analyses and tools are shared early in the research cycle 
without a publication embargo on secondary use. Data is available for general research use 
according to the following requirements for data access and data attribution 
(https://adknowledgeportal.synapse.org/Data%20Access). The results published here are in whole or 
in part based on data obtained from the AD Knowledge Portal. 

Code availability 
The PASCode framework and the pretrained AD/NPS models, together with tutorials and demos can 
be accessed at https://github.com/daifengwanglab/PASCode. All code and data used for generating 
figures can be accessed at Zenodo https://zenodo.org/doi/10.5281/zenodo.13241021. 
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