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Abstract
In kidney transplantation, obtaining early information about the risk of graft failure helps
physicians and patients anticipate a potential return to dialysis or retransplantation. Clinical
prediction models are commonly used to obtain such risk estimation, but their performance
needs to be continuously evaluated in various contexts. We propose an external validation
study of the Kidney Transplant Failure Score in a pooled sample of 3,144 patients
transplanted between 2010 and 2015 in France, Belgium, Norway and Canada. This score is
used at the first transplantation anniversary to predict the probability of graft failure over the
following seven years. The target population was defined as adult recipients of a kidney from
a neurologically deceased donor without graft failure in the first year post-transplantation.
Graft failure was defined as a return to dialysis. Around 10% of patients returned to dialysis,
and 12.6% died during the seven-year follow-up. The KTFS authors fitted a Cox model and
then adjusted its coefficients to maximize the discrimination, yielding the KTFS final version.
We evaluated the performance of the initial and final versions of the KTFS, as well as the
performance of another model we developed to consider death as a competing event. All
KTFS versions yielded similarly good discrimination (area under the time-dependant receiver
operating curve around from 0.79 [0.76-0.82] to 0.80 [0.77-0.84]), while the
discrimination-optimized one presented important miscalibration. Clinical utility, assessed
through net benefit, was also the lowest for the discrimination-optimized version. Our results
warn against using the current KTFS version and recommend using either the initial
coefficients or the competing risk-based ones instead.
Keywords: Clinical prediction model, Competing risk, Geographical validation, Graft failure,
Survival analysis, Temporal validation.

Lay summary

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 2, 2024. ; https://doi.org/10.1101/2024.10.31.24316511doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.10.31.24316511
http://creativecommons.org/licenses/by-nc-nd/4.0/


French nephrologists have used the Kidney Transplant Failure Score (KTFS) for nearly fifteen
years to predict kidney graft failure eight years after the transplantation. Because predictive
performance decreases over time, we first verified that the score could still predict correctly
in France and also in other countries. Then, we compared the different KTFS formulas to find
that the one currently used is suboptimal and should be avoided. Our findings show that the
KTFS is still a reliable source of information for both kidney recipients and nephrologists
when using its first version.
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Introduction

The need for kidney replacement therapies is a major public health issue, with worldwide use
expected to total 5,439 million patients (3,899 to 7,640 million) in 2030.1 Kidney
transplantation is considered the treatment of choice, improving both quality of life and life
expectancy as compared to remaining on dialysis.2,3 Still, there is a shortage of organs
available for donation. Optimizing long-term post-transplantation care is crucial to limit the
need for novel transplantations. Clinical prediction models (CPMs), or prognostic scores, can
provide meaningful information for nephrologists and may help involve patients in managing
their disease. However, the quality of CPMs is generally poor in kidney transplantation.4–6

Kaboré et al.5 highlighted the performance and straightforward usage of the Kidney
Transplant Failure Score (KTFS).7 Its use in clinical practice is the subject of a phase-IV
randomized trial.8 The KTFS was developed in France in the early 2000s and validated in the
same population.7 It is computed at the first anniversary of the transplantation and predicts
graft survival, defined as the time to return to dialysis, up to seven years later using the
following predictors: recipient biological sex, recipient age, last donor creatininemia, the
number of previous transplantations, creatininemia at three and twelve months, proteinuria
at twelve months and acute rejection during the first year of transplantation. The authors
fitted a Cox model to obtain a first formula (hereafter initial coefficients) and then derived a
second formula by adjusting the predictors' coefficients to maximize the discrimination
(hereafter discrimination-optimized coefficients). Such discrimination-optimized coefficients
may threaten calibration in other populations.9 Furthermore, as external validation is
currently lacking,10 its performance outside of France is unknown. Finally, the KTFS did not
consider patient death as a competing risk, likely due to its relative scarcity in the original
study’s source population.5 Not accounting for a competing risk when externally validating a
CPM can overestimate the actual risk of kidney failure.11

The present study aims to externally validate the KTFS (with the initial,
discrimination-optimized, or competing risk-based coefficients) in prospective cohorts from
Europe and North America and provide up-to-date performance.

Material and methods

Study population
We used, for the validation, data from two sources and considered only patients transplanted
between January 1, 2010 and December 31, 2015. EKiTE is a European network with seven
centers from France, one Belgian, one Spanish, and the Norwegian national registry.12 The
Spanish center was not included because data were unavailable at the moment of the study.
We also included recipients from the Centre hospitalier de l’Université de Montréal (CHUM;
Quebec, Canada). Therefore, patient heterogeneity was both temporal and geographical. A
total of 3,144 patients (Figure 1) met the inclusion criteria defined in Foucher et al. (adult
recipients of neurologically deceased donors with a functional transplant on the first
anniversary of their transplantation without missing predictors).7 All participants gave
informed consent for research at the time of transplantation, and the current study was
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approved by the Université de Montréal clinical ethics committee (#2023-4811). Note that
the original development sample refers to those used in Foucher et al. to develop the KTFS.

Collected Data
Donor characteristics included age, sex, and last serum creatininemia. Recipient
characteristics were age, sex, body mass index, and number of previous kidney
transplantations. Cold ischemia time and number of HLA incompatibilities were the
transplantation-related characteristics. Post-transplantation characteristics included the
occurrence of at least one acute rejection episode (including borderline changes by Banff
criteria used during the study period13,14) during the first year posttransplantation. Finally,
serum creatininemia and daily proteinuria were recorded at three, six and twelve months.
Proteinuria was not collected through 24-hour urine collection on a regular basis at the
CHUM during the study period, hence the urine test strip’s value was used as a proxy (value
multiplied by 1.5, assuming 1.5L of urine per day on average). Delayed graft function (defined
as the need for at least one dialysis session within the first-week post-transplantation) and
1-year estimated glomerular filtration rate (eGRF, estimated from the 4-variable MDRD
formula15) were also collected. However, since French law does not authorize the storage of
patient ethnicity, no recipients from French centers were considered black in the MDRD
calculation.

Figure 1: Inclusion flowchart.

Outcome
The endpoint was time to graft failure, defined as the return to dialysis or retransplantation
over a seven-year prediction window, with follow-up time starting one year after kidney
transplantation.
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Statistical analysis
Datasets were pooled to achieve the 288 minimum number of events needed for external
validation, according to Jinks et al.’s B1 formula (details on Supplementary Material A).16 The
external validation and original development samples were compared using t-tests or
Mann-Whitney tests for quantitative variables and chi-square tests for qualitative variables.
Predictive performances were reported according to the Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnosis statement.17 The
discrimination was evaluated by the area under the time-dependent receiver operating curve
(tAUROC) at seven years.18 The calibration was evaluated at three different levels – mean
calibration, weak calibration (calibration slope), and moderate calibration (integrated
calibration index19) – as recommended by Van Calster et al.9 Overall performance was
evaluated by the scaled Brier Score.20 Clinical utility was evaluated using a decision curve.21

Right-censoring was considered uninformative, and inverse probability weighting or
pseudo-observation was used to take it into account.22,23 See McLernon et al. for more
information on these metrics in survival settings.24 To consider the competing risk of death,
the KTFS was refitted in its development database (described in Foucher et al.) using a
cause-specific Cox proportional hazard model.25 Performance measures used were the
same as above, except that the cumulative incidence functions replaced the Kaplan-Meier
survival estimator.26 Non-parametric bootstrap (2000 iterations) was used to compute 95%
confidence intervals (CIs). Finally, exploratory subgroup analyses were done at the country
level using the same approaches. All analyses were conducted with R version 4.2.2.27

Results

Patient characteristics

The included patients mainly came from France (N=2,326). The sample also included 194,
255, and 369 patients in Canada, Belgium and Norway, respectively. The rate of events
differed between our validation sample compared to the original development sample from
Foucher et al.7 For instance, 10% and 12.6% of the individuals in the pooled sample
presented a graft failure or a death, respectively, whereas only 8.4% and 3.6% had graft
failure or death, respectively, in the development data. Survival was similar across the
countries of our validation sample (Figure 2). However, the median follow-up time was longer
in the validation sample than in the development data, with a range from 5.8 to 8 years for
France and Canada, respectively (Table 1). This was especially visible in Canada, where more
than half of the patients followed at the CHUM were administratively censored at eight years
post-transplantation. The original development data’s patient characteristics differed from
the pooled validation sample, even for the French subsample alone. Globally, graft overall
quality was lower (e.g., older donor), while transplantation characteristics and short-term
outcomes were better (e.g., shorter cold ischemia time and higher eGFR one-year
post-transplantation) in the pooled validation data. This is likely explained by practice
changes, such as the the use of perfusion machines.28
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Figure 2: Survival curves for each country and for the pooled validation samples. Notes: The
survival probability axis is trimmed before 70% to enhance between-country visibility. The
sample is selected among the survivors at one year, i.e., the time of the kidney transplant
failure score computation.

Table 1: Characteristics of the patients in the initial development and validation samples (pooled or stratified by
country).

Development
n = 2,169

Pooled
Validation
n = 3,144

France
n = 2,326

Belgium
n = 255

Norway
n = 369

Canada
n = 194

Events

Graft failure, n (%) 182 (8.4) 315 (10.0) 242 (10.4) 33 (12.9) 23 (6.2) 17 (8.8)

Death, n (%) 78 (3.6) 396 (12.6) 253 (10.9) 42 (16.5) 62 (16.8) 39 (20.1)

Follow-up time (years),
Median [IQR] 4.5 [2.9 - 7.2] 6.0 [4.0 - 8.0] 5.8 [3.6 -

7.8]
6.3 [4.4 -

8.0]
6.5 [5.6 -

7.3]
8.0 [8.0 -

8.0]

Recipient age (years),
Mean (SD)

48.0 (13.0) 53.8 (13.4) 53.5 (13.5) 56.7
(12.2)

55.6
(13.7)

51.1
(12.2)

Donor age (years),
Mean (SD)

45.2 (15.8) 54.0 (16.7) 55.0 (16.5) 51.3 (14.4) 53.2 (18.4) 46.1
(16.4)

Body mass index
(kg/m2), Mean (SD)

23.6 (4.3) 25.2 (4.5) 24.9 (4.4) 25.5 (4.4) 25.6 (4.6) 27.2 (4.9)

Cold ischemia time 23.5 (8.8) 17.0 (6.7) 18.3 (6.7) 13.6 (4.3) 13.7 (4.5) 11.0 (4.0)
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(hours), Mean (SD)

1-year eGFR (mL/min),
Mean (SD)

51.2 (18.0) 57.0 (22.6) 56.1 (22.9) 54.0 (19.9) 64.9 (22.9) 57.0
(17.7)

HLA-incompatibilities,
Median [IQR]

3.0 [2.0 - 4.0] 3.0 [2.0 - 4.0] 3.0 [2.0 -
4.0]

3.0 [2.0 -
4.0]

3.0 [2.0 -
4.0]

4.0 [3.0 -
5.0]

Last donor Cr.
(µmol/L), Median [IQR]

86.0 [67.0 -
112.0]

71.0 [55.0 -
97.0]

75.0 [57.0 -
102.0]

63.7 [52.2
- 84.9]

67.0 [52.0
- 87.0]

61.0
[48.0 -
81.0]

3-month Cr. (µmol/L),
Median [IQR]

133.0 [106.0
- 165.0]

132.0 [106.0
- 166.0]

134.0
[108.0 -
168.0]

146.8
[118.1 -
189.2]

115.0
[94.0 -
147.0]

121.0
[98.3 -
144.8]

6-month Cr. (µmol/L),
Median [IQR]b

130.0 [106.0
- 160.5]

131.7 [106.0
- 166.0]

133.0 [106.0
- 167.0]

131.7
[105.2 -
170.2]

NA 118.0
[96.0 -
145.3]

1-year Cr. (µmol/L),
Median [IQR]

130.0 [106.0
- 160.0]

128.0 [104.0
- 161.0]

132.0
[106.0 -
165.0]

132.6
[108.8 -
164.5]

113.0
[92.0 -
140.0]

118.0
[99.5 -
142.0]

3-month Pr. (g/day),
Median [IQR]

0.2 [0.1 - 0.4] 0.0 [0.0 - 0.0] 0.0 [0.0 -
0.0]

0.0 [0.0 -
0.0]

0.0 [0.0 -
0.0]

0.0 [0.0 -
0.0]

6-month Pr. (g/day),
Median [IQR]b

0.2 [0.1 - 0.4] 0.0 [0.0 - 0.0] 0.0 [0.0 -
0.0]

0.0 [0.0 -
0.0]

NA 0.0 [0.0 -
0.0]

1-year Pr. (g/day),
Median [IQR]

0.2 [0.1 - 0.4] 0.0 [0.0 -
0.0]

0.0 [0.0 -
0.0]

0.0 [0.0 -
0.0]

0.0 [0.0 -
0.0]

0.0 [0.0 -
0.0]

Male recipients, n (%) 1,342
(61.9%)

1,988
(63.2%)

1,432
(61.5%)

170
(66.7%)

257
(69.6%)

129
(66.5%)

Male donors, n (%) 1,367
(63.3%)

1,742
(55.5%)

1,296
(55.7%)

124
(49.6%)

206
(55.8%)

116
(59.8%)

Previous kidney
transplants, n (%)

0 1,754
(80.9%)

2,535
(80.6%)

1,837
(78.9%)

226
(88.6%)

306
(82.9%)

166
(85.6%)

1 344 (15.9%) 508 (16.1%) 407 (17.5%) 22 (8.6%) 53 (14.4%) 26
(13.4%)

2+ 71 (3.3%) 104 (3.3%) 85 (3.6%) 7 (2.7%) 10 (2.7%) 2 (1.0%)

Acute rejection, n (%) 518 (23.9%) 341 (10.8%) 218 (9.4%) 84 (32.9%) 23 (6.2%) 16 (8.2%)

Abbreviations: SCr., serum creatininemia; eGFR, estimated graft filtration rate; HLA, human leukocyte antigen; IQR,
interquartile range; Pr., proteinuria; SD, standard deviation.
a Comparison between Development sample and Pooled Validation samples
b No measurement available at six months post-transplantation in Norway.
Bold: KTFS predictors

Predictive capacities

The three possible KTFSs (i.e., sets of coefficients, presented in Supplementary Table S1)
yielded similarly good discrimination, with a tAUROC around 0.80 (Table 2). The scaled Brier
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scores were also similar, meaning that approximately 20% of the prediction error of a null
model was explained by the KTFS. Regarding calibration, all KTFSs showed an under-optimal
weak calibration, indicating that some predictions were too extreme, and a moderate
calibration close to the optimal value of zero, although it was slightly higher for the
discrimination-optimized coefficients. However, the mean calibration metric showed a strong
overprediction for the discrimination-optimized coefficients. See also Figure 3. There is no
clear difference between the initial weights not accounting for competing risks and those
considering them. Finally, Figure 4 shows increased net benefits (i.e., the “highest” line) for
the KTFS over the whole range of possible thresholds. This shows that using the model to
inform clinical decisions will lead to superior graft survival for any decision associated with a
threshold probability of above 10% or so. Clinically speaking, a clinician thinking that missing
a graft loss at seven years is three times worse than doing an unnecessary defined action
(say a biopsy) will use a threshold probability of 25%.29 The net benefit of 0.05 at this
threshold (Figure 4, panel A) means that biopsying on the basis of the KTFS is the equivalent
of a strategy that identifies five graft losses at seven years per hundred recipients without
conducting any unnecessary biopsy. However, the threshold chosen by the authors for being
at high risk (a probability of graft failure greater than around 21.7%)7 showed lower net
benefits on average. When using the discrimination-optimized coefficients, the net benefit of
any decision associated with a KTFS threshold probability greater or equal to 60% is null.

Table 2: Predictive performance of the Kidney Transplant Failure Score in the pooled validation sample
(N=3,144) according to the different coefficients that can be used.

Initial Discrimination-optimized
(used in practice) Competing risk

Discrimination

tAUROC 0.79 (0.76-0.82) 0.80 (0.77-0.83) 0.80 (0.77-0.84)

Calibration

Mean calibration 1.13 (1.02-1.25) 0.72 (0.65-0.80) 1.08 (0.98-1.20)

Weak calibration 0.86 (0.77-0.97) 0.83 (0.75-0.91) 0.82 (0.71-0.97)

ICI 0.03 (0.01-0.04) 0.05 (0.03-0.07) 0.03 (0.03-0.04)

Overall performance

sBS (%) 20.7 (15.9-25.4) 20.8 (13.4-28.0) 20.1 (14.2-25.2)

Values presented: Estimated value (95% Confidence interval).
Abbreviations: tAUROC, area under the time-dependent receiver operating curve; ICI, integrated calibration
index; sBS, scaled Brier score.

Country-level performances are presented in Supplementary Tables S2-4. As expected, the
performance for France was similar to those of the pooled validation sample since it
represents 74% of this sample. The only exception is the tAUROC of the competing risk
method, which was lower for France (0.71, 95%CI from 0.66 to 0.76) than in the pooled
sample (0.80, 95%CI from 0.77 to 0.84). Unfortunately, the other countries' sample sizes are
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far away from the minimal sample size, yielding wide confidence intervals that preclude any
firm conclusions in these populations.

Figure 3: Flexible calibration curve for each possible Kidney Transplant Failure Score. Filled
areas show the 95% confidence interval.
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Figure 4: Decision curve analysis according to the possible Kidney Transplant Failure Score
(KTFS) coefficients. A: Initial coefficients; B: Competing risk; C: Discrimination-optimized
coefficients. The high-risk threshold was determined as a graft failure probability greater than
21.7% by the KTFS’s authors.
Discussion

The present study both geographically and temporally evaluated the performance of the
KTFS. Our main results are that the discrimination-optimized coefficients, currently used in
practice, yield a poor calibration without benefit in terms of discrimination. In contrast, the
initial coefficients (i.e., not optimized for discrimination) are subject to much lower
calibration drift. Notably, mean calibration did not decrease in our validation sample for the
latter coefficients. Although Foucher et al. did not consider death as a competing event when
developing the KTFS, our results show that the performance is similar when accounting for
them. Our results suggest that it would be beneficial to use the initial KTFS coefficients
rather than the discrimination-optimized ones currently used in clinical practice.

After performance evaluation comes impact assessment and implementation.30 KTFS has
been used in several French hospitals since its development, and our results confirm its
good performance in this population. The main obstacles to CPM clinical implementation
are non-actionability (no intervention linked to the prediction), lack of safety (calibration drift
not considered and hacking concerns for machine learning CPMs), and unknown utility.31

The impact of a KTFS-based decision (i.e., closer follow-up) is under evaluation in a
randomized trial,8 but a cost-effectiveness analysis could complement it. However, the
high-risk vs low-risk split is based on a graft failure prediction of 21.7%, selected to maximize
the sensitivity and specificity.7 We recommend not to use this threshold because the net
benefit is lower; a threshold should reflect the clinical context (and planned intervention) and
may not be transportable in time and space, and continuous predictions allow for better
decision-making at the individual level than risk group stratification.32 In addition to a closer
follow-up, KTFS provides early information to anticipate a potential return to dialysis to the
patient. A low probability of remaining graft failure-free during the next seven years may
reinforce therapeutic adherence and involvement in the care pathway, while a high probability
may reduce anxieties about an uncertain future.33

Some limitations must be acknowledged. First, our validation sample is mainly based on
French patients (74.0%), and sample sizes from other countries preclude any firm conclusion
about the generalisability. The Norwegian center performs all kidney transplantations in
Norway, but additional data may be available from the other countries. Broadening the
validation period is possible, but we have chosen to restrict our analysis to patients
transplanted between 2010 and 2015 to leave the possibility of an 8-year follow-up while
remaining as far as possible from the development period. Furthermore, we avoided
transplantations during the COVID-19’s period, for which the mortality increased and the
transplantation process was challenged. In France for instance, there was a kidney
transplantation moratorium of 2.5 months during which kidney transplantation was not
allowed, resulting in an estimated four additional months on the waiting list.34 For the whole
year 2020, the number of kidney transplantations was reduced from 2.3% in Norway to 34.3%
in France compared to 2019, resulting in more than 7500 patient life-years lost.35 Second,
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measurement approaches possibly differed between the centers and even from the
development data, which may negatively impact calibration.36 Third, we did not include
intervention-specific harms in the decision curve analysis that can reduce the net benefit.
Alternative interventions could also be considered. Fourth, we replicated the original authors'
choices to only consider patients without missing predictors.7 Future investigations are
needed to study the applicability of the KTFS in patients when at least one predictor value is
missing. Fifth, no patient partner was involved in the planning or conduct of the study.
Finally, we emphasize that this external validation does not mean the KTFS is “validated” in
the studied populations ad aeternam.37 Other validation studies should be conducted in the
future to assess temporal performance drift and use recalibration approaches if needed.38,39

We provided the analysis R code with both pooled and country-specific baseline hazards to
conduct such recalibration in the future. Alternatively, one can consider a dynamic CPM
continuously refitted over time.40

In conclusion, the KTFS using the initial Cox model coefficients estimated with the
development sample had good performance in predicting graft failure eight years
post-transplantation in this multi-country validation sample. The performance was similar
when using a competing risk model. However, we warn against using the currently employed
version of the KTFS – with coefficients that optimized discrimination in the original
development sample – which had poorer calibration in the validation sample.

Data Statement
All R codes are freely accessible on AC’s GitHub:
https://github.com/ArthurChatton/ExtValKTFS. The EKiTE network restricts access to
clinical data, as these are confidential and are subject to the General Data Protection
Regulation. See Lorent et al.12 for information on requesting access to the data from each
EKiTE center’s scientific and ethics committee. Data from the CHUM are available upon local
ethics approval from HC (email: heloise.cardinal.chum@ssss.gouv.qc.ca). The protocol
submitted to ethics committees was not published nor registered. However, a protocol
request can be sent to AC for meta-research purposes (note that the protocol was written in
French).
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Supplementary materials

Supplementary Material A: Sample size calculation

Jinks, Royston and Parmar (2015) recommended the use of either their B1 or D1 formula
when (i) a measure of the Royston and Sauerbrei (2004) D-index and its standard error is
available from a previous study, and (ii) a range of sample sizes is not needed. Reusing
Foucher et al. (2010) data, the D-index was estimated at 2.17 (± 0.15). B1 is a
significance-based sample size calculation, while D1 is a confidence-based one. Owing to
the half width of a D-index difference’s confidence interval being more challenging to
assume than the power, we have chosen the B1 formula:

,𝑒 =  λ δ
𝑧

1−α
+𝑧

1−β
( )−2

where is the number of events, a model- and disease-specific structural constant𝑒 λ
estimated from the previous study (here 5.69), the posited difference in D-indexes betweenδ
development and external validation (0.35), and the quantiles of the standard normal laws𝑧
for a posited power (80%) and significance level (5%). We assumed a one-sided test here
since the D-index should theoretically decrease outside the model development sample.
Alternatively, can be viewed as a non-inferiority margin when the test was one-sided.δ

Thus:

𝑒 =  5. 69 0.35
1.64+0.84( )−2

 =  287. 3

The minimum number of events is thus 288.
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Supplementary Material B: The three KTFS implementations and their coefficients

Foucher et al. fitted a Cox model to develop the KTFS, estimating the coefficients presented
in the second column of Supplementary Table S1. Then, they used an optimization process
to obtain the coefficients maximizing the area under the time-dependent receiver operating
curve at seven years (third column). We reused their data to fit a cause-specific Cox model
with death as a competing event rather than censoring its (fourth and fifth columns). Note
that the graft failure’s coefficients are identical to the usual Cox model (i.e., initial KTFS), but
the second model plays a role in the cumulative incidence estimation and must be
estimated.

Supplementary Table S1: Coefficients of the different Kidney Transplant Failure Score

Initial Discrimination-
optimized

Competing-riska

Graft failure Deathb

CrD -0.76811 -0.75072 -0.76811 0.23573

AgeR -0.99039 -1.02316 -0.99039 0.77335

Rank 1.07866 1.17295 1.07866 0.02180

AR 0.25468 0.22288 0.25468 -0.57022

Cr3 -0.00384 0.00188 -0.00384 0.00263

Cr120.5 0.44031 0.41551 0.44031 0.08204

MaleR -0.86668 -0.88001 -0.86668 -0.08484

Pr12 0.55057 0.61121 0.55057 1.2690

Pr122 -0.02110 0.04077 -0.02110 -0.46084

MaleR * Pr12 0.50685 0.48605 0.50685 0.29091

MaleR * Pr122 -0.07623 -0.06115 -0.07623 0.02148

Predictors: CrD is 1 if donor serum creatinine is >190µmol/L (0 otherwise), AgeR is 1 if
recipient age > 25y (0 otherwise), Rank is 1 if transplantation rank is >2 (0 otherwise), AR
is 1 if the recipient experienced at least one acute rejection episode in the first year (0
otherwise), Cr3 is the recipient serum creatinine at 3 mo (in µmol/L), Cr12 is the recipient
serum creatinine at 12 mo (in µmol/L), MaleR is 1 if the recipient biological sex is identified
as male (0 otherwise), Pr12 is the proteinuria at 12mo (in g/day).
aThe competing risk model is a cause-specific Cox model with a set of coefficients for the
modelization of graft failure and another for the modelization of death.
bThe predictors of graft failure are used to model death, this part of the model is likely
misspecified and should not be used to predict death occurrence.

For a given patient, the graft failure probability at seven years is estimated as follows:
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,𝐺𝑟𝑎𝑓𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 0. 996233𝑒𝑥𝑝(𝑃𝐼) 

where 0.996233 is the baseline hazard for a seven years window and PI is the prognostic
index calculated as follows:

𝑃𝐼 =  − 0. 76811 * 𝐶𝑟𝐷 − 0. 99039 * 𝐴𝑔𝑒𝑅 + 1. 07866 * 𝑟𝑎𝑛𝑘 + 0. 25468 * 𝐴𝑅 − 0. 00384 * 𝐶𝑟3 +

0. 44031 * 𝐶𝑟12 − 0. 86668 * 𝑀𝑎𝑙𝑒𝑅 + 0. 55057 * 𝑃𝑟12 − 0. 02110 * 𝑃𝑟122 +

0. 50685 * 𝑀𝑎𝑙𝑒𝑅 * 𝑃𝑟12 − 0. 07623 * 𝑀𝑎𝑙𝑒𝑅 * 𝑃𝑟122

For instance, consider a male recipient named John Doe who was transplanted at 45 years
old. It was his second kidney transplantation. The kidney graft cames from a donor having a
last recorder serum creatinine of 85 µmol/L. In his first year post-transplantation, Mr Doe did
not experience any acute rejection episode, his serum creatinine was recorded at 142 and
140 µmol/L at three and twelve months, respectively, and his twelve months proteinuria at
1.2 g/day He will have the following PI (using initial coefficients):

𝑃𝐼
𝐽𝑜ℎ𝑛 𝐷𝑜𝑒

 =  − 0. 76811 * 0 − 0. 99039 * 1 + 1. 07866 * 0 + 0. 25468 * 0 − 0. 00384 * 142 +

0. 44031 * 140 − 0. 86668 * 1 + 0. 55057 * 1. 2 − 0. 02110 * 1. 22 +

0. 50685 * 1 * 1. 2 − 0. 07623 * 1 * 1. 22

𝑃𝐼
𝐽𝑜ℎ𝑛 𝐷𝑜𝑒

 =  3. 94

Therefore, his probability of graft failure at seven years is estimated as:

, or 18%.1 − 0. 996233𝑒𝑥𝑝(3.94) = 0. 18
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Supplementary Materials C: Exploratory subgroup analyses at the country level.

Supplementary Table S2: Predictive performance of the discrimination-unoptimized KTFS in the pooled
validation sample and at the country-specific level.

Pooled
validation Validation subgroups

France Belgium Norway Canada

n = 3,144 n = 2,326 n = 255 n = 369 n = 194

Discrimination

tAUROC 0.79 (0.76-0.82) 0.80 (0.77-0.84) 0.74 (0.62-0.85) 0.79 (0.63-0.92) 0.71 (0.54-0.87)

Calibration

Mean
calibration 1.13 (1.02-1.25) 1.16 (1.02-1.30) 1.43 (1.01-1.90) 1.05 (0.59-1.61) 0.81 (0.47-1.21)

Weak
calibration 0.86 (0.77-0.97) 0.83 (0.73-0.94) 1.32 (0.88-1.77) 1.08 (0.81-1.42) 0.98 (0.52-1.54)

ICI 0.03 (0.01-0.04) 0.03 (0.02-0.05) 0.05 (0.03-0.10) 0.03 (0.01-0.08) 0.03 (0.01-0.06)

Overall
performance

sBS (%) 20.7 (15.9-25.4) 21.4 (15.3-27.3) 17.0 (6.0-28.9) 17.2 (2.5-33.5) 13.2 (0.00-33.8)

Values presented: Estimated value (95% Confidence interval).
Abbreviations: tAUROC, area under the time-dependent receiver operating curve; ICI, integrated calibration
index; sBS, scaled Brier score.

Supplementary Table S3: Predictive performance of the discrimination-optimized KTFS in the pooled
validation sample and at the country-specific level.

Pooled
validation Validation subgroups

France Belgium Norway Canada

n = 3,144 n = 2,326 n = 255 n = 369 n = 194

Discrimination

tAUROC 0.80 (0.77-0.83) 0.82 (0.78-0.85) 0.73 (0.61-0.85) 0.76 (0.60-0.90) 0.74 (0.57-0.89)

Calibration

Mean
calibration 0.72 (0.65-0.80) 0.75 (0.66-0.83) 0.83 (0.58-1.11) 0.70 (0.40-1.08) 0.54 (0.31-080)

Weak
calibration 0.83 (0.75-0.91) 0.80 (0.72-0.89) 1.06 (0.65-1.48) 0.97 (0.64-1.34) 0.93 (0.34-1.49)

ICI 0.05 (0.03-0.07) 0.05 (0.03-0.07) 0.07 (0.03-0.10) 0.04 (0.01-0.07) 0.07 (0.03-0.10)
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Overall
performance

sBS (%) 20.8 (13.4-28.0) 22.4 (13.2-30.9) 22.1 (4.4-37.6) 14.7 (0.00-36.5) 1.6 (0.00-30.0)

Values presented: Estimated value (95% Confidence interval).
Abbreviations: tAUROC, area under the time-dependent receiver operating curve; ICI, integrated calibration
index; sBS, scaled Brier score.

Supplementary Table S4: Predictive performance of the KTFS in the pooled validation sample and at the
country-specific level when competing risks are taken into account.

Pooled
validation Validation subgroups

France Belgium Norway Canada

n = 3,144 n = 2,326 n = 255 n = 369 n = 194

Discrimination

tAUROC 0.80 (0.77-0.84) 0.71 (0.66-0.76) 0.77 (0.65-0.87) 0.74 (0.59-0.86) 0.71 (0.52-0.87)

Calibration

Mean
calibration 1.08 (0.98-1.20) 1.12 (0.99-1.26) 1.36 (0.96-1.80) 0.96 (0.57-1.46) 0.79 (0.46-1.14)

Weak
calibration 0.82 (0.71-0.97) 0.80 (0.67-0.98) 1.10 (0.66-2.86)a 0.83 (0.51-1.30)a 4.30 (0.43-49.2)

ICI 0.03 (0.03-0.04) 0.04 (0.03-0.06) 0.08 (0.05-0.12) 0.07 (0.04-0.11) 0.07 (0.05-0.09)

Overall
performance

sBS (%) 20.1 (14.2-25.2) 17.4 (11.4-23.7) 13.5 (0.00-29.0) 13.3 (0.00-31.4) 12.3 (0.00-33.1)

Values presented: Estimated value (95% Confidence interval).
Abbreviations: tAUROC, area under the time-dependent receiver operating curve; ICI, integrated calibration
index; sBS, scaled Brier score.
aThe median is presented instead of the mean due to a few extreme values from convergence issues.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 2, 2024. ; https://doi.org/10.1101/2024.10.31.24316511doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.31.24316511
http://creativecommons.org/licenses/by-nc-nd/4.0/

