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1 Missing data42

1.1 Demonstration of missingness43

As mentioned in the main text, the set of instrumental variables (IVs) used44

in multiple exposure Mendelian Randomization (MVMR) is the union set of45

exposure-specific IV sets. In summary data from cis-eQTL GWAS in which46

each exposure is the expression of gene, not all SNPs are tested for an associa-47

tion with each gene. Generally, only SNPs within ±1Mb of a gene are tested for48

an association with the expression of that gene. This means that the union set49

may contain at least some SNPs for which there is no estimate of association50

between them and each gene in a locus under study. Visual representations of51

this are displayed in Figures 1 and 2. To avoid introducing missing data by52

using the union set of gene-specific IV sets in MVMR, one may consider using53

the intersection set of gene-specific IV sets, guaranteeing no missing data. How-54

ever, for a locus containing a moderately large number of genes (e.g., ∼10 or55

more), the intersection set may actually be of very small size or even empty.56

This could respectively introduce a p > n scenario or even prevent MVMR57

from performed.58

Gene B Gene A Gene C1 2

SNP

An estimate for this is available in the cis eQTL data (<1Mb)

An estimate for this is NOT available in the cis eQTL data (>1Mb)

IV sets

Gene A:

Gene B:

Gene C:

Genes A, B, C:  Ø

1 2

1

2

0 Mb-0.75 Mb +0.75 Mb +1.5 Mb-1.5 Mb

Fig. 1 This is an example representation of the data that is available in the summary-level
eQTLGen [33] and GTEx [9] cis-eQTL public data sets. Only associations between SNPs and the
expression of genes within ±1Mb of those SNPs have estimates included in the available data.
Since in multivariable MR, we select as the IV set the union of gene-specific IV sets, this union set
may contain no SNPS with association estimates observed for all genes in a group. Put another
way, the intersection of all gene-specific IV sets that is restricted only to SNPs with no non-missing
values may be empty.
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Fig. 2 Determinations of missing values for each SNP (in order by BP position on y-axis) that
was used in multivariable MR with the 30 genes ordered by BP position on CHR 22 (x-axis), as
an example. These genes were grouped using the procedure described in Methods. It was stated
in Methods that the nature of the cis-eQTL data is such that only SNPs within +-1Mb of a
gene center have estimates of association with the gene expression available in the data. In our
analyses, we included multiple genes in causal estimation. Denote the set of SNPs used as IVs in
multivariable MR for a group of genes of size pk as Mk, which is the union set ∪pk

ℓ=1M
ℓ
k of the

gene-specific IV sets M1
k...M

pk
k . This union set is the set of SNPs whose ordered positions are on

the y-axis. As Figure 1 demonstrated, restricting this union set to only non-missing association
estimates between each SNP and gene expressions may make the set empty. In the figure above,
this scenario would correspond to being unable to draw any horizontal line through the plot such
that the line never touches a ’Missing’ area.
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Minimum % missing eQTL 
associations across genes in a locus

Maximum % missing eQTL 
associations across genes in a locus

Locus size (Mb)

Tissue
Minimum across 

all loci
Mean across 

all loci
Mean across 

all loci
Maximum across 

all loci
Minimum Maximum Mean

Basal ganglia 0.00 0.11 0.16 0.60 1.04 3.32 1.81

Blood 0.00 0.20 0.31 0.72 0.26 3.89 1.95

Cerebellum 0.00 0.06 0.10 0.58 0.35 3.25 1.58

Coronary artery 0.00 0.09 0.14 0.58 0.64 3.05 1.82

Cortex 0.00 0.05 0.08 0.59 0.33 3.87 1.57

Hippocampus 0.00 0.12 0.17 0.45 0.82 2.91 1.71

Lung 0.00 0.08 0.12 0.55 0.51 3.27 1.59

Spinal cord 0.00 0.06 0.09 0.49 1.23 2.61 1.80

Fig. 3 This figure presents a high-level summary of the rates of missing eQTL associations in
gene groups formed while applying HORNET to the study of schizophrenia (see main text). Values
in the first four columns after tissue type correspond to missingness rates; values in the final three
columns correspond to the sizes, from the smallest base pair position of an eQTL used as an IV,
to the largest, of loci analyzed by HORNET. Missingness rates are first aggregated from the gene
level to the locus level, then again from the locus level to the genome level. For example, the ‘0.00’
value in the first row and second column indicates that the smallest rate of missingness observed
for any gene that was analyzed by HORNET in basal ganglia tissue was 0.00, the next column
indicates the mean rate of missingness across all loci analyzed by HORNET in the same tissue,
and so on. eQTL GWAS data for basal ganglia, cerebellum, cortex, hippocampus, and spinal cord
tissues were from [10]; coronary artery and lung tissue data were from [8]; blood tissue data were
from [33]. The complete set of commands given to HORNET to perform these analyses is available
at https://github.com/noahlorinczcomi/HORNET/real data.

1.2 Support from cis-eQTLs in a larger window59

Since most publicly available summary data from cis-eQTL GWAS contain60

association estimates between SNPs and the expression of genes within ±1Mb61

of each them, we wanted to better understand the pattern of association62

between gene expression and SNPs >1Mb away. For this, we used individual-63

level data from 236 non-Hispanic unrelated White individuals. We estimated64

associations between gene expression and all available SNPs within ±5Mb65

using the TensorQTL pipeline [32]. Displayed in Figure 4 are these association66

estimates for 25 genes on chromsome 1 that had eQTLs with corresponding67

P-values less than 5 × 10−8. These results demonstrate that, on average, the68

most significant eQTL signals are near the transcription start site and that69

significant eQTLs are unlikely to be observed outside of a 1Mb window but70

within 5Mb.71

1.3 Multivariate Imputation72

1.3.1 Procedure73

In this subsection, we describe the procedure that we used to impute missing74

data in the set ∪p
ℓ=1Mℓ that is the union of p gene-specific IV sets each denoted75

as Mℓ. Our imputation method is similar to the soft imputation method using76

matrix completion [22] but corrects for measurement error in the eQTL GWAS77

https://github.com/noahlorinczcomi/HORNET/real_data
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Fig. 4 Displayed are Z-statistics for eQTLs that are within ±5Mb around 25 genes on chromo-
some 1 in blood tissue and non-Hispanic unrelated White individuals. The shaded blue regions
represent the ±1Mb region around the transcription start site (TSS) for each gene. Horizontal

dashed lines represent ±F−1(1 − 5 × 10−8), where F−1(α) is the quantile function of the stan-
dard normal distribution evaluate at α. These results indicate that eQTL Z-statistics are highly
likely to be considered not genome-wide significant, i.e., to have a corresponding P-value greater
than 5 × 10−8 outside of the ±1Mb window from the TSS.

and accounts for LD structure. ‘Measurement error in the eQTL GWAS’ here78

refers to the nonzero variance of β̂jℓ, the estimated association of the jth SNP79

with the ℓth gene in a select tissue. Only when β̂jℓ = βjℓ, the true association,80

is there no measurement error in β̂jℓ. Let ΣWβWβ
denote the p × p variance-81

covariance matrix of β̂j , the p-length vector of associations between the jth82

SNP and p genes in a locus. Let B̂ be them×pmatrix of estimated associations83

between m SNPs and the expression of p genes, B denote the corresponding84

matrix of true associations, and O be the set of non-missing values in B̂, of85

which there are |O|.86

The main principle of soft imputation is to iteratively apply soft thresh-87

olding to the singular values of B̂ until convergence. Since B̂ contains missing88

values, we first impute the missing values in B̂ with 0, a reasonable estimate89

of their true value given the results from individual-level data presented in90

Figure 4. Our matrix completion algorithm is presented in Algorithm 1 in the91

main text. This algorithm modifies the traditional soft impute method [22] by92

subtracting the singular values of ΣWβWβ
from the singular values of an ini-93

tialized B̂. This method requires the tuning parameter λ to be used in soft94

thresholding and will only accept solutions in which the rank of the imputed95

matrix is less than a user-defined value. Below, we evaluate the performance of96
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this imputation method in simulation in Figure 6 and provide some examples97

using real data in Figure 7.98

1.3.2 Simulations with generated data99

First, we simulated true associations between m = 150 SNPs and p = 10 genes,100

which formed the matrix B. Next, we randomly drew association estimates B̂101

from the matrix normal distribution N (B,R,ΣWβWβ
), where R is the matrix102

of LD correlations between the 100 SNPs. In our simulations R had a first-103

order autoregressive structure with correlation parameter ρ which was in the104

set {0.0, 0.1, ..., 0.8, 0.9}. The matrix ΣWβWβ
representing measurement error105

covariance between the rows of B̂ had a Toeplitz structure and was multiplied106

by the factor
√
mlogp ≈ 5.3. We then applied our matrix completion algo-107

rithm to these data, searching over a grid of λ parameter values and fixing the108

maximum acceptable rank of the solution at 5.109

The simulation results in Figure 6 demonstrate that our imputation method110

well-approximates the true underlying distribution of the observed association111

values when the true mean of the missing association values is 0, and that LD112

structure does not appear to affect these results. An example of the imputation113

for a single case is presented in Figure 7. Results from individual level data114

presented in Figure 4 demonstrate that the true mean is likely to be 0 for almost115

all areas outside of the ±1Mb window of a gene’s center. Results from real data116

presented in Figure 8 demonstrate that this imputation method can capture117

the variance in association estimates at the boundaries of the observed windows118

well, and that association estimates further from the gene center approach 0119

with decreasing variance. The data used in these results are described in the120

caption of Figure 8.121
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Fig. 5 This figure displays the data we generated to perform simulation using our eQTL impu-
tation method described in Algorithm 1 in the main text. Positions on the x-axis correspond to
unique SNPs. Each gene is represented by a different color, where gray always represents missing
values. For each gene, y-axis values are arbitrary but the relative magnitude corresponds to the
magnitude of association with the SNP at that base pair position with the expression of the spe-
cific gene. The base pair locations of missingness for each gene depend on the base pair position of
the gene center, which is located at the peak of its distribution. Gene centers/distribution peaks
are staggered for each gene to replicate the real data. The left panel displays true association
values and the right panel displays an example of estimated association values.
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Fig. 6 These are the results of simulations in which LD structure among the 150 SNPs varied
from an AR1 structure with correlation paramater ρ = 0 to ρ = 0.9. Y-axis display the relative
strength of association between a SNP indexed on the x-axis and the expression of the first gene
of 10 in simulation. The true distributions of the true and observed associations are respectively
represented by red and black lines. All imputed values across all 100 simulations are represented
by black points.
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Fig. 7 These are the results of simulations which are described in the text above this figure
when R has an AR1 structure with correlation parameter ρ = 0.5. These results demonstrate that
our imputation method well approximates the true underlying association values when the data
is missing, which in this simulation are each 0. Observed values are equal to the true values plus
measurement error from finite GWAS sample size.

1.3.3 Simulations with real data122

We also performed simulations using GWAS summary statistics from 236 unre-123

lated non-Hispanic White individuals whose gene expression in blood tissue124

were measured. These data provided estimates of association between SNPs125

and the expression of genes whose transcription start sites (TSSs) were within126

±5Mb of them. We selected the CCDC163 locus in the 1p34.1 region and con-127

sidered the eight genes closest to CCDC163 to form the completely observed128

matrix of Z-statistics Z which was of dimension 526×9. For each gene, we then129

set all GWAS association estimates outside of a ±1Mb region of the TSS to130

be missing. We set the true LD correlation matrix (R) between the 526 SNPs131

to be of a first-order autoregressive structure with correlation parameter 0.50,132

and true genetic covariance (S) between genes to that which was observed133

empirically from Z. For each of 50 iterations, we performed the following steps:134

1. Draw E∗ from Normal(0,S,R)135

2. Calculate Z∗ = Z+E∗
136

3. Set values in Z∗ from the set Ω to be missing137

4. Impute missing values to form complete matrix Z∗
I138

5. Calculate ∥Z∗
I − Z∥F .139

The results of this procedure are presented in Panel C of Figure 2 in the140

main text and show comparisons between four imputation methods: (i) the141

matrix completion method we introduced in Algorithm 1 in the main text (‘MV142

imp.’), (ii) imputation of missing values with 0’s (‘Zero imp’), (iii) imputation143



10 CONTENTS

using the soft impute method (‘Soft impute’) [16], and (iv) an imputation144

method based on the multivariate normal distribution (‘Normal imp.’. We now145

briefly describe the Normal imp. method, since the Zero imp. is obvious, MV146

imp. is described above, and soft impute is described in [16]. Consider the147

following models for two SNPs for which n individual genotypes have been148

sampled and placed into the n × 1 vectors g1 and g2, for which g⊤
1 g1 = n149

and g⊤
2 g2 = n. Let x be the corresponding n-length vector of gene expression150

measurements standardized to have variance 1. The Z-statistics for association151

between the two SNPs and gene expression are Z1 = g⊤
1 x/

√
n and Z2 =152

g⊤
2 x/

√
n, and it immediately follows that E(Z2|Z1) = r12Z1 where r12 is the153

LD correlation between the two SNPs. This can be shown to easily extend154

to a multivariate case in which E(z2|z1) = R⊤
12R

−1
11 z1 where z2 is a vector155

of Z-statistics of arbitrary length, z1 is correspondingly similar for a different156

set of SNPs, R12 is the matrix of LD correlations between the two sets of157

SNPs, and R11 is the matrix of LD correlations between SNPs corresponding158

to z1. In practice, where Z represents a matrix of arbitrary dimensions with159

missing values, the Normal imp. procedure imputes missing values using their160

conditional expectation from the most fully observed column vector of Z.161

1.4 Power after imputing missing values162

As mentioned above and in the main text, current eQTL-MVMR approaches163

are restricted to using IVs for which associations between all SNPs and tar-164

get genes have been observed in the summary eQTL GWAS data. In this165

section, we present the results of a simulation in which we compare the power166

of our multivariate imputation method and current methods that use only167

completely observed data for testing the causal null hypothesis. We simulated168

summary-level data using the same procedure described in Section 1.3.2 but169

varying proportions of total missingness in the true 100 × 10 design matrix170

B, ranging from 19% to 85%. This was accomplished by varing the propor-171

tion of missingness that was present for each gene. We compared the power172

of the IVW method [5] with correlated IVs when we excluded IVs with any173

missing to power when we imputed missing using our IFC approach. The full174

R code used to perform these simulations and generate its results are present175

at https://github.com/noahlorinczcomi/HORNET/simulations.176

These results indicate that using imputed vs fully observed data can result177

in tests of the causal null hypothesis that are up to approximately 4 times as178

powerful when the proportion of missingness is large. When the proportion179

of missingness is moderate around 52%, which is consistent with the results180

observed in real data analyses (see Figure 3 in Section 1.1), still applying181

imputation to the observed eQTL summary statistics can result in approxi-182

mately 1.27x more power. The gains in power continue to become larger after183

approximately 35% or more of the eQTL associations are imputed.184

https://github.com/noahlorinczcomi/HORNET/simulations
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Power 
gained

Power 
lost

Fig. 8 This figure displays differences in the power of eQTL-MVMR using IVW with completely
observed vs imputed eQTL summary statistics. The x-axis is the proportion of missingness in

the working design matrix B̂ and the y-axis the the power when using imputed data divided by
the power when using the fully observed data (a ‘complete SNP’ analysis). ‘Power’ in this setting
refers to the power of rejecting the causal null hypothesis. Each point is a number which indicates
the gene. For example, ‘1’ corresponds to the first gene and ‘0’ to the 10th. The horizontal line
is placed at 1, below which the complete SNP analysis is more powerful than the analysis using
imputed data and above which the converse is true by the factor displayed on the y-axis. Displayed
are the power ratios after smoothing power estimates within each analysis type using quadratic
regression.

2 Accounting for LD in eQTL-MVMR185

2.1 CHP bias from LD186

2.1.1 Notation187

A m × p matrix X with normally-distributed elements will be denoted as188

X ∼ N (µ,Σ,R), where Σ : p× p represents covariance between columns of X189

and R : m×m covariance between rows. X can also be written in vectorized190

form as vec(X) ∼ N (vec(µ),Σ⊗R).191

Consider two loci (denoted as locus 1 and 2), where locus 1 contains p1192

genes that use m1 SNPs as instruments (IVs) and locus two contains m2 SNPs,193

where all of the m1 SNPs are cis-eQTLS for at least one gene in their locus.194

Denote B̂1 = (βij)
m1,p1

i,j=1 : m1 × p1 and B̂2 : m2 × p2 as the GWAS estimates195

for association with the expressions of the p1 genes in locus 1 and the p2 genes196

in locus 2. Denote α̂1 as outcome GWAS estimates for m1 SNPs in locus197

1. Assume all GWAS estimates are standardized to have variance 1 and let198

R1 : m1 × m1 and R2 : m2 × m2 denote the true LD correlation matrices199
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for SNPs in loci 1 and 2, where R12 : m2 ×m1 is the LD correlation matrix200

between the m1 and m2 SNPs. Define x1 : p1 × 1 as the vector of total gene201

expression in a tissue for p1 genes in locus 1 and g1 : m1 × 1 as the genotype202

vector for the m1 SNPs in locus 1.203

2.1.2 Models204

Consider that the causal effects θ of the p1 gene expressions in locus 1 on the
outcome trait y are of interest and we want to use MR to estimate them. First,
we can specify a model for the relationship between g1 and g2. Assume that
the elements of g1 and g2 are approximately normally distributed, or there is
some underlying normal distribution from which their realizations are drawn.
It follows that g2 = λ⊤

12g1 + ϵ2 where λ12 ≈ R12R
−1
1 . Now we specify the

following models for the expression values for the p1 genes in locus 1 and their
causal effects on the outcome trait:

x1 = γ⊤
1 g1 + γ⊤

2 g2 + ϵ1 (1)

= (γ⊤
1 + γ⊤

2 λ⊤
12)g1 + ϵ̃1, (2)

= B⊤
1 g1 + ϵ̃1 (3)

y = θ⊤x1 + π⊤g2 + ϵy (4)

= θ⊤B⊤
1 g1 + π⊤λ⊤

12g1 + ϵ̃y (5)

= α⊤
1 g1 + ϵ̃y, (6)

where ϵ̃y represents uncorrelated error in a simplified notation. The above
results imply that

α1 = B1θ + λ12π, (7)

where we want to use MR to estimate θ. Figure 9 shows these models in a205

directed acyclic graph (DAG).206



CONTENTS 13

𝐠! 𝐱 𝑌

𝑈

𝐠"

𝛉

𝛑

𝛄!

𝛄"
𝚲!"

𝐠! 𝐱 𝐠! 𝑌
𝚩 𝛂

Fig. 9 DAG representing the models specified in section 3.1. g1 : m1 × 1 is a vector of SNP
genotypes used as IVs in MR to estimate θ, g2 : m2 × 1 is a generic vector of genotypes for other
SNPs no in g1, x : p× 1 is a vector of expressions for p genes in a tissue, Y is the outcome trait,
and U is a generic confounding. If g1 and g2 are in LD, Λ12 ̸= 0. If g2 is associated with Y
conditional on x, π ̸= 0.

In practice, we only have access to GWAS estimates of (α,B), which we
denote as (α̂, B̂). Therefore, we use the following model to estimate θ:

α̂ = B̂θ +Λ⊤
12π + ϵ̃, (8)

where ϵ̃ contains the measurement errors α̂−α and B̂−Bs. When estimating θ207

in Equation 7 using only B̂, there will be horizontal pleiotropy bias if Λ⊤
12π ̸=208

0, which may be considered unbalanced if m−11⊤
mΛ⊤

12π ̸= 0 and correlated209

horizontal pleiotropy (CHP) if the correlation between Λ⊤
12π and vec(B̂) is not210

0. It was shown above that π is the association of g2 with Y conditional on g1.211

Next we aim to provide an expression for the joint distribution of (B̂,Λ⊤
12π)212

to identify the potential sources of CHP bias in Equation 7.213

First, we state the marginal distribution of B̂ = B + Wβ where B =
(βk)

p
k=1 and Wβ are random. As in [3], let

βk ∼ ϵkN

(
0,

h2
k

m̃k
Im1

)
+ (1− ϵk)N(0,0) (9)

be a mixture of m̃k SNPs that are associated with the expression of gene k and
m1−m̃k that are not. We specify this mixture explicitly because in the data it
is true since the total set of m SNPs used in MR is not a set of SNPs associated
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with the expression levels of all genes in a group and tissue, but typically only
a subset of genes. The estimation error Wβ = (wβk

)pk=1 is uncorrelated with
B and has the distribution

wβk
∼ N

(
0,

1

nk
R1

)
(10)

for all m1 SNPs where nk is the sample size in the GWAS for the expression
of the kth gene. In MR, we have B̂ = (β̂k)

p
k=1, whose columns will have the

distribution

β̂k ∼ ϵkN

(
0,

[
h2
k

m̃k
I+

1

nk
R1

])
+ (1− ϵk)N

(
0,

1

nk
R1

)
. (11)

Recall that CHP bias can arise when B̂ is correlated with Λ⊤
12π. Let Λ

⊤
12(τ

⊤⊗214

R⊤
12) := Cov(vec[B],Λ⊤

12π) where τ⊤ : p × 1 represents genetic covariance215

between π and the columns of B. For example, consider Cov(βk,π) :=216

τkR
⊤
12 = [E(βjkπsrjs)]

m1,m2

j,s=1 . Since this covariance has a kronecker product217

structure, it can be zero if either one of two conditions are met, namely if (i)218

τ = 0 or (ii) R⊤
12 = 0. In principle, these conditions are met if either (i) the219

association between g2 and Y conditional on g1 is independent of the total220

association between g1 and Y or (ii) g1 and g2 are not in LD.221

2.1.3 CHP bias in traditional MR methods222

Summary-based MR (SMR) [38] and MR-Robin [15], MR methods incorporat-
ing eQTLs that can only include a single gene in causal estimation, may suffer
from UHP and/or CHP bias because of nonzero R12 and π for neighboring
genes. In this section, we aim to better understand the extent to which SMR
(a simmpler version of MR-Robin more popularly used) is vulnerable to UHP
and CHP bias when considering Alzheimer’s disease (AD) as the outcome trait
and the expressions in blood of genes on chromosome (CHR) 19 using the real
data that we used in the main text. First, we identified mutually exclusive
groups of genes using the procedure described in Methods. First we define
some notation within a group of genes. Let M denote the set of M SNPs used
as IVs for the entire group of p genes, Mk denote the set of mk SNPs that
are IVs for the k-th gene, Rk be the LD matrix for this gene, M⊥

k be the set
of SNPs in M but not in Mk that are in LD with SNPs in Mk via Rk,−k,
Λk,−k ≈ R⊤

k,−kR
−1
k , and π−k be the association between SNPs in M⊥

k and
AD risk conditional on SNPs in Mk. We estimated the following quantities:

I1 = ∥R−1/2
k Λ⊤

k,−kπ−k∥22, (12)

I2 =
1

mk
1⊤
mk

R
−1/2
k Λ⊤

k,−kπ−k, (13)

I3 = θk − (θ)k, (14)
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where θk is estimated in univariable (single-gene) MR and (θ)k is the mul-
tivariable (multiple-gene) MR estimate for the corresponding kth gene. Let

δ̂k := α̂k − B̂kθ̂k. Below we list estimands for each of these quantities and
their corresponding distributions under specified null hypotheses:

Î1 = ∥Σ−1/2
∆k δ̂k∥22 ∼ χ2(mk) under H0 : Λ⊤

k,−kπ−k = 0 (15)

Î2 =
1

mk
1⊤
mk

Σ
−1/2
∆k δ̂k ∼ N(0, η) under H0 :

1

mk
1⊤
mk

Λ⊤
k,−kπ−k = 0 (16)

Î3 = ∥σ̂−1/2
Θ [θ̂k − (θ̂)k]∥22 ∼ χ2(1) under H0 : θk = (θ)k, (17)

where

η :=
1

m2
k

1⊤
mk

Σ∆1mk
≈ 1

mk
, (18)

Σ∆ = Cov(δ̂k) (19)

Σ̂∆ = Rk + θ̂2kσ
2(k)
WβWβ

Rk − 2θ̂kσ
(k)
Wβwα

Rk (20)

and

σ̂2
Θ = V̂ar(θ̂k) + V̂ar[(θ̂)]k,k − 2Ĉov[θ̂k|β̂k, (θ̂)k|B̂]. (21)

Where σ̂k and (σ̂)k represent the estimated standard deviations of the resid-223

uals during estimation of θ̂k and θ̂k and Rk(k) is the LD matrix between224

valid IVs (see below for criteria) used in their respective estimators, σ̂2
Θ =225

A−1
k σ̂k(σ̂)kRk(k)A

−⊤
(k) for constant matrices Ak and A(k). Regarding I2, since226

δ̂k is the estimated residual from linear regression by MR using the expres-227

sion of gene k as the exposure, δ̂ is guaranteed to have a sample mean of 0.228

However, for each of p genes in a group, we used the MRBEE estimator [21]229

with IMRP adjustment [37]. This method can estimate θk without bias from230

horizontal pleiotropy using a subset of the mk IVs, after which δ̂k will become231

a reliable estimator for δk (see []) and δ̂k is not guaranteed to have a sample232

mean of 0.233

To obtain an unbiased estimate for θk, we also applied the following restric-234

tions on the IV set: (i) P-value for association with gene expression less than235

5x10-5, (ii) absolute LD between SNPs used to instrument expression of the236

kth gene less than 0.9, (iii) ≥10 candidate IVs evaluated by MRBEE (some of237

which may have been further excluded due to evidence of nonzero horizontal238

pleiotropy at P < 0.05 using the tests in [21, 37]), and (iv) LD between the239

jth of mk SNPs and the M −mk other SNPs in the group less than 0.2. The240

latter worked to reduce bias from CHP via nonzero Rk,−k while still retain-241

ing enough SNPs for efficient estimation of θ̂k. Regarding I3, rejection of the242

corresponding null hypothesis is evidence of omitted-variable bias (OVB) (see243

[21]), which can be due to mediation or confounding (CHP). Both may be244
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considered biased causal estimates, although where this bias is due to CHP or245

mediation cannot be determined by the test for I3 ̸= 0.246

Under these restrictions to obtain a valid IV set, univariable MR using bias-247

corrected SMR (i.e., single-exposure MRBEE [21]) could only be performed for248

194 of the 752 ( 25%) total genes with cis-eQTLs on CHR 19. This is another249

major limitation of univariable MR - the valid IV set can be reduced so small250

that causal estimation becomes unreliable and therefore should not even be251

performed. Figures 10, 11, 12, and 13 provide some inference for I1, I2, and I3,252

respectively. These results indicate substantial nonzhero unbalanced horizon-253

tal pleiotropy across CHR 19. Subsequently, there is widespread evidence of254

differences in causal estimates made using univariable vs multivariable causal255

estimates, suggesting the presence off OV bias that may be due to CHP. We256

found that 37.6% of genes tested using univariable MR on CHR 19 (73/194)257

had evidence (P < 5× 10−5) of nonzero horizontal pleiotropy (I1 ̸= 0), 13.7%258

of which had evidence of imbalance (I2 ̸= 0), and 48.2% of genes had multivari-259

able causal estimates that differed from univariable causal estimates (I3 ̸= 0260

where the test was available [see Figure 13 caption]). See the corresponding261

figure captions for more details.262
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Fig. 10 These results display χ2 test statistics for testing H0 : I1 = 0 as stated above. Each
point represents a gene. This is a test for nonzero horizontal pleiotropy in the IV set in univariable
MR using MRBEE [21], which can be considered a version of SMR [35, 38] corrected for bias
from horizontal pleiotropy, weak instruments, sample overlap, and measurement/estimation error.
This test was performed for each gene in CHR 19 that was put into a gene group in the main
text. Different point colors represent distinct gene groups (see main text for how these groups
were formed), with colors alternating from bottom to top on the y-axis from blue to red to
yellow. Triangles represent genes for which H0 is rejected at the level of genome-wide significance
(i.e., P < 5 × 10−8); crosses represent genes for which H0 is not rejected. The genomic region
surrounding the APOE gene (known to be highly relevant for Alzheimer’s disease risk) is labelled
with a horizontal grey line. These results indicate substantial horizontal pleiotropy for many genes
on this chromosome, where the strongest evidence of horizontal pleiotropy is observed in the
APOE region. Only results for which univariable MR could be reliably performed are displayed
(see text above figure).
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Fig. 11 This is a test for unbalanced (i.e., nonzero mean) horizontal pleiotropy in univariable
MR with MRBEE [21], which can be considered a version of SMR [35, 38] corrected for bias
from horizontal pleiotropy, weak instruments, sample overlap, and measurement/estimation error.
Each point represents a gene. This test was performed for each gene in CHR 19 that was present
in a gene group in the main text. Genome-wide (P < 5 × 10−8) and marginal (P < 5 × 10−5)
significance thresholds are displayed by black and gray horizontal lines, respectively. Different
point colors represent distinct gene groups (see main text for how these groups were formed), with
colors alternating from left to right on the x-axis from blue to red to yellow. The genomic region
surrounding the APOE gene (known to be highly relevant for Alzheimer’s disease risk) is labelled
with a vertical grey line. These results indicate that many genes have evidence of unbalanced
horizontal pleiotropy in univariable MR, including genes in the APOE region. Only results for
which univariable MR could be reliably performed are displayed (see text above Figure 10).
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Fig. 12 These results display differences between causal estimates made for each gene on chro-
mosome (CHR) 19 using univariable MR vs multivariable MR. Each pair of points (paired by
horizontal grey lines) corresponds to a single gene. Causal estimates were made using MRBEE
[21], which can be considered a version of SMR [35, 38] corrected for bias from horizontal
pleiotropy, weak instruments, sample overlap, and measurement/estimation error. Blue points rep-
resent multivariable MR estimates and red points represent univariable MR estimates. An absence
of ommitted variable (OV) bias across CHR 19 would be observed if all red and blue points
overlapped. Differences between these points for each gene, represented by horizontal grey lines,
indicates OV bias, which is observed for many genes across CHR 19. The APOE gene region is
highlighted by the yellow horizontal line, in which OV bias is observed. Only results for which
univariable MR could be reliably performed are displayed (see text above Figure 10).
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Fig. 13 These results display the bivariate association between univariable MR and multivariable
MR causal estimates and indications of the significance in testing H0 : I3 = 0 from the text above.
Red and blue points respectively represent genes for which this null hypothesis was rejected and
not rejected at P< 5 × 10−5. Grey points correspond to genes for which the test could not be
reliably performed because of imprecise variance estimation in Î3. For these genes, we could not
estimate a positive σ̂2

Θ (see Equation 21) because of very small valid IV counts in univariable MR.
‘Pearson correlation’ corresponds to the linear correlation between univariable and multivariable
MR causal estimates. This value will be 1 if there is no omitted variable (OV) bias (due either to
CHP or mediation effects) and will approach 0 as OV bias becomes stronger.

2.1.4 HORNET CHP correction263

The method of protecting against CHP bias from eQTLs from other loci that264

are in LD with eQTLs in a target locus is outlined in Figure 14.265
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Candidate SNPs 
to use as IVs in 

MR ordered by BP 
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SNPs in X
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X and A

LD between 
SNPs in 
X and B

SNPs 1Mb right of 
SNPs in X on CHR
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Fig. 14 Visual depiction of how the final IV sets were pruned based on their LD with non-
IVs within surrounding Mb windows of defined size (1Mb as the example in this figure). It
was shown above that horizontal pleiotropy bias may be present in MR if the IVs used are in
LD with SNPs that are conditionally associated with the outcome trait given the exposures.
To reduce the potential for this bias, we subsetted the original IV set to only those SNPs
that were not in LD r2 > 0.1 with any SNPs within a 1Mb window outside of the BP range
of the original IV set. This is displayed graphically as the green and red points in the figure,
where A and B are sets of SNPs within 1Mb of the minimum and maximum BP positions
of the original IV set, respectively.

2.2 MRBEE bias-correction under LD266

We now aim to demonstrate the validity of the MRBEE bias-correction in the
case of correlated IVs (i.e., SNPs in LD used as IVs in MR). The original
MRBEE theory [] was based on independent IVs, but we demonstrate here
that the bias-correction in that case is the same as in our case of correlated
IVs under a fixed-effects model for B. Let B̂ = (β̂j)

m
j=1 = (β̂jk)

m,p
j=1,k=1 be the

m×p matrix of GWAS estimates of the m IVs on the expressions of p genes in
a tissue (MR exposures), α̂j = (α̂j)

m
j=1 be the m-length vector of IV estimates

of association with the outcome, and the IVs have the m×m positive definite
LD correlation matrix R = (rjs)

m
js=1, where P = R−1. We now assume a fixed

effects model for (α,B) for the purposes of causal estimation. This may be
considered equivalent to causal estimation using MR conditional on the true
causal SNPs used to instrument the exposures. We defined measurement error
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models for (β̂j , α̂j) as in [21] in the following way:(
β̂j

α̂j

)
=

(
βj +wβj

αj + wαj

)
∼ N

([
βj

αj

]
,Λ :=

[
Σwβwβ

σwβwα

σ⊤
wβwα

σ2
wα

])
, (22)

where the errors in our measurements of (β̂j , α̂j) were due only to sampling
error introduced by finite GWAS sample sizes, and (βj , αj) are fixed. MRBEE
[20] makes a bias-correction to the IVW [5] estimating equation, which we
denote as SIVW (θ). Let Wβ = (wβj

)mj=1 and wα = (wαj
)mj=1. It is shown in

[21] that

E[SIVW (θ)] = −E(W⊤
β PWβ) + E(W⊤

β Pwα). (23)

MRBEE subtracts from SIVW (θ) the quantities in Equation 23 to produce an
unbiased estimate of the causal parameter θ. Our goal now is to show that
the quantity in Equation 23 is equal to −E(W⊤

β Wβ)+E(W⊤
β wα). Under the

normality assumption in Equation 22,

W̄ := (Wβ ,wα) ∼ MatrixNormal(0m×(p+1),R,Λ), (24)

where R represents covariance between rows and Λ covariance between
columns. By the positive-definiteness of P := R−1,

P1/2W̄ ∼ MatrixNormal(0, Im,Λ) (25)

and

W̄⊤PW̄ ∼ Wishart(m,Λ). (26)

The proof for E(W⊤
β PWβ) follows immediately from the properties

of the Wishart distribution. Define the permutation matrix C1 :=
(Ip×p,0p×1)p×(p+1) such that

C1W̄
⊤PW̄C⊤

1 = W⊤
β PWβ . (27)

It follows that

E(C1W̄
⊤PW̄C⊤

1 ) = mC1ΛC⊤
1 = mΣWβWβ

, (28)

which is the desired result. For E(B⊤
β Pwα), we will show the proof element-

wise also following the properties of the Wishart distribution. Consider the
following: [

(P1/2Wβ)
⊤(P1/2wα)

]
k

∼ σ
[k]
βαχ

2(m), (29)
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for k = 1, ..., p, which has expectation mσ
[k]
βα and since mσβα = m(σ

[k]
βα)

p
k=1267

the result is proven.268

2.3 Heritability estimation269

Assume the randommodel for βk : M×1 as in Equation 9 holds for associations
between M SNPs and the expression of gene k in a tissue (here M is the total
number of SNPs tested for association with gene expression). Let m̃k ≤ M
denote the total number of SNPs causally related to the expression of this
gene in tissue which has SNP heritability h2

k. In our analyses, all association
estimates were standardized by estimated standard error in GWAS such that
ζ̂k ≈ √

nkβ̂k for GWAS sample size nk and ζ̂k was the unit of analysis. Under
the assumptions in model 9,

h2
k =

[
E(ζ̂⊤

k ζ̂k)

M
− 1

]
m̃k

nk
. (30)

This is seen immediately from the following result

E(ζ̂⊤
k ζ̂k) = trace

(
nk

[
h2
k

m̃k
I+

1

nk
R

])
(31)

from the original model in Equation 11. A natural estimate of h2
k is

ĥ2
k =

[
ζ̂⊤
k ζ̂k − 1

nk

M
− 1

]
ˆ̃mk

nk
(32)

where the −1/nk term is introduced as a measurement/estimation error bias-270

correction [21]. In practice, m̃k is rarely known and so must be estimated from271

the data. We estimated this quantity using a procedure similar to that used272

by PLINK [27] where we let 2 ˆ̃mk be the number of SNPs of the total M with273

association P < 5× 10−5 for ζ̂jk that are independent (r2< 0.05) of all other274

M−1 SNPs for the gene group. We assume the factor 2 on m̃k consistent with275

results in [25, 26, 34] that cis-eQTLs explain approximately 1/3rd of the SNP276

heritability and trans-eQTLS explain the rest. Note that whether you assume277

a random or fixed effects model for βk, the result in Equation 30 is the same.278

To see this, let ζ̂k ∼ N(ζk, n
−1
k R) and use the same technique as in Equation279

31 then rearrange to arrive at the result in Equation 32.280

2.4 Source of bias in MRBEE from a misspecified LD281

matrix282

In MR with gene expression as the exposure(s) of interest, we use eQTLs283

as instrumental variables (IVs). Standard methods of performing MR assume284

that these eQTLs will be independent of each other. However, there may only285

be very few (e.g., less than 5) IVs in a cis-region that are significant eQTLs286
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and also independent of each other. If we only have, for example, 5 IVs to287

performMR, there may be little power to detect causal effects. A more powerful288

approach would include IVs that are in LD with each other, assuming that a289

larger set of correlated IVs can explain more variance in the expression of a290

gene than a smaller set of independent IVs. Performing MR with m correlated291

IVs requires estimating their LD matrix R, which is usually accomplished in292

practice by using an external LD reference panel from approximately the same293

population, such as the 1000 Genomes reference panels [12]. It is well-known294

that the IVW estimator, equivalent to a generalized least squares estimator,295

will not be biased by misspecification ofR. That is, if in practice we use R̂ ̸= R,296

the IVW estimator will not be biased because of it. The IVW estimator is297

generally biased from other sources as described above and in [21].298

MRBEE makes a bias-correction to IVW for these other sources of bias
which include measurement error/weak IVs and sample overlap. The MRBEE
estimator with a set of m IVs with no evidence of horizontal pleiotropy is

θ̂MRBEE =

(
B̂⊤R̂−1B̂−mΣWβWβ

)−1

B̂⊤R̂−1α̂. (33)

In contrast to IVW, if each α̂j is standardized such that it represents the
Z-statistic for association between the jth IV and the outcome trait, then
α̂ ∼ N (α,R). If R̂ = R, then MRBEE is not biased by R̂. This follows from
Equation 24 under the assumption that Var(α̂) = R. However, if R̂ ̸= R then
the bias-correction to IVW that MRBEE makes is not correct and therefore
θ̂MRBEE may be biased. This can be seen by the following. In Equation 23, it
was stated that the bias in the IVW estimating equation is

−E(W⊤
β R̂

−1Wβ)θ + E(W⊤
β R̂

−1wα) (34)

which MRBEE assumes to be −m(ΣWβWβ
θ−σWβwα). If R̂ ̸= R, then the bias299

in Equation 34 is more complex and MRBEE does not correctly adjust for it.300

We now aim to investigate the extent to which MRBEE will be biased by
a misspecified value of R̂. In this section, we consider a simple case in which
R̂ = ξR + (1 − ξ)I for some constant 0 ≤ ξ ≤ 1. In section 2.5, we consider
more complex cases in which the size of the LD reference panel also varies. We
performed simulations with generated GWAS summary statistics for 100 IVs
using the following models

(α,B) ∼ N
(
0,Σ,

1

4
R

)
(35)

Σ = D

 1.0 0.2 0.2
0.2 1.0 0.5
0.2 0.5 1.0

D (36)

D = 0.1I3 (37)

R = AR1(0.5) (38)
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B̂ ∼ N
(
B,

1

50
Σ,R

)
(39)

R̂ = AR1(ξ), ξ ∈ {0.0, 0.1, ..., 0.8, 0.9} (40)

θ̂IVW = argmin
θ

−1

2

(
α− B̂⊤θ

)⊤
R̂−1

(
α− B̂⊤θ

)
(41)

θ̂MRBEE = argmin
θ

−1

2

(
α− B̂⊤θ

)⊤
R̂−1

(
α− B̂⊤θ

)
− θ⊤ΣWβWβ

θ, (42)

(43)

where the constants 1/4 and 1/50 respectively represent minor allele frequency301

and the proportion of measurement error variance to the total signal variance.302

These simulation models implicitly assume no measurement error in the out-303

come associations α, which is irrelevant for our purpose here because neither304

IVW nor MRBEE will have any more or less bias as measurement error is305

added or removed from α. We performed 10,000 simulations for each scenario306

in which ξ varied and the results are presented in Figure 15.307

These results indicate that IVW is consistently biased irrespective of how308

close the working LD matrix R̂ is the the true LD matrix R. On the other309

hand, MRBEE is unbiased when R̂ = R, but incurs a small upward bias when310

ξ < rho = 0.5 and a small downward bias when ξ > ρ = 0.5. Each of these311

biases are smaller than the bias incurred by IVW, expect when an extremely312

dense AR1(0.9) structure is assumed to fit data that were generated from313

AR1(0.5), which is unlikely to ever occur in practice. Interestingly, MRBEE is314

unbiased when the LD matrix is assumed to be equal to the identity matrix,315

although its variance in this setting is greater than in other settings when a316

denser LD structure is assumed.317
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Fig. 15 These are the results of 10,000 simulations, the settings for which are fully described
in the text above. Displayed are boxplots of causal estimates made by IVW (left) and MRBEE
(right) in different scenarios of assumed LD structure. The horizontal blue lines are positioned at
the true causal effect, 0.2. The vertical blue lines are positioned at the value of ρ which was used
to generate the data.
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2.5 Misspecified LD318

2.5.1 Background319

We mentioned in Section 2.4 that using a LD matrix in MR that is not equal320

to the true LD matrix representative of the discovery population can introduce321

bias in causal estimates using MRBEE. In this section, we demonstrate that322

misspecified LD of this type can cause inflation of test statistics corresponding323

to tests of the causal null hypothesis. MR methods that can allow for IVs324

that are in LD with each other are IVW [6], principal components analysis325

(PCA) [7], the conditional and joint (CoJo) algorithm [36], single-SNP [29,326

31], LD pruning [11, 28], effective-median [19], and the JAM algorithm (joint327

analysis of marginal summary statistics) [23]. An estimate of the LD matrix328

between IVs is generally made using a reference panel and not the actual329

disease GWAS individual-level data. This is because reference panels are widely330

publicly available and individual-level data from many disease GWAS are not.331

Using an independent reference panel to estimate LD between IVs used in332

MR may inflate test statistics and lead to a large false positive rate [19] if the333

reference population differs from the discovery (Figure 16) or if the reference334

panel is relatively small (Figure 3 in the main text). In the literature, only a335

single solution to this problem has been documented [19], but it is only avail-336

able for univariable MR with gene expression, which may be highly vulnerable337

to bias and its own inflation because of complex regulatory networks between338

the expression levels of multiple nearby genes. Additionally, this correction339

relies on resampling methods that cannot be scaled genome-wide because of340

the computational burden. There is currently no solution to this problem of341

inflation from misspecified LD that can be applied to multivariable MR with342

gene expression.343

We demonstrate that inflation in MR with gene expression is the result344

of relatively small reference panel sample sizes and systematic differences in345

genetic architecture between reference panel and discovery GWAS samples.346

Current methods with straightforward extensions to MVMR such as PCA347

and LD pruning are not guaranteed to control this inflation. We considered348

many potential solutions to this problem, the simulation results of which are349

presented in Sections 2.5.4 and 2.5.5.350

2.5.2 Inflation correction (IFC)351

In the main text, we proposed a method to correct for inflation in MR test352

statistics due to misspecified LD structure amongst the IVs used in MR that353

is presented in Figure 17. Here, we describe that method in greater detail. We354

propose to correct for inflation by using a data-driven approach by using the355

degree of inflation in surrounding null regions to adjust the standard errors for356

causal estimates in the target region. Here, ‘target region’ refers to a locus in357

which there is a hypothesized causal relationship between the expression of one358

or more genes and the disease trait; ‘null region’ refers to a locus in which there359

is no evidence of any association between the genetic variants and the disease360
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Fig. 16 This figure demonstrates inflation in the Type I error rate of the IVW method [5]
when applied to correlated IVs in simulation following a procedure similar to that described
in Section 2.5.3. In this simulation, the size of the reference panel was fixed at 1,000 but
the similarity in the true LD in the reference and discovery population varies. The true LD
matrix R was of AR1(ρ) structure and the true LD matrix in the reference panel was of
AR1(ρ̂) structure. We display the false positive rate of IVW (left) for different value pairs
of ρ and ρ̂, which are observed to surpass the nominal 0.05 level in many scenarios. We also
display the IVW-estimated (middle) and corresponding true standard error (right) for the
causal estimate in each of these scenarios. These results demonstrate that the estimated and
true SEs are often unequal, which explains the inflation that is observed in the left panel.

Gene A

Gene B

Gene C

eQTL signal

Disease signal

+0Mb +1Mb +2Mb–1Mb–2Mb +5Mb– 5Mb

Target region

Significance level

Null region Null region

Chromosome start Chromosome end

Null geneNull gene … Null geneNull gene …

No significant cis-eQTLs or disease signal No significant cis-eQTLs or disease signalSignificant cis-eQTLs & disease signal

For null gene k:

a) Estimate LD among SNPs in data: 𝐑
b) 1Estimate 𝜃𝑘 using MR with 𝐑

c) 2Estimate Var( 𝜃𝑘) using 𝐑

d) Store 𝑇𝑘 = Τ𝜃𝑘
2 Var ( 𝜃𝑘)

Calculate inflation statistic 𝜆𝐻0 using set {𝑇𝑘}

Robust MVMR:

a) Estimate LD among IVs: 𝐑
b) Estimate 𝜽 using 𝐑
c) Estimate Cov(𝜽) using 𝐑

d) Adjust Cov(𝜽) by 𝜆𝐻0

Genes in null region must meet strict criteria:

a) No significant cis-eQTLs (P>0.05)

b) No outcome signal (P>0.05)

c) No correlation in ( ො𝛼𝑗 , 𝛽𝑗) for jth SNP (P>0.05)

d) No other genes within ±1Mb

Fig. 17 Visual description of the IFC method to correct for inflation in MVMR from mis-
specified LD. [1]: The causal effect θk can be estimated using any parametric multivariable
MR method that allows the instrumental variables to be in LD. This should also be the same
method that will later be used for inference in target gene regions. [2]: The variance of θ̂k
should generally be estimated using robust methods, since it is unlikely to be true that the
working LD matrix R̂ is exactly equal to the true LD matrix R0. This is because working
LD matrices are typically estimated from reference samples of finite size and which may be
ancestrally different from the discovery population.

trait or the expression of genes. In the truly null regions, the causal effects of361

gene expression on the outcome trait are each 0. This is because in Equation 7,362

all elements inα andB are 0, implying that θ = 0 in the MR equationα = Bθ.363

By calculating inflation in these null regions, we are calculating inflation under364

H0 : θ = 0. Any inflation that is observed in these regions is at least partially365

due to misspecified LD, and we assume that the same degree of inflation will366

be present in target regions. Under this assumption, we can adjust standard367

errors of causal estimates in target regions by the inflation observed in null368

regions. Figure 18 demonstrates that this assumption is reasonable using AD369
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and eQTLs in blood tissue, evidenced by stable inflation across multiple null370

regions within chromosome 2 and across the entire genome.371

Chromosome 2 Mb position of gene in null region Chromosome

𝜆
H
0

Fig. 18 Left: observed inflation in null regions on chromosome 2. The horizontal black
line is at the λH0 = 1 position. The horizontal red line is at the position of the median of
λH0 values across null regions on chromosome 2, which is 1.85. Right: observed inflation in
null regions on all chromosomes. The horizontal black line is at the λH0 = 1 position. The
horizontal blue line is at the position of the median of λH0 across all chromosomes, which
is at 1.29. These data are from eQTLs in blood tissue from [33] and AD GWAS summary
statistics from [18].

Let θ̂ denote a causal estimate for the expression of a gene in a target region
and λH0 denote the inflation observed in null regions. The corrected standard
error estimate for θ̂ is the following:

ŜEλ(θ̂) = ŜE(θ̂)
√

λH0. (44)

The obvious challenge lies in distinguishing truly null regions from those372

containing genes with extremely small causal effects. We therefore propose to373

use strict criteria for considering a genomic region as a null region. Firstly,374

it should be noted that we do not necessarily need to calculate inflation in375

null regions using multiple genes simultaneously in an MVMR framework. We376

may use one gene at a time to produce a set of causal estimate test statistics377

to be used in determining inflation. This is because under the condition that378

α = β = 0 necessarily implies θ = 0, no negative confounding of (αj , βj) could379

exist to provide an alternative explanation for E(θ̂) ̸= 0. We therefore require380

that each gene to be used in determining inflation meet the following criteria:381

the SNPs within ±1Mb of the transcription start site are (i) not associated382

with the outcome, namely all P-values are greater than 0.05, (ii) not associated383

with the expression of the gene in the target tissue (all P>0.05), (iii) not within384

±1Mb of any other genes, and (iv) the SNP associations with the outcome385

and gene expression are uncorrelated (P>0.05). In practice, conditions (i)-(iii)386

can be verified using the raw outcome phenotype and gene expression GWAS387

data. Condition (iv) can be verified by selected a set of SNPs for which cis-388

SNP association estimates are available for gene expression and the outcome,389

and calculating the empirical correlation. Generally, conditions (i)-(iv) should390

be satisfied after applying pruning to the raw LD matrix estimated by the391
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reference panel. In our simulations below, we only consider SNPs that have392

LD coefficients less than 0.5 in absolute value.393

2.5.3 Simulation setup394

In this section, we perform simulation to demonstrate the roles of nref. and Ψ395

in inflating test statistics corresponding to causal effect estimates made using396

MVMR. These simulations used real data wherever possible. These data came397

from the Alzheimer’s disease (AD) GWAS by [18] (n=455k) for the outcome398

trait and from the eQTLGen Consortium [33] (n=32k) for cis-eQTLs in blood399

tissue. We first identified a gene regulatory network in the 2q37.1 region that400

contained 7 genes and selected 484 candidate IVs for these genes using the401

following procedures. These IVs were jointly associated with the expression of402

at least one of the seven genes in blood tissue and were not in LD of r2>0.1403

with any other SNPs ±1Mb away from the network. We then estimated LD for404

these IVs using the 438k non-related European individuals in the UK Biobank405

[30] using the PLINKv1.9 software [27]. These data respectively provided the406

following quantities: α̂ : 484× 1, B̂ : 484× 7, and R̃0 : 484× 484. The values407

in α̂ and B̂ were Z-scores, i.e., association estimates divided by their standard408

errors. The original LD matrix for the 484 SNPs estimated using UKBB was409

not positive definite. We applied LD pruning to R̃0 using the threshold |r̃ij | <410

0.85 to generate the positive definite matrix R0. This subsetted our data from411

484 to 168 SNPs.412

From these data, we estimated genetic correlation between the columns
of B̂ denoted as S. We fixed heritability of gene expression at 0.05 [25] for
each gene and at 0.01 for AD. We then perturbed the true LD matrix R0 and
randomly drew it from a Wishart distribution to emulate real world conditions
in which R0 is estimated from an external and sometimes relatively small
reference panel. We did using the models:

R̂ ∼ Wishart(nref.,R) (45)

R = ξR0 + (1− ξ)Im (46)

ξ ∈ {0.0, 0.1, ..., 0.9, 1.0} (47)

nref. ∈ {350, 450, ..., 950}, (48)

The minimum value in the set nref. was chosen to be equal to the smallest413

population-specific sample size in 1000 Genomes Phase 3 [8], which corresponds414

to Hispanic individuals.415

We therefore drew GWAS summary data for gene expression and AD from
the following matrix normal distribution:

(α̂, B̂) ∼ N (0,Σ, R̂), m× (1 + p) (49)
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where

Σ = D

(
1 σ⊤

xY

σxY S

)
D, (1 + p)× (1 + p) (50)

D = diag(0.01, 0.05, ..., 0.05), (1 + p)× (1 + p) (51)

and the quantity σxY was controlled to reflect the degree of causality between416

gene expressions x and AD Y . For example, σxY = 0 implies no causality417

between x and Y and was used to evaluate Type I error.418

For each (ξ, nref.) pair, we drew (α̂, B̂), applied the causal estimation meth-419

ods of PCA [7], LD pruning [11], single SNP [29, 31], and our proposed IFC420

and recorded power and Type I error. For our IFC method, we require addi-421

tional data beyond that which is provided by the 484 IVs. These data were422

the remaining gene expression and AD GWAS summary data on chromosome423

2 that met the criteria for null regions as described in Section 2.5.2. We esti-424

mated Type I error when σxY = 0 and power when σxY = (ρ
√
0.01× 0.05)425

where ρ ∈ {0.1, 0.2, 0.3}.426

2.5.4 Type I error427

The results of these simulations suggest that the IVW [6] method has inflated428

Type I error when the true LD in the reference panel is sparser than that429

in the discovery population. IVW also has deflated Type I error when the430

reference and discovery populations have the same LD structure but the size431

of the reference panel is less than 1,000 individuals. Pruning at the |r| < 0.5432

level reduced some of the Type I error inflation and deflation that was present433

in IVW, but did not bring Type I error to nominal levels (i.e., 0.05) in all434

simulation scenarios. Pruning at the |r| < 0.3 level removed the Type I error435

deflation, but not the inflation. The PCA method [7] had drastically inflated436

Type I error rates in all simulation scenarios. Using pruning at the |r| < 0.3437

level then applying IFC controlled Type I error better than any other method438

or combination of methods and did not deflate Type I error below the nominal439

0.05 level. This approach only had inflation of Type I error when the true LD440

matrix in the reference panel was much more dense than the true LD matrix441

in the discovery population, a situation which is unlikely to occur in practice.442

Importantly, pruning + IFC also controls Type I error when the size of the443

LD reference panel is small. Jackknifing methods generally still had inflated444

Type I error, though to a lesser extent than IVW, pruning alone, or PCA.445
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Fig. 19 These results display Type I error for different methods for performing MR with instru-
mental variables that are in LD with each other. Full simulation settings are described in the text.
Type I error is displayed for the first of 3 exposures. The PCA methods use univariable MR with
only the first exposure; the other methods use multivariable MR with all three.

2.5.5 Power446

We also investigated power of each method when σxY = θ = (0.1) the results447

of which are displayed in Figure 20. These results demonstrate that the IVW448

method is generally most powerful at very specific combinations of the adjust-449

ment factor ξ and reference panel sample size (see Figure 20). The power of450

IWV is low even when the true LD structure in the reference panel is the451

same as in the discovery population (i.e., ξ = 1), but the size of the reference452

panel is less than 1k. Only as the size of the reference panel increases can the453

IVW method achieve greater power when ξ = 1. Pruning at the |r| < 0.5 the454

|r| < 0.3 thresholds have similar power which increases as ξ approaches 1 and455

the reference panel sample size increases. These methods can achieve greater456

power than IVW when the reference panel is relatively small. PCA methods457

actually have lower power as the reference panel sample size increases, and458

greater power as LD in the reference panel approaches the identity matrix,459

i.e. ξ approaches 0. Our pruning and IFC corrective method generally has460

power than increases with ξ approaching 1 and the reference panel sample size461

increasing. This approach generally has less power than alternative methods,462

which is the sacrifice made for controlling Type I error. Jackknife methods can463

generally be more powerful than all methods except pruning at |r| < 0.5 when464

LD in the reference panel is sparser than LD in the discovery population (i.e.,465

ξ < 0.5). Overall, these results confirm that our corrective method of pruning466

and IFC does not sacrifice substantial power to achieve controlled Type I error.467
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Fig. 20 These results display power for different methods for performing MR with instrumental
variables that are in LD with each other and θ = 0.1. Full simulation settings are described in the
text. Power is displayed for the first of three exposures. The PCA methods use univariable MR
with only the first exposure; the other methods use multivariable MR with all three.

3 Estimating bias-correction terms468

GScreen is an extension of the MR with unbiased estimating equations
(MRBEE) method [21] to the high dimensional setting. MRBEE corrects for
bias from weak instruments [1] that is introduced by measurement error in

the GWAS associations. Let (α̂j , β̂j1, β̂j2, ..., β̂jp) = (α̂j , β̂
⊤
j ) be a pair of

associations between the jth IV and the outcome and expression of p genes,
respectively. It was shown in [21] that when estimating θ from

α̂j = β̂⊤
j θ + εj (52)

using the standard IVW method [5], there is downward bias due to nonzero469

variance of βj − β̂j , which we denote as ΣWβWβ
. MRBEE estimates ΣWβWβ

,470

denoted as Σ̂WβWβ
, to correct for bias in IVW [5]. The estimate Σ̂WβWβ

is471

highly precise when there are many SNPs available that have no evidence of472

association with the expression of any of the p genes in the locus. However,473

when there are relatively few SNPs available that meet this criteria for any pair474

of genes, the corresponding estimate in Σ̂WβWβ
may be imprecise. When the475

total number of SNPs available to estimate ΣWβWβ
is less than 50, HORNET476

automatically treats the corresponding elements in Σ̂WβWβ
as missing and477

employs the maximum determinant method (MaxDet; [14]) to impute the miss-478

ing values. In practice, Σ̂WβWβ
is converted to its corresponding correlation479

matrix before MaxDet is applied.480

Consider that Σ̂WβWβ
is a p×p correlation matrix with 2 missing values cor-481

responding to the correlation between measurement errors for a single pair of482

genes. MaxDet estimates the missing value in Σ̂WβWβ
as that which maximizes483

the determinant of Σ̂WβWβ
while retaining positive definiteness. The method484

is essentially an imputation procedure for the correlation matrix. In the real485



32 CONTENTS

data, there may be missing measurement error correlation estimates for k pairs486

of genes. In this case, HORNET applies MaxDet to each of k sub-matrices of487

Σ̂WβWβ
that contains only non-missing and non-imputed values.488

4 Gene Selection489

The HORNET software estimates causal effects of gene expression using a two-490

step procedure. First, genes with evidence of causality are identified using a491

screening tool called GScreen. Second, causal estimates of the selected genes492

are made using MRBEE [21].493

G-Screen aims to perform gene selection while remaining robust to hori-
zontal pleiotropy by using Huber weights to approximate quantile regression
[17] and a SCAD [13] penalty to perform gene selection. Quantile regres-
sion is well-known to be robust in the presence of horizontal pleiotropy [2],
which effectively indicates the presence of relatively large outliers in multiple
regression, and the SCAD penalty will automatically exclude some genes from
causal estimation, thereby selecting others. This procedure also includes the
MRBEE bias-correction to prevent incorrect inference from weak instrumen-
t/measurement error biases during gene selection. Algorithm 1 summarizes
this procedure. This algorithm requires the tuning parameters γ and λ, which
respectively control the degrees of penalization of horizontal pleiotropy and
the number of genes selected. To choose an optimal (γ, λ) pair, we search a
grid of values and calculate the following BIC:

BICγ =
∑
j

ξ(εj , γ)log(σ
2
ξ ) +

[
log(m− |Sη|) + log(p)

]
|Sη| (53)

where σ2
ξ is the sum of squared and Huber-weighted residuals, |Sη| is the494

number of selected genes, ξ(εj , γ) is the normalized Huber weight for the jth495

SNP (normalized to the range 0-1), m is the number of SNPs, and p is the496

total number of genes under study in a locus. In practice, weights (wj) are497

continually normalized such that the maximum value is always 1.498

Figure 21 shows the performance G-Screen in screening genes for evidence499

of causality using eQTL GWAS data from the cortex [10] and AD GWAS500

data from [18] as an example. Of the 441 genes selected by G-Screen during501

screening, 49.7% were prioritized. Here, ‘prioritized’ refers to the condition502

when the gene has a corresponding causal effect P-value less than 5 × 10−5
503

and its Pratt index value is larger than 0.1.504



CONTENTS 33

Locus variance explained 0.0 0.2 0.4 0.6 0.8

0
0.1

0.25

0.5

0.75

1

−10 −3.9 0 3.9 15
Z−statistic for causal estimate

Pr
at

t i
nd

ex

G−Screen

0
0.1

0.25

0.5

0.75

1

−10 −3.9 0 3.9 15
Z−statistic for causal estimate

Pr
at

t i
nd

ex

MR−Jones

24.25%
13.09%

58.35%

4.31%20.18%
49.66%

20.41% 9.75%
0

200

400

600

800

G−Screen MR−Jones

ge
ne

 c
ou

nt

MR−Jones G−Screen

1514
(76.6%)

190
(9.6%)

273
(13.8%)

All Genes Selected During Screening
MR−Jones G−Screen

48
(18.0%)

97
(36.3%)

122
(45.7%)

All Prioritized Genes

Locus variance explained 0.0 0.2 0.4 0.6 0.8

0
0.1

0.25

0.5

0.75

1

−10 −3.9 0 3.9 15
Z−statistic for causal estimate

Pr
at

t i
nd

ex

G−Screen

0
0.1

0.25

0.5

0.75

1

−10 −3.9 0 3.9 15
Z−statistic for causal estimate

Pr
at

t i
nd

ex

MR−Jones

24.25%
13.09%

58.35%

4.31%20.18%
49.66%

20.41% 9.75%
0

200

400

600

800

G−Screen MR−Jones

ge
ne

 c
ou

nt

MR−Jones G−Screen

1514
(76.6%)

190
(9.6%)

273
(13.8%)

All Genes Selected During Screening
MR−Jones G−Screen

48
(18.0%)

97
(36.3%)

122
(45.7%)

All Prioritized Genes
Fig. 21 Displayed in the top panel is a volcano plot for HORNET analyses that were completed
using eQTL GWAS data from cortex tissue [10] and Alzheimer’s disease (AD) GWAS data from
[18]. The x-axes represent the test statistics for testing the null hypothesis that a given gene does
not have a causal effect on AD risk when expressed in the cortex. The y-axes represent Pratt index
values. Each point in these figures corresponds to a single gene that was selected by G-Screen.
The gray shaded ares are those in which the gene is not prioritized (i.e., the Z-statistic and Pratt
index values are each not of sufficient magnitude. Prioritized genes are therefore those highlighted
in green. The bottom panel displays counts and proportions of each classification of genes that
are presented in the volcano plots in the top panel.

5 Prioritizing tissues505

In this section, we describe how to use the tissue chooser.py command-line506

tool to identify tissues in which a pre-defined candidate set of genes have the507

strongest eQTL signals. From GTEx data of 54 tissues [9], we estimated her-508

itability scores for the expression of each available gene in each tissue using509

all significant cis-eQTLs. These heritability scores were calculated from cis510
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Algorithm 1 Pseudo-code of G-Screen

Require: m×p eQTL-MVMR design matrix B̂0 of SNP-gene expression asso-
ciations for genes in set S, m× 1 vector of corresponding SNP associations
with the disease phenotype α̂0, m×m inverse LD matrix Ω between SNPs,
MRBEE bias-correction terms Σ̂WβWβ

, Huber weight tuning parameter γ
for UHP/CHP in ξ(·, γ), SCAD tuning parameter λ for gene selection, initial
causal estimates η̂0, tolerance ϵ
Transform: B̂ = Ω1/2B̂0, α̂ = Θ1/2α̂0

while ∥η̂(t+1) − η̂(t)∥2 > ϵ do

Determine weights: wj = ξ(α̂j − β̂⊤
j η̂

(t), γ)
Define mw =

∑
j wj , D = diag(wj)

m
j=1

Update θ̂(t+1) =
(
B̂⊤DB̂−mwΣWβWβ

+ ρI
)−1(

B̂⊤DB̂+ ρI− µ(t)
)

Penalize η̂
(t+1)
j = Sλ(θ̂

(t+1)
j )

Update µ(t+1) = µ(t) + ρ(θ̂(t+1) − η̂(t+1))

Find ϵ = ∥η̂(t+1) − η̂(t)∥22
end while

Ensure: Set Sη = {k : η̂k ̸= 0 :} for k = 1, ..., p of genes with evidence of
causality

SNPs within ±1Mb and are proportional to SNP heritability. We then created511

a matrix in which each row was a gene, each column was a tissue, and each512

value was a heritability score. The tissue chooser.py tool simply receives513

a comma-separated list of gene IDs, or a header-less file in which each row514

is a gene ID, and returns the tissues for which the eQTLs in GTEx v8 are515

the strongest. We first show how heritability scores were calculated, then516

demonstrate how to use the tool from the command line.517

5.1 Heritability scores518

Heritability scores are calculated in the following way. First, GTEx v8 associ-519

ations between SNPs and gene expression in each tissue were calculated using520

fastQTL [24]. All associations that were significant at a corrected threshold521

were recorded and placed into the GTEx Analysis v8 eQTL.tar file available522

at https://gtexportal.org/home/datasets [9]. These data provided us with Z-523

statistics for association between the k SNP and the Gth gene in the T th524

tissue, denoted here as zGk (T ). From these association estimates, we created525

the vectors zG(T ) = [zGk (T )]pG

k=1 of varying length pG that were gene-specific.526

In other words, these vectors contained all SNP-gene association estimates that527

were significant at a specific threshold in a specific tissue, and we created them528

for each gene-tissue pair. It was shown in [39] that Cov[zG(T )] = R, which is529

the LD matrix between the SNPs whose associations with gene expression are530

stored in zG(T ).531

https://gtexportal.org/home/datasets
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We calculated heritability scores as

HS(G, T ) =
[
zG(T )

]⊤
R̂−1

[
zG(T )

]
, (54)

where R̂ is an estimate of the corresponding LD matrix between the SNPs532

whose association estimates are in zG(T ), which we made using the full 1000533

Genomes Phase 3 reference panel [8]. The heritability scores HS(G, T ) were534

previously shown to be proportional to SNP heritability [4]. Since the tissue535

prioritizing tool that we present in this section is only intended to provide a536

ranked list of tissues in which the strongest eQTL signals for a pre-specified list537

of genes are, the heritability scores HS(G, T ) are sufficient for accomplishing538

this task. Heritability scores for each gene-tissue pair were then stored in the539

file hscores.txt, which can be found in the tissue priority directory of540

the HORNET software (see https://github.com/noahlorinczcomi/HORNET).541

5.2 Running tissue chooser.py to prioritize tissues542

In this subsection, we demonstrated how to use our tissue chooser.py tool to543

automatically search hscores.txt for tissues with the strongest eQTLs. Please544

see the ‘Choosing tissues’ branch at https://github.com/noahlorinczcomi/545

HORNET for a complete demonstration of how to use this tool. Briefly,546

this tool receives either a comma-separated list or file of gene IDs to its547

--candidateGenes flag, a ‘yes’ or ‘no’ to its --saveAsFile flag indicating if548

the results should be saved in a file in addition to being printed to the console,549

and the output filepath to --outFile if you put ‘yes’ to the --candidateGenes550

flag. Note, the top results will always be printed to the console, unless you want551

to suppress them by setting the --printResults flag to be ‘no’. An example552

of output that could be generated by this tool for the HMGCR, CETP, and553

FES genes is displayed in Figure 22.554

Fig. 22 This is the output of running the

python tissue chooser.py --candidateGenes ENSG00000113161,ENSG00000087237,ENSG00000182511

command in the HORNET directory. All values are aggregated within tissues. Maxh2score is the max-
imum heritability score for the tissue. nSignifSNPs is the number of SNPs significantly associated
with gene expression after adjustment for multiple comparisons in GTEx v8 [9]. TissueCount rep-
resents the number of genes for which the specific tissue is in the top 5 tissues with the strongest
cis-eQTLs. Genes represents the genes for which each tissue contains one of the top 5 strongest
eQTLs.

https://github.com/noahlorinczcomi/HORNET
https://github.com/noahlorinczcomi/HORNET
https://github.com/noahlorinczcomi/HORNET
https://github.com/noahlorinczcomi/HORNET
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5.3 Limitations555

This tool has the following limitations. First, this tool relies solely on GTEx556

v8 data for the inferences it intends to supply. Second, these heritability scores557

are proportional to SNP heritability but are also proportional to the true total558

number of causal SNPs, which in this case may not be reliably estimated from559

only the cis-eQTL data. The tool therefore implicitly assumes constant num-560

bers of causal SNPs across all genes in all tissues. In this context, ’causal561

SNPs’ refers to those SNPs that cause variation in gene expression in a specific562

tissue. Thirdly, any prioritization of certain tissues over others is completely563

agnostic to the outcome phenotype. It therefore may be true that a gene with564

a very strong causal effect on a disease when expressed in one particular tis-565

sue may not have strong enough eQTLs in that tissue to give it a relatively566

high ranking by our tissue chooser.py tool. Researchers should therefore567

only consult this tool as one of many forms of guidance in choosing the most568

appropriate tissues for their analysis. Fifthly, we used strictly GTEx summary569

data [9] when constructing the reference data set hscores.txt on which the570

tissue chooser.py relies. The GTEx v8 sample size for whole blood tissue571

is 670, whereas the sample size for cis-eQTLs in the eQTLGen Consortium572

[33] is 31k, which provides more statistical power for detecting cis-eQTLs than573

GTEx v8. Since whole blood tissue is generally considered in all analyses any-574

way, we omitted calculation of heritability scores using eQTL GWAS in whole575

blood from the eQTLGen Consortium.576

6 Software577

The HORNET software is available as a command line tool and desk-578

top application for Linux, Windows, and Mac machines. Complete tutorials579

demonstrating how to download and use the HORNET software are present580

at https://github.com/noahlorinczcomi/HORNET under the README.md and581

HORNET Desktop.md files for the command line and desktop versions, respec-582

tively.583
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