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Table S1. Factors confounding Ct value inference 8 

Factor Explanation Scenario 
1 2 3 4 5 

Biological factors 
Inter-individual 
variation in viral 
kinetics 

Individuals’ viral loads and viral load trajectories vary 
substantially, even accounting for immune history, 
demographic factors, etc.  

0 0 X 0 X 

Symmetry of viral 
load trajectory 

While the viral growth phase is generally much 
shorter than the clearance phase, any single viral 
load measurement could come from either phase41. 

0 X 0 0 X 

Impact of immune 
history on viral 
kinetics 

Past exposure through previous infection, 
vaccination, or both may result in faster viral 
clearance40,48. 

0 0 0 0 0 

Impact of 
demographic factors 
on viral kinetics 

Older individuals generally have higher viral loads 
and slower viral clearance than younger ones43,48. 

0 0 0 0 0 

Impact of viral variant Different SARS-CoV-2 variants may be associated 
with different viral load trajectories40,48. 

0 0 0 0 0 

Logistical factors 
PCR platform / assay Ct values are not typically standardized across 

different PCR platforms and assays46; differences in 
individual testing protocol (e.g. location swabbed) 
could contribute further differences in measured viral 
loads. 

0 0 0 0 0 

Testing behavior and 
sampling regime or 
delay distribution 

Cross-sectional Ct value distributions reflect the 
convolution of the distribution of true infection ages 
and the sampling delay distribution; if sampling 
delays are highly clustered (e.g. mostly 3-5 days 
after infection), observed Ct distributions will reflect 
primarily individual-level random variation rather 
than informative variation in infection ages21. 
Sampling regime (e.g. representative random 
sampling, contact-tracing based sampling, voluntary 
testing, hospital outpatient screening) would 
influence the sampling delay distribution – random 
sampling theoretically results in a uniform delay 
distribution, while e.g. symptom-driven voluntary 
testing results in highly clustered sampling delays. 

0 0 0 X X 

       
Synthetic data scenarios are numbered as follows: 
1) Ideal condition, 2) realistic asymmetry in viral kinetics, 3) moderate individual-level 
variation, 4) clustered sampling delay distribution, 5) realistic baseline 
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Table S2. Comparison of the 24 different models used to model the relationship between daily 10 
reported Ct value statistics and epidemic growth rates, fitted to the realistic baseline synthetic 11 
dataset. We tested various combinations of three Ct-value statistics (mean, standard deviation 12 
and skewness), incorporation of a variant ‘era’ interaction term (intercept only or intercept and 13 
coefficient), and different functional forms of the model (log-linear regression or cubic regression 14 
splines). 15 

Spline Model AIC 
RMSE AUC 
In-s. Now. Inf. In-s. Now. Inf. 

None Mean (no variant era) -4151 0.034 0.0349 0.0434 0.743 0.701 0.66 
None Mean + variant era -4175 0.0335 0.0374 0.0471 0.752 0.667 0.636 
None Mean * variant era -4230 0.0326 0.0383 0.0507 0.763 0.694 0.602 
None Mean + st.dev. (no variant era) -4159 0.0338 0.0354 0.0442 0.75 0.696 0.651 
None Mean + st.dev. + variant era -4186 0.0333 0.0379 0.0479 0.763 0.666 0.647 
None (Mean + st.dev.) * variant era -4256 0.032 0.0396 0.0525 0.78 0.686 0.605 
None Mean + skew (no variant era) -4149 0.034 0.0351 0.0434 0.743 0.695 0.66 
None Mean + skew + variant era -4174 0.0335 0.0376 0.0472 0.752 0.66 0.638 
None (Mean + skew) * variant era -4227 0.0325 0.0395 0.0519 0.764 0.683 0.604 
None Mean + s.d. + skew (no variant era) -4157 0.0338 0.0358 0.0446 0.751 0.689 0.654 
None Mean + s.d. + skew + variant era -4184 0.0333 0.0383 0.0482 0.763 0.659 0.646 
None (Mean + s.d. + skew) * variant era -4255 0.0319 0.0412 0.0534 0.783 0.677 0.604 
Cubic Mean (no variant era) -4229 0.0326 0.0356 0.0466 0.755 0.715 0.668 
Cubic Mean + variant era -4258 0.0321 0.0413 0.062 0.78 0.705 0.635 
Cubic Mean * variant era -4296 0.0313 0.553 1.24 0.796 0.707 0.612 
Cubic Mean + st.dev. (no variant era) -4238 0.0324 0.036 0.0476 0.763 0.709 0.662 
Cubic Mean + st.dev. + variant era -4272 0.0318 0.0414 0.0619 0.789 0.703 0.64 
Cubic (Mean + st.dev.) * variant era -4344 0.0304 0.552 1.23 0.811 0.691 0.649 
Cubic Mean + skew (no variant era) -4232 0.0325 0.0366 0.0479 0.755 0.706 0.664 
Cubic Mean + skew + variant era -4261 0.0319 0.042 0.0627 0.78 0.698 0.633 
Cubic (Mean + skew) * variant era -4339 0.0303 0.554 1.24 0.8 0.682 0.602 
Cubic Mean + s.d. + skew (no variant era) -4240 0.0323 0.0371 0.0491 0.762 0.705 0.67 
Cubic Mean + s.d. + skew + variant era -4274 0.0317 0.0422 0.0629 0.789 0.697 0.638 
Cubic (Mean + s.d. + skew) * variant era -4379 0.0296 0.0545 0.0926 0.814 0.672 0.649 
Key: In-s. = in-sample; Now. = nowcast; Inf. = inflection point 
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Table S3. Summary characteristics of the SARS-CoV-2 testing datasets.  17 

 MGB LAC Tufts 
Sample size 2,671,041 total 

161,273 positive 
104,534 included 

330,034 positive 
279,463 included 

84,848 total 
10,338 positive 
10,214 included 

Dates Mar 2020-Jan 2023 
(1022 days) 

May 2020-Jul 2021, 
Jan-Sep 2022 (680 
days) 

Feb 2021-Oct 2022  
(496 days) 

Testing modality Hospital outpatient, 
inpatient, ER 

Voluntary outpatient 
testing 

Hospital outpatient, 
inpatient, ER 

Platforms/assays 7 platforms: Broad in-
house assay; Cepheid 
SARS-CoV-2; Cepheid 
multiplex SARS-CoV-
2/influenza/RSV; 
Hologic Fusion; Roche 
Cobas SARS-CoV-2; 
Roche Cobas multiplex 
SARS-CoV-2/influenza; 
Roche Liat multiplex 
SARS-CoV-2/influenza 
(see Figure S12) 

Fulgent Genetics 
platform using 
ThermoFisher 
QuantStudio™ 6 and 
7 PCR system, with 
LOINC 94531-1 
(primarily to Nov 
2020) and LOINC 
94533-7 (primarily 
after Nov 2020) 

Alinity single-plex and 
Alinity multiplex 

Symptom status 
known? 

No Yes (approx. 55% 
symptomatic from 
Sep 2020 onward) 

Yes (approx. 65% 
symptomatic) 

Vaccination status 
known? 

No Yes (approx. 25% of 
all included results; 
>70% of 2022 results) 

No 
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Dataset AIC BIC 

RMSE Spearman’s Rho 95% PrI coverage AUC 

In-s. Now. Inf. FS In-s. Now. Inf. FS In-s. Now. Inf. FS In-s. Now. Inf. FS 

MGB -3493 -3433 0.0451 0.0523 0.0645 0.047 0.523 0.398 0.333 0.44 0.949 0.929 0.873 0.938 0.785 0.723 0.722 0.754 

LAC -2660 -2585 0.0335 0.039 0.0471 0.0458 0.649 0.556 0.394 0.573 0.953 0.912 0.837 0.888 0.843 0.784 0.772 0.724 

TFT -1691 -1649 0.0415 0.0497 0.0591 0.0695 0.455 0.266 0.149 0.554 0.944 0.864 0.791 0.801 0.754 0.685 0.584 0.796 

Key: In-s. = in-sample; Now. = nowcast; Inf. = inflection point; FS = fixed train-test split 

Table S4. Summary of the performance of the chosen model in predicting epidemic growth rates using Ct values for MGB, LAC, and 19 
Tufts datasets, including in-sample fits, nowcast performance, inflection period performance, and fit over the testing period with a single 20 
fixed train-test split. Metrics reported are RMSE of predicted vs. observed log incidence growth rates, Spearman’s rank-order correlation 21 
coefficient for predicted vs. observed growth rates, proportion of observed growth rates falling within the 95% prediction interval, and 22 
AUC for epidemic direction predictions. 23 

  24 



Table S5. Summary of model performance metrics for the downsampled MGB and external 25 
comparison (Tufts) datasets, for nowcast performance and comparable baseline nowcast 26 
performance. Metrics reported are RMSE of predicted vs. observed log incidence growth rates, 27 
Spearman’s rank-order correlation coefficient for predicted vs. observed growth rates, proportion 28 
of observed growth rates falling within the 95% prediction interval, and AUC for epidemic direction 29 
predictions. 30 

Dataset 
Days 
included 

RMSE 
Spearman’s 
Rho 

95% PrI 
coverage AUC 

Now. Comp. Now. Comp. Now. Comp. Now. Comp. 
Tufts 413 0.0497 0.0489 0.266 0.348 0.864 0.937 0.685 0.719 
10% downsample 582.54 0.0564 0.0525 0.137 0.321 0.927 0.932 0.615 0.714 
25% downsample 860.02 0.0494 0.0492 0.323 0.389 0.939 0.942 0.698 0.729 
50% downsample 909.84 0.0501 0.0516 0.373 0.4 0.936 0.936 0.718 0.729 
75% downsample 927.64 0.0506 0.0518 0.399 0.41 0.935 0.935 0.736 0.731 
25/day max 
samples 944 0.0525 0.0523 0.39 0.398 0.93 0.931 0.721 0.723 
50/day max 
samples 944 0.0502 0.0523 0.375 0.398 0.935 0.931 0.714 0.723 
100/day max 
samples 944 0.0515 0.0523 0.384 0.398 0.932 0.931 0.718 0.723 
2.5% trimmed 930 0.0502 0.0516 0.431 0.416 0.933 0.935 0.75 0.73 
5% trimmed 930 0.0496 0.0516 0.436 0.416 0.938 0.935 0.748 0.73 
10% trimmed 921 0.0496 0.0517 0.397 0.413 0.933 0.936 0.726 0.735 
Key: Now. = nowcast; Comp. = comparison data 

 31 



 Model AIC BIC 
RMSE Spearman’s Rho 95% PrI coverage AUC 
In-s. Now. Inf. FS In-s. Now. Inf. FS In-s. Now. Inf. FS In-s. Now. Inf. FS 

M
G

B Base model -3493 -3433 0.0451 0.0523 0.0645 0.047 0.523 0.398 0.333 0.44 0.949 0.929 0.873 0.933 0.785 0.723 0.722 0.754 
Outpatient only -3432 -3358 0.0439 0.0494 0.0653 0.041 0.546 0.336 0.234 0.462 0.947 0.941 0.903 0.95 0.804 0.724 0.696 0.763 

LA
C

 

Base model -2660 -2585 0.0335 0.039 0.0471 0.0458 0.649 0.556 0.394 0.573 0.954 0.912 0.837 0.884 0.843 0.784 0.772 0.724 
Symptom stratified -2005 -1914 0.0326 0.0454 0.0507 0.0648 0.728 0.45 0.369 0.313 0.949 0.846 0.744 0.577 0.907 0.829 0.765 0.5 
Asymptomatic only -1986 -1916 0.0335 0.0415 0.0497 0.0487 0.693 0.55 0.399 0.535 0.932 0.866 0.8 0.856 0.88 0.809 0.784 0.5 
Immunologically 
naive only -2556 -2500 0.0344 0.0401 0.0474 0.055 0.62 0.489 0.42 0.31 0.944 0.896 0.821 0.776 0.819 0.761 0.754 0.475 

Key: In-s. = in-sample; Now. = nowcast; Inf. = inflection point; FS = fixed train-test split 

Table S6. Summary of sensitivity analyses comparing performance of the base model in predicting epidemic growth rates using Ct 32 
values for LAC against models using only asymptomatic / unknown symptom status individuals, and using only immunologically naïve 33 
(no known vaccination or previous SARS-CoV-2 infection) individuals, including in-sample fits, nowcast performance, inflection period 34 
performance, and fit over the testing period with a single fixed train-test split. Metrics reported are RMSE of predicted vs. observed log 35 
incidence growth rates, Spearman’s rank-order correlation coefficient for predicted vs. observed growth rates, proportion of observed 36 
growth rates falling within the 95% prediction interval, and AUC for epidemic direction predictions. 37 
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Table S7. Viral kinetics model parameters, descriptions and values used in each of the 5 39 
synthetic datasets. Cells are shaded grey where assumed values differ to estimated values. 40 
Values in “Ideal condition” are the maximum posterior probability estimates from fitting the 41 
model. Bottom row shows the sampling delay distribution used for each scenario. 42 

Parameter Description Ideal condition Realistic 
kinetics 

Clustered 
sampling 

Realistic 
variation 

Baseline 
condition 

(estimated value) 𝑡௣ Days to peak viral 
load 1.00 days 2.56 days 1.00 days 1.00 days 2.56 days 𝑐௣ Minimum Ct value 15.0 25.0 15.0 15.0 25.0 𝑐௦ Ct value at 

inflection point 31.6 31.6 31.6 31.6 31.6 𝑡௦ Days from peak to 
inflection point 14.0 days 8.41 days 14.0 days 14.0 days 8.41 days 

𝑡௖ Days from inflection 
point to full 
clearance 

45.6 days 45.6 days 45.6 days 45.6 days 45.6 days 

𝑐଴ Baseline Ct value at 
time of infection 40.0 40.0 40.0 40.0 40.0 

𝜎௢௕௦ Unmodified 
variance of 

observed Ct values 
for a given time-
since-infection 

2.15 2.15 2.15 4.29 4.29 

𝑡௠ 

Days to reach 
minimum variance 

in observed Ct 
values 

12.1 days 12.1 days 12.1 days 12.1 days 12.1 days 

𝑠௠ 

Proportion 
reduction on 
variance at 
minimum 

(observation 
variance decreases 

from  𝜎௢௕௦ to 𝑠௠𝜎௢௕௦) 
0.622 0.622 0.622 0.622 0.622 

𝑝௖ Daily probability of 
full clearance 0.203 0.203 0.203 0.203 0.203 

Sampling delay distribution Uniform(0,7) Uniform(0,7) Gamma(2,2) Uniform(0,7) Gamma(2,2) 
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 44 

Figure S1. (A) 7-day rolling average growth rate of infections used for the simulations. (B) 45 
Outputs of each synthetic dataset scenario showing the 7-day average mean Ct value reported 46 
through the two surveillance strategies. (C) Scatterplot showing the relationship between 7-day 47 
rolling average growth rates and 7-day rolling average mean Ct value for each scenario, 48 
stratified by surveillance strategy. Solid lines show fitted linear regression models. 49 



 50 

Figure S2. In-sample fits of the best-performing GAM model predicting epidemic growth rates 51 
over time using only reported Ct values using the 5 synthetic datasets. Blue line shows true growth 52 
rate of infections used for the simulation. Black lines and shaded region show model-predicted 53 
growth rates and 95% confidence (dark shading) / prediction (light shading) intervals. 54 



 55 

Figure S3. Training dataset fits (up to vertical dashed line) and test dataset predicted epidemic 56 
growth rates over time using only reported Ct values using the 5 synthetic datasets. Results 57 
shown are from the best-performing GAM model. Blue line shows true growth rate of infections 58 
used for the simulation. Black lines and shaded region show model-predicted growth rates and 59 
95% confidence (dark shading) / prediction (light shading) intervals.  60 



 61 

Figure S4. Cross-correlations between log incidence growth rates and mean Ct values at 62 
different lead/lag times, for MGB data. (A) correlation strength, (B) scatterplots of daily observed 63 
growth rate and mean Ct value at different lags, (C) growth rate and mean Ct value over time 64 
with different time shifts for the Ct value curve.  65 



 66 

Figure S5. Cross-correlations between log incidence growth rates and mean Ct values at different 67 
lead/lag times, for LAC data. (A) correlation strength, (B) scatterplots of daily observed growth 68 
rate and mean Ct value, (C) growth rate and mean Ct value over time with different time shifts for 69 
the Ct value curve.  70 



 71 

Figure S6. Model-predicted vs. observed log incidence growth rate for models fitted using the MGB data, showing (A) in-sample fits , 72 
(B) fit over the testing period with a single fixed train-test split shown by the vertical dashed line, and (C) two-week rolling nowcast fits, 73 
starting at the vertical dashed line. 74 

 75 



 76 

Figure S7. Model-predicted vs. observed log incidence growth rate for models fitted using the LAC data, showing (A) in-sample fits, 77 
(B) fit over the testing period with a single fixed train-test split shown by the vertical dashed line, and (C) two-week rolling nowcast fits 78 
starting at the dashed vertical line.  79 



 80 

Figure S8. Best-fit lines (with standard errors) showing the modeled relationship between mean 81 
(left) and skewness (right) in Ct values, by variant era, against growth rate for MGB data. Upper 82 
panels show fit to training data with a fixed cutoff at 31 Dec 2021, while lower panels show the fit 83 
of the trained model to data in the subsequent test period (01 Jan 2022 onward).  84 



 85 

Figure S9. Best-fit lines (with standard errors) showing the modeled relationship between mean 86 
(left) and skewness (right) in Ct values, by variant era, against growth rate for LAC data. Upper 87 
panels show fit to training data with a fixed cutoff at 31 Dec 2021, while lower panels show the fit 88 
of the trained model to data in the subsequent test period (01 Jan 2022 onward). Note the absence 89 
of Omicron-era data from the training period.  90 



 91 

Figure S10. Model-predicted vs. observed log incidence growth rate for models fitted using the Tufts data, showing (A) in-sample fits, 92 
(B) fit over the testing period with a single fixed train-test split shown by the vertical dashed line, and (C) two-week rolling nowcast fits 93 
starting at the dashed vertical line. 94 



 95 

 96 

Figure S11. (A) Ct value distributions by week for the Tufts dataset. Solid line shows mean, 97 
shaded ribbons show 50% and 95% quantiles. (B) Incidence of COVID-19 cases and 98 
corresponding epidemic rates for Massachusetts, USA. Grey line shows growth rate of cases, 99 
whereas blue line shows 7-day rolling mean growth rate. (C) Relationship between Ct value 100 
means and skewness against epidemic growth rates. 101 

 102 
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 104 

Figure S12. Distribution of test results included in the MGB dataset, broken down by screening 105 
location (outpatient pre-procedural screening, ER testing, inpatient testing), swab type 106 
(nasopharyngeal vs. nasal vs. other), and PCR platform / assay used for analysis. 107 

 108 



 109 

Figure S13. Best-fit lines (with standard errors) showing the modeled relationship between mean (left) and skewness (right) in Ct 110 
values against growth rate, stratified by reported symptom status, for LAC data, up to 31 Dec 2021 (training period) and after (test 111 
period). Note the differing relationships by symptom status stratum. 112 



 113 

Figure S14. Comparison of predictive performance (RMSE and AUC) for the 24 tested models.  114 
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 116 

Figure S15. Viral kinetics model fitted to longitudinal SARS-CoV-2 RT-qPCR testing data 117 
following a previous negative test. (A) Solid blue lines show 1000 posterior draws of the mean Ct 118 
value over time. Shaded envelope shows 50% and 95% quantiles. Horizontal lines show control 119 
points used to parameterize the model. (B) Solid blue lines show 1000 posterior draws for the 120 
model-predicted proportion of positive tests over time-since infection overlaid on empirical 121 
proportion detectable. (C) Box plots for the posterior distribution of observed Ct values on each 122 
day post infection (blue) compared to distribution of raw data (red). 123 
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 125 

Figure S16. (A) Randomly simulated Ct values for the 5 synthetic data scenarios. “Baseline 126 
condition” shows the Ct value distribution as estimated from fitting to the longitudinal testing 127 
data, whereas the other scenarios show assumed Ct value distributions after changing some 128 
parameters. (B) Assumed incubation period distribution (red) and sampling delay distribution 129 
(green) for each scenario.  130 



Supplementary Text 1 – Synthetic datasets 131 

1. Viral kinetics model 132 

We adapted a previously published viral kinetics model describing the mean and distribution of 133 

Ct values over time-since-infection21. Our simulations do not need to track individual infections, 134 

and thus unlike other published viral kinetics model25,40,48,55, our model describes only the mean 135 

and variance of Ct values for all infections given time-since-infection rather than modeling each 136 

individual’s viral trajectory. Model parameters and interpretation are shown in Table S6. 137 

We used a piecewise linear model of the form: 138 

𝑓ሺ𝑡ሻ = ⎩⎪⎨
⎪⎧ 𝑐଴, 𝑡 ≤ 0𝜇𝑡 +  𝑐଴ , 0 < 𝑡 ≤ 𝑡௣  𝑐௣ −  𝜔ଵ(𝑡 −  𝑡௣) +  𝑐଴ , 𝑡௣ < 𝑡 ≤ 𝑡௣ + 𝑡௦𝑐௦ −  𝜔ଶ൫𝑡 − 𝑡௣ − 𝑡௦൯ + 𝑐଴, 𝑡 > 𝑡௣ +  𝑡௦  139 

Where 𝑐0 is the true baseline Ct value at time of infection; 𝜇 = ௖೛ି௖బ௧೛  is the Ct value growth rate; 140 

𝑐𝑝 is the minimum Ct value; 𝑡𝑝 is the time from infection to minimum Ct value; 𝜔1 = 𝑐𝑝−𝑐𝑠𝑡𝑠  is the 141 

initial clearance rate; 𝑐𝑠 is the Ct value at which waning switches to a second, slower clearance 142 

rate; 𝜔2 = 𝑐𝑝−𝑐0𝑡𝑐  is the second, slower clearance rate; 𝑡𝑐 is the time taken to decay from 𝑐𝑠 to 𝑐0. 143 

We model the distribution of observed Ct values around the mean Ct value (𝑓(𝑡)) to capture three 144 

observations: 145 

1. Ct values are highly varied on a given day post infection.  146 

2. The variance of the Ct distribution is not necessarily constant over time. 147 

3. Most individuals clear their infections quickly, but a small proportion remain detectable at 148 

a very high Ct value for many days after infection. 149 

 150 



The distribution of observed Ct values on a given day post infection is modeled as a truncated 151 

Normal distribution: 152 

𝐶(𝑡)~𝑁(𝑓(𝑡),𝜎(𝑡))଴ଷ଼ 153 

Where 𝑁 is the normal distribution. We assumed the distribution was truncated between 0 and 38 154 

based on the distribution of observed Ct values in the NBA dataset. 𝑓(𝑡) is the mean of the Normal 155 

distribution and 𝜎(𝑡) is the time-varying variance given by: 156 

 𝜎(𝑡) = ⎩⎨
⎧ 𝜎௢௕௦ , 𝑡 < 𝑡௣ + 𝑡௦𝜎௢௕௦(1 − 1 − 𝑠௠𝑡௠ (𝑡 − 𝑡௣ − 𝑡௦), 𝑡௣ + 𝑡 < 𝑡 ≤ 𝑡௣ + 𝑡௦ + 𝑡௠𝑠௠𝜎௢௕௦ , 𝑡 >  𝑡௣ + 𝑡௦ + 𝑡௠ 157 

𝜎𝑜𝑏𝑠 gives the variance. The second term describes a gradually decreasing variance during the 158 

second clearance phase, declining at a constant rate over duration 𝑡𝑚 before reaching a minimum 159 

of 𝑠𝑚𝜎𝑜𝑏𝑠.  160 

In addition, the probability of a sample having a detectable sample on a given day following 161 

infection is the product of two probabilities: the probability of having a Ct value less than the limit 162 

of detection, given by the cumulative density of the Normal distribution; and the probability of 163 

having not cleared the infection by that day: 164 

𝜙(𝑡) = 𝑃ሾ𝐶(𝑡) < 𝑐଴ሿ(1 − 𝑝௖)௧ି௧೛ା௧ೞ  165 

The first part of the equation gives the cumulative density of the Normal distribution. The second 166 

part describes an additional process, whereby each day from 𝑡𝑝 + 𝑡𝑠 onwards there is a daily 167 

probability, 𝑝𝑐, of becoming fully undetectable, representing clearance of the infection. 168 



2. Parameterizing the base model 169 

We parameterized the viral kinetics model using publicly available longitudinal data from the 170 

National Basketball Association (NBA) 48. These data were a convenience sample from daily 171 

testing of NBA players, staff, and other affiliates over the course of the pandemic. Clinical samples 172 

were combined anterior nares and oropharynx swabs (collected separately from each anatomical 173 

site and combined in a single tube). Samples were tested using the Roche Cobas target 1 assay 174 

to give Ct values against the ORF1ab gene target. For this analysis, we used only tests from 175 

infections where the first positive sample was preceded by a negative test, intended to capture 176 

viral kinetics immediately following infection. Furthermore, as our objective was only to simulate 177 

a realistic model for the distribution of Ct values over time-since-infection, we did not stratify the 178 

data by covariates such as age group, symptom status, vaccination status or variant. Ultimately, 179 

we fit our model to 3,627 positive samples and 8,252 negative samples, representing 403 distinct 180 

infection episodes with samples taken between day 0 and 51 following a previous negative test. 181 

We used a Markov chain Monte Carlo algorithm 56 to estimate posterior distributions for the model 182 

parameters conditional on the NBA dataset using uninformative uniform priors for the model 183 

parameters and a likelihood function based on the model described above. We ran 3 chains for 184 

150,000 iterations, discarding the first 50,000 iterations as burn in. High effective sample sizes 185 

(>1000) and 𝑅෡ values <1.1 were obtained for all estimated parameters. We used the maximum a 186 

posteriori estimates as point estimates for the simulations. Model fits are shown in Figure S15. 187 

3. Simulated surveillance data 188 

We simulated Ct values observed under a realistic surveillance system using the following 189 

algorithm: 190 



1. Infection times were simulated for N=2,000,000 individuals (the cumulative incidence of 191 

cases in Massachusetts) by drawing infection times from the 7-day rolling mean reported 192 

incidence of cases from Massachusetts. 193 

2. Two surveillance strategies were simulated giving each individual two possible sampling 194 

times: 195 

a. Random cross-sectional testing, representing detection of symptomatic infections. 196 

Uniformly distributed sampling dates were simulated for each infection. The time-197 

since-infection was given as the difference between the sampling date and 198 

infection date (thus, many individuals were sampled before they became infected 199 

or long after they cleared their infection). All individuals are assigned one random 200 

sampling time. 201 

b. Symptom-based surveillance was simulated by assuming all infected individuals 202 

became symptomatic (note that it is not important to reflect the true symptomatic 203 

fraction for SARS-CoV-2, as we are only interested in generating a large number 204 

of simulated Ct values). Each symptomatic individual was assigned a randomly 205 

generated incubation period drawn from a log-normal distribution with mean = 206 

1.621 and standard deviation = 0.41 on the log scale . For symptom-based 207 

surveillance, each symptomatic individual was additionally given a sampling delay 208 

drawn from a distribution. An individual’s sampling date was given as their infection 209 

date, plus their incubation period, plus their sampling delay. 210 

3. Expected Ct value at their sampling time were calculated using the viral kinetics model 211 

described above combined with the MAP estimates from the model fitting. 212 

4. Time to full clearance was simulated for each individual from a negative binomial 213 

distribution with success probability 𝑝𝑐. 214 



5. Finally, observed Ct values were simulated from a normal distribution with mean given by 215 

the expected Ct value given time-since-infection and the time-dependent variance as 216 

described above. If the simulated Ct value is greater than the limit of detection or the 217 

individual had already fully cleared the infection, then the Ct value was set to 40.   218 

4. Synthetic data scenarios 219 

To understand how the relationship between observed Ct values and true growth rate of infection 220 

incidence varies across different scenarios, we implemented 5 different scenarios. We start with 221 

the “Ideal” scenario, which modifies the simulation parameters to provide an unrealistic scenario 222 

where we expect to see a consistent and clear relationship between surveillance Ct values and 223 

incidence growth rates. We then return each of these simulation parameters to realistic values 224 

one at a time to understand which factors confound our ability to infer growth rates from 225 

surveillance Ct values. 226 

Scenarios: 227 

1. Ideal conditions: assuming that viral kinetics are extremely left-skewed (very fast growth 228 

phase relative to clearance phase), that there is little variation in observed Ct values given 229 

time-since-infection, and that the delay from symptom onset to sampling time is uniformly 230 

distributed between 0 and 7 days. 231 

2. Realistic viral kinetics: using the viral kinetics parameter estimates from fitting the model, 232 

but with half the variation in observed Ct values given time-since-infection and uniformly 233 

distributed sampling delays. 234 

3. Realistic variation: using an extremely left-skewed viral kinetics curve and uniformly 235 

distributed sampling delays, but with the variance of the Ct value distribution given time-236 

since-infection based on the model estimates. 237 



4. Realistic sampling: using an extremely left-skewed viral kinetics curve and reduced 238 

variance in observed Ct values, but assuming that sampling delays are gamma-distributed 239 

with a mean of 4 days and variance of 8 days. 240 

5. Realistic scenario: using the viral kinetics parameter estimates and variance from fitting 241 

the model, and assuming that sampling delays are gamma-distributed with a mean of 4 242 

days and variance of 8 days. 243 

Figure S16 shows the assumed viral kinetics models, and incubation and sampling delay 244 

distributions used for each of the scenarios. Figure S1 shows the assumed epidemic growth rate 245 

curve, and the resulting mean Ct values over time through the two surveillance systems.  246 

 247 


