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Abstract

This study introduces a transfer learning framework to address data scarcity in
mortality risk prediction for the UK, where local mortality data is unavailable. By
leveraging a pretrained model built from data across eight countries (excluding the UK)
and incorporating synthetic data from the country most similar to the UK, our
approach extends beyond national boundaries. This framework reduces reliance on local
datasets while maintaining strong predictive performance. We evaluate the model using
the Continuous Mortality Investigation (CMI) dataset and a drift model to address
discrepancies arising from local demographic differences. Our research bridges machine
learning and actuarial science, enhancing mortality risk prediction and pricing
strategies, particularly in data-poor settings.

Introduction 1

In life insurance, accurate mortality risk prediction is essential for pricing and managing 2

risks. However, this process is often hindered by data scarcity, particularly in 3

underrepresented demographic segments or smaller niches of the market. Mortality 4

events are infrequent, meaning data accumulates slowly, making it difficult for insurers 5

to build robust predictive models. This lack of data can lead to unreliable risk 6

assessments and pricing strategies, ultimately affecting profitability and customer 7

affordability. 8

Transfer learning offers a promising solution to these challenges by leveraging models 9

trained on data-rich countries and adapting them to data-poor environments. This 10

allows insurers to generate reliable mortality predictions even when local data is 11

unavailable. Previous studies, such as those by [1] and [2], have laid the groundwork for 12

transfer learning in mortality risk prediction, but have primarily focused on scenarios 13

with small volumes of target data. Additionally, much of the research has relied on deep 14

neural networks (DNNs), which, while powerful, can be computationally intensive and 15

require extensive fine-tuning, especially for small datasets [3, 4]. 16

In contrast, gradient boosting machines (GBMs) offer a more efficient and 17

interpretable alternative for transfer learning, particularly in cases where no target data 18

is available. Despite their potential, GBMs have received less attention in the context of 19

mortality risk prediction. Inspired by the success of machine learning (ML) models in 20

clinical research [5–7], this study introduces a GBM-based transfer learning framework 21

for predicting mortality rates in the UK, where no local life insurance data is available. 22

By incorporating synthetic data from countries most similar to the UK, this approach 23

demonstrates high predictive accuracy while reducing dependence on local datasets. To 24
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further enhance the model, we introduce a drift model to evaluate and correct 25

discrepancies arising from demographic differences between countries. 26

This research not only extends the boundaries of transfer learning in actuarial 27

science but also has broader implications for improving mortality risk prediction and 28

pricing strategies in data-poor markets. Our study is guided by three primary research 29

questions: 30

i. How can we estimate mortality rates in a country with no internal life 31

portfolio data? This involves implementing a ML-based transfer method, 32

focusing on the UK, and constructing a country similarity index using external 33

data to identify relevant source countries. 34

ii. How accurate is the model, and how can a drift model address 35

discrepancies between predicted and expected mortality? The accuracy of 36

the transfer learning method is assessed using various metrics, with a drift model 37

employed to explore factors contributing to discrepancies between transferred 38

mortality tables and expected outcomes from the CMI dataset. 39

iii. How can additional variables beyond age and gender improve mortality 40

risk predictions We investigate how the inclusion of additional variables can 41

enhance the baseline mortality predictions, providing an application case to 42

demonstrate improvements.. 43

Database and methodology 44

Data 45

In our study, we rely on the open source Human Mortality Database (HMD) as our 46

primary external data source. HMD offers age and gender-specific mortality rates for 47

the overall population across various countries. However, our primary focus is not on 48

estimating the mortality of the overall population in the UK. Instead, our goal is to 49

estimate the mortality rates within the company’s own life insurance portfolio in the 50

UK. It’s important to note that there are often differences between overall mortality 51

rates and those within a specific portfolio, particularly due to the underwriting process 52

in life insurance. To address this limitation, we leverage data from eight countries and 53

establish connections to capture this discrepancy between overall and portfolio mortality 54

rates. To ensure that the analysis accurately reflects the mortality patterns across 55

different countries and within the company’s life insurance portfolio, our approach 56

involves three different populations, as illustrated in Fig 1: the overall population 57

specific to each country, the global insured population of the company, and the insured 58

population of the company within a particular country. 59

Fig 1. Illustration of targeted population segments across different datasets
and models.

Overall population: Age- and gender-specific overall population mortality rates 60

from the HMD are retrieved for all countries. While these represent total population 61

mortality, not insured population mortality, they bridge the gap between total and 62

insured mortality, as it is the only feature we have available for the target country. To 63

minimize yearly artifacts mortality rates from 2008 to 2018 were projected one year 64

ahead using the Lee Carter model [8] (see Methodology section and S2 Appendix). 65

Insured population: We utilize a pooled internal portfolio dataset from different 66

countries 67
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to pretrain a GBM model [9] for predicting mortality rates for the insured 68

population globally. This dataset incorporates common global characteristics shared 69

across different countries, such as age, gender, sum assured, allowing for cross-country 70

data comparison, and integrates the overall population mortality, yielding in a total of 9 71

global features. (see Methodology section and S1 Appendix). 72

The dataset includes policy data from a global primary insurer that was active 73

during the specified period, totaling almost 10 million life-years of exposure and 74

recording nearly 10,000 insurance claims (deaths). The data analysis was conducted in 75

an aggregated form, grouped into distinct combinations of feature values, summarizing 76

the deaths Dj and exposure Ej data for each unique combination features across all 77

j = 1, . . . ,K countries, in this case K = 8, the names of which have been withheld to 78

maintain confidentiality. Four of the countries are located in Western Europe, three in 79

Latin America, and one in Central and Eastern Europe. 80

Table 1. Overview of death counts Dj , exposure in life years Ej , and total number of
years Tj in country j.

Country j Dj Ej Tj

1 1699 1 295 299 2013–2020
2 1291 1 686 299 2010–2020
3 494 815 795 2010–2020
4 1225 1 347 150 2017–2020
5 1816 1 825 901 2016–2020
6 2132 1 548 157 2016–2020
7 458 498 560 2017–2020
8 297 99 473 2015–2020

Total 9412 9 116 634 2010–2020

Table 1 provides a detailed overview of Dj , Ej and the total number of years Tj in 81

country j, to give the main characteristics and distribution of the pooled dataset. This 82

paper will analyse age and gender as internal features, while keeping other features used 83

in the modeling anonymous for privacy reasons. 84

Insured population in specific countries: In addition to the global features, 85

including the overall population mortality of these countries, we include 12-16 local 86

features from each country j, depending on local data availability, such as occupational 87

class, which are not comparable across regions. After retraining the specialized GBM 88

models on a total of 21-25 features, initialized by the pretrained model, we predict 89

mortality rates for the portfolio of country M using a synthetic dataset tailored 90

specifically for M. Our method for creating the synthetic dataset combines stochastic 91

and rule-based techniques to bootstrap by resampling from the internal portfolio of K 92

countries, while introducing variations to account for uncertainty [10] (see Methodology 93

section and S1 Appendix). 94

Mortality of UK’s insurance population for evaluation: We utilize the ’16’ series 95

mortality tables from Working Paper 154 [11] for the evaluation purposes and the drift 96

model, given the absence of an actual UK portfolio for comparison. These tables, 97

derived from data from different UK life insurance companies, offer detailed insights 98

into age, gender, smoking status, and curtate duration. To guarantee an impartial 99

assessment and prevent undue complication, we consolidate the tables according to age 100

and gender categories that correspond to population proportions. 101

External data for the Country Similarity Index: The Country Similarity Index seeks 102

to measure the similarity between the target country M and the K (= 8) source 103

countries in the internal dataset in terms of mortality and life insurance characteristics. 104

We develop this by considering various indicators, selected based on prior research and 105

expert input, adaptable to specific contexts. These indicators are categorized into three 106
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dimensions: Life Insurance Performance Indicators, Healthcare Statistics, and Overall 107

Population Mortality. The details of these indicators are outlined in Table 2, with the 108

methodology for their construction discussed in the subsequent subsection. 109

Item Description and source

1. Life Insurance Performance Indicators from OECD

1.1 Life Insurance Share The ratio of gross life insurance premium to total gross premium,
indicating the relative importance of life insurance compared to non-
life insurance [12].

1.2 Density The ratio of life insurance premiums to the whole population, measured
in US Dollars [13].

1.3 Penetration The level of development of the life insurance sector in a country,
represented as a percentage [14].

1.4 Total Gross Premiums Aggregate amount of premiums collected by life insurance companies
in US Million Dollars [15].

1.5 Retention Ratio Percentage of premiums retained by an insurance company rather than
being transferred to reinsurers [16].

2. Healthcare Statistics

2.1 Health Care Measured by The Health Index by Global Residence Index, providing
an overall assessment of the healthcare system and general health of the
local population. Ranges from 0 to 1, indicating low to high healthcare
levels [17].

2.2 Retirement Pension Country-specific Minimum Pensionable Age for Men obtained from
Indicator Data [18].

2.3 Medical Staff per
Capita

Number of physicians, nurses, and midwives per 1,000 people [19].

2.4 Hospital Beds per
Capita

Number of hospital beds per 10,000 population [20].

2.5 Access to Basic
Healthcare

Percentage of people with access to basic healthcare [21].

2.6 Healthcare Expendi-
ture per Capita

Expenditure on healthcare per capita in US Dollars [22].

2.7 Risk of Impoverishing
Expenditure for Surgical
Care

Percentage of people at risk [23].

3. Overall Population Mortality

3.1 HMD Rates Utilizing also here HMD’s age- and gender-specific mortality rates by
country [24].

Table 2. Dimensions and items obtained from external sources for the construction of a
Country Similarity Index related to mortality in life insurance.

Methodology 110

General Setup: Consider a scenario where K source datasets with aggregated sample 111

size nj are collected from countries j = 1, . . . ,K representing life insurance portfolios. 112

The pooled dataset has total aggregated sample size N =
∑K

j=1 nj . The objective is to 113

estimate death counts D ∈ RN relative to exposure. The feature set X ∈ RN×p
114

comprises global features Xglobal that are comparable and available across countries 115

including the overall population from HMD and local features X local that are specific to 116

each country. Our challenge arises in estimating mortality rates DM due to the lack of 117

internal data. However, we do have access to external data that provides information 118

about mortality rates in different countries, including M . So, the scenario we are 119

dealing with is comparing what we know from this external data along with some 120

internal data we have (which is not specific to M) to try to estimate mortality rates 121
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specifically for country M . Fig 2 is a visual representation of the transfer learning 122

framework: From the pretrained global model to the refined mortality rate predictions 123

for the target county M based on a synthetic dataset. 124

Fig 2. Framework sketch: Synthetic-data-based mortality predictions for
target country M using a pretrained global mortality risk model.

Pretrained Model: Consider a broad category of risk prediction models, where the 125

process of fitting the model involves using a loss function L(γ;D,X). With an 126

estimated parameter vector γ̂ corresponding to the coefficients in a GBM, the predicted 127

outcome is given by D̂ = f(X, γ̂). Specifically, we employ the negative Poisson 128

log-likelihood function with Poisson distributional assumption. By minimising the 129

expected loss function based on Xglobal we result in the parameter set estimate 130

γ̂pretrained an thus predicted number of deaths D̂pretrained. A detailed methodology for 131

the GBM model is provided in S1 Appendix. Up to this point, a benchmark model has 132

been developed without considering the country M . Previous work such as [25], [26], [4] 133

and [27] characterize the similarity between the target model and the source models by 134

a certain distance measure. Based upon this idea, we will generate a synthetic portfolio 135

dataset XM for country M, leveraging the similarity of the external data between the 136

target population M and the source populations 1 to K (excluding M). 137

Country Similarity Index: To measure how similar the target country M is to the K 138

source countries, we create a Country Similarity Index based on external insurance and 139

mortality data Xext ∈ R(K+1)×Q, with K number of source countries and 1 target 140

country. In our application case, Q is equal to 13, larger than K + 1 = 9. These Q 141

items, which are given in Table 2 apply to the entire population of a country, rather 142

than internal data X, which specifically characterises the country’s insured population. 143

After centering and scaling, the Manhattan distance between vectors Xext
j of each 144

source j = 1, . . . ,K and Xext
M of target country M is calculated, as the sum of the 145

absolute differences between corresponding components of vectors: 146

d(Xext
j , Xext

M ) = ∥Xext
j −Xext

M ∥1 [28]. Finally, this results in a k-dimensional vector, 147

representing the sum of itemwise distances between the j = 1, . . . ,K and M across all 148

Q items. The summation of distances over the countries is then transformed into the 149

normed similarity score s(Xext
j , Xext

M ) = e−d(Xext
j ,Xext

M ) using the exponential function, 150

so that the value range changes from [0,∞) to (0, 1]. This transformation allows a 151

similarity comparison rather than an absolute measure of distance, and becomes 152

important later in the resampling stage to define the variance of the Gaussian 153

distribution. 154

Synthetic Portfolio Data for Country M: In countries with no mortality data at all 155

due to portfolio characteristics and size, synthetic data generation offers an efficient 156

solution to address data limitations [29]. The process of producing mortality datasets 157

that closely mimic actual data may comprise stochastic techniques [30], rule-based 158

approaches set by human experts [31] or deep generative models (e.g., [32], [33]). 159

Assuming the known age and gender distribution for M, we resample feature 160

combinations (rows) from the K datasets, encompassing both global and local features, 161

along with the number of deaths, proportional to each similarity score s(Xext
j , Xext

M ) for 162

j = 1, . . . ,K. The overall population mortality of those countries has been substituted 163

with the one of country M obtained from the HMD. To address potential unknown 164

heterogeneity between j and M, we use a data augmentation technique with noise 165

drawing inspiration from established practices (e.g., [34], [35]): 166

1. Metric Data: We introduce Gaussian noise with a mean µ of 0 and a standard 167

deviation σ that is inversely proportional to the similarity score: 168

σ = 1− s(Xext
j , Xext

M ) + 0.000001. Higher similarity measure corresponds to a 169
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lower standard deviation, implying less noise is added to metric data. 170

2. Categorical Data: For categorical data, a noise level is drawn from N (0, σ2), 171

where again σ = 1− s(Xext
j , Xext

M ) + 0.000001. If the drawn value falls within a 172

predefined interval around 0, the original value is retained, otherwise, a new value 173

is drawn from the uniform distribution. 174

Finally, the synthetic dataset for the target country M is generated and contains the 175

feature sets Xglobal
M (including HMD) and X local

M as well as the exposure EM for country 176

M . The estimation of death counts, denoted as D̂M , is required. 177

Transfer Model: Since the pretrained model excludes local factors like occupation 178

class, which cannot be compared across countries, but may have significant impact on 179

mortality, we calculate the specialized models with the local data on top. Each 180

specialized model takes the output of the pretrained model from the first step and makes 181

it more precise for that country. We find that incorporating local attributes during the 182

latter phase of training offers optimal adaptability; this approach allows local nuances 183

to be effectively integrated and, in cases where they are not applicable or transferable to 184

the target country, they can be subsequently adjusted or mitigated. Initially, we utilize 185

the global features of the synthetic dataset Xglobal
M to generate preliminary predictions 186

D̂pretrained
M using a pretrained model. Subsequently, we enhance these predictions by 187

employing the specialized GBM models tailored for countries j = 1, . . . ,K. Through 188

iterative boosting, the specialized model adjusts to the characteristics of the countries 189

according to their similarity, thereby refining the mortality rate predictions. The final 190

mortality rate predictions D̂M are determined by combining the specialized predictions 191

D̂specialized
M and the pretrained predictions D̂pretrained

M for all countries, as elaborated in 192

the following Algorithm 1 and detailed out in S1 Appendix. 193

Agreement Metrics: Using several metrics we evaluate the agreement of transferred 194

mortality rates µ̂M = D̂M/EM with the CMI mortality rates µcmi, as proxy for 195

expected UK mortality. Specifically, we employed Spearman correlation, cosine 196

similarity and R-squared with centered expected versus predicted mortality rates. These 197

metrics are defined as follows: 198

1. Spearman correlation: 199

ρ =
cov(rank(µ̂M), rank(µcmi))

σrank(µ̂M)σrank(µcmi)

2. Cosine similarity: 200

c =
µ̂M · µcmi

∥µ̂M∥∥µcmi∥

3. R-squared with centered actuals µ
(i)
cmi versus centered predicted vectors µ̂

(i)
M : 201

R2 = 1−
∑N

i=1(µ
(i)
cmi − µ̂

(i)
M )2∑N

i=1(µ
(i)
cmi − µ̄cmi)2

Drift Model Evaluation: We propose a drift model to evaluate the remaining 202

disagreement by identifying and quantifying the drift drivers between target country’s 203

expected mortality and the mortality rates transferred from other countries to M. 204

We assume a Poisson distribution for mortality counts in country M , denoted as 205

DM ∼ Poisson(µM · EM ). Our analysis focuses on examining the discrepancy between 206

the predicted mortality rate µ̂M and the actual rate µcmi across various features or 207

feature categories. This discrepancy, denoted as δ, serves as an indicator of the quality 208

of transfer learning. We adopt the two-stage or residual model proposed by [36] to 209

estimate δ: 210

DM ∼ Poisson(δ · µcmi︸ ︷︷ ︸
=µM

·EM ).
(2)
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Algorithm 1 Algorithmic representation of the transfer framework

1: Train the global GBMmodel q(Xglobal) on the pooled dataset, containing the datasets
from countries 1, . . . ,K. Here, Xglobal represents the features common across all
countries.

2: For each country j = 1, . . . ,K train a local GBM model hj(Xj) using country j’s
dataset, which includes both global features Xglobal and local features specific to
country j. These models are initialised using the output predictions of the pre-trained
global GBM model (as opposed to more conventional, i.e. random, initialisation).

3: For country M (= UK), calculate the similarity scores with each country j = 1, . . . ,K,
based on external data with predefined similarity metric, which can include factors
specific to life insurance, economic, and mortality.

4: For each country j = 1, . . . ,K, perform the following steps to create the synthetic
dataset for country M (UK):

• Use the calculated similarity scores to proportionally resample exposures from
each country j’s dataset to contribute to country M’s synthetic dataset. Ensure
the total exposure for country M, EM , is equal to the sum of resampled expo-
sures EMj from each country j, which in total should amount to 100,000,000.

• Apply data augmentation by adding noise to the features to generate variability
and improve the robustness of the model.

• Replace the population mortality variable in the dataset with that from country
M, aligning the dataset with the mortality conditions of country M.

• Compile the resampled and augmented data to form the synthetic dataset
XM for country M. This dataset will be a row-block matrix where each
block corresponds to data from a specific country j with different dimension,
containing both global and local features. The first columns consist of global
features to which the global model will be applied. Record the origin of each
row to ensure that the specialized GBM model trained for that country can be
subsequently applied.

5: Use the global model q(Xglobal
M ) and the respective local models hj(XM ) to predict

the expected value E[DM |XM ] for the synthetic dataset of country M:

E[DM |XM ] =

K∑
j=1

µMj · EMj =

K∑
j=1

q(Xglobal
Mj

) · hj(XMj ) · EMj (1)

where µMj
is the expected mortality rate for the synthetic data of country M derived

from country j. The term q(Xglobal
Mj

) is the global model’s prediction using the global
features of the synthetic dataset for country M derived from country j. The term
hj(XMj

) represents the adjustment made by the local model of country j, applied
to the portion of the synthetic dataset XM that originated from country j. This
ensures that the global model’s predictions are fine-tuned to reflect the specific
characteristics of country j that are as similar to country M, as determined by the
similarity scores.
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A Generalized Linear Model (GLM) is used with new exposure Dcmi = µcmi · EM , 211

target D̂M = µ̂M · EM and model specification as follows [37]: 212

log(δ) = β0 + βage · x1 + ...+ βgender · xp + log(Dcmi) (3)

In the Poisson case, [38] demonstrated that the method is mathematically equivalent 213

to using the ratio DM

Dcmi
as target and Dcmi as weights: 214

log(
DM

Dcmi
) = β0 + βage · x1 + ...+ βgender · xp (4)

The validation of our approach, presented in Results section, includes comprehensive 215

evaluation, such as its application to the UK insurance population and drift analysis 216

from CMI mortality tables. 217

Due to exclusive usage of publicly available anonymized data (CMI and HMD) and 218

aggregated, anonymized insurance data for model pretraining, there was no direct 219

interaction with human participants, and no personally identifiable information was 220

accessed. The insurance company data used for pretraining was provided in an 221

aggregated and anonymized form, with no possibility of tracing back to any individual 222

policyholder. No UK-specific data from the insurance company was used. The 223

UK-specific results were derived entirely from publicly available data and a synthetic 224

dataset generated for this study, with no real UK life insurance data being used. 225

Therefore, this study does not involve new data collection from human participants and 226

participant consent was not applicable. 227

Results 228

Transfer learning application in the UK 229

The following section introduces the application of the transfer learning framework to 230

the UK, where internal mortality data is unavailable. This analysis establishes the 231

foundation for subsequent discussions and demonstrates a high level of agreement with 232

expected outcomes. 233

The point of Fig 3 is to show the plausible transfer of knowledge from the countries 234

to the UK, according to their similarity. It is clear that the degree of proximity is more 235

pronounced in Europe, and therefore it makes more sense to resample from there than 236

from the Latin American countries. 237

Fig 3. The composition of the exposure drawn from the countries for the
synthetic dataset for the UK, proportional to the similarity score.

Fig 4 shows the predicted number of deaths for the UK based on the transfer model 238

for age and gender. The remaining variables are not disclosed as they are considered to 239

be insurer-specific and require confidential background information for proper 240

interpretation. The categories with the highest exposure and claims are based on more 241

original data, indicating greater reliability of the estimation and deserving of our focus. 242

Fig 4. Exposure (bars) and predicted death counts (lines) by age and
gender, derived from the synthetic-data-based transfer model. Age groups
are defined retrospectively, and modeling is conducted using a metric scale.
A. Age. B. Gender.

Furthermore addressing the second research question, we aim to evaluate the 243

transfer model’s accuracy in matching the expected age-gender mortality rates using 244
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agreement metrics. CMI stands in for expected mortality rates in the UK’s insured 245

population, given the lack of access to internal portfolio data. Despite differences in 246

datasets and modeling, we regard CMI as a reliable proxy for UK policyholders’ actual 247

mortality rates. The analysis focused on transferring insights about the relative 248

mortality impact from different features in the data as opposed to producing an 249

accurate estimate of the overall rate of mortality. This decision was made in part 250

because it is expected that data will be available in the receiving country to estimate 251

the overall rate of mortality, either from publicly available resources, or more likely from 252

internal data that better reflects the specifics of the cohort being considered. Therefore, 253

for evaluation purposes, we use Spearman correlation, cosine similarity, and R-squared 254

as agreement metrics. These metrics do not consider the agreement of the difference in 255

average mortality, ensuring objectivity in our evaluation. 256

Table 3 provides these measures not only for the UK but also for 8 other countries in 257

the pooled dataset, as the transfer model’s predictive performance was also 258

quantitatively examined for each of the 8 countries by pretraining the global model on 259

the remaining seven. Given that the highest possible score is 1 for all metrics, we are 260

within the highest acceptable range for the UK, as well as for the extended experiment. 261

Table 3. Evaluation metrics for different countries

Country Spearman
Correlation

Cosine
Similarity

R-squared

UK 0.9922 0.9878 0.9641
1 0.9221 0.9796 0.8641
2 0.8421 0.9253 0.8516
3 0.9711 0.9214 0.8912
4 0.9334 0.9658 0.8763
5 0.9242 0.9754 0.8773
6 0.8756 0.9564 0.8977
7 0.9360 0.8612 0.7822
8 0.9145 0.9700 0.8948

While the table indicates a high level of precision in estimating the age-gender 262

mortality using the transfer learning framework, the following section proposes using 263

the drift model to identify the cause of any remaining marginal discrepancies. 264

Fig 5 offers an initial insight into the disparities between the predictions of the 265

transfer model and the CMI mortality rates, specifically examining age and gender. 266

Despite an overall trend of underestimation in our estimates compared to CMI, our 267

attention shifts to understanding the specific impacts of various features. Subsequently, 268

we delve into the examination of age and gender as overlapping features present in both 269

the predicted (transfer) and expected benchmark (CMI) mortality rates. To ensure 270

monotonicity, it may be desirable to smooth the curves, i.e. to use them directly in 271

pricing. We present our proposal for this in S3 Appendix, but in the main body we 272

continue with the original version in order to remain faithful to the portfolio context 273

and not to lose its specificity. 274

Fig 5. Comparison of UK mortality rates between Transfer Learning and
CMI by age and gender. While transfer weighted by similarity score shows
the above approach in black, the blue line shows the alternative of
resampling only from the most similar country (MSC), which leads to a less
accurate prediction.

Fig 6 illustrates the exponentiated coefficients of the drift model, offering insights 275

into the relationship between the two mortality tables by quantifying deviations from 276
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the average ratio. The red dashed line at approximately 0.5 represents the exponentiated 277

intercept exp(β̂0), indicating the average ratio across all features. An exponentiated 278

effect of 1 for a specific feature implies no impact on the ratio, suggesting effective 279

capture of pattern differences between the source and target countries for that feature. 280

Fig 6. Exponentiated effects of age and gender on the ratio of transfer to
CMI. The gray line represents the no-effect line, while the red dashed line is
the exponentiated intercept.

The multiplicative effect of age in relation to the average ratio is approximately 1, 281

indicating that age does not significantly influence the relationship between the transfer 282

model and CMI. Although slight differences may exist in the age curve and average 283

values, this suggests that the transfer learning framework effectively captured the shape 284

variances between the other K (= 8) countries and the UK by age, resulting in a close 285

replication of CMI. This successful matching of age curves is a critical finding for 286

insurance purposes, and lends confidence to subsequent analyses. Despite being from a 287

different country, the methodology achieves a close match to the expected age curve, 288

providing a strong basis for further analysis. 289

Regarding gender-specific mortality risks, while both the transferred results and 290

CMI indicate higher mortality rates for males than females, the transferred estimations 291

may show slight discrepancies: males are slightly overestimated and females 292

underestimated compared to the average mortality risk. However, these deviations 293

appear minor and likely stem from cohort distinctions between CMI and internal data, 294

as well as cultural differences between the primary reference countries and the UK’s 295

insurance mortality data, possibly reflecting subtle cultural influences and evolving 296

gender roles in different countries. 297

Building upon the strong alignment observed in the transfer learning process, the 298

subsequent section investigates additional variables. 299

Improving baseline mortality through additional variables in the 300

transfer model 301

The drift model, which actually goes beyond age and gender, examines additional 302

variables found in portfolio datasets but not included in the CMI. With the CMI serving 303

as the insurer’s base table, the exponentiated effects estimated by the drift model for 304

additional variables provide direct insight to insurers. This allows them to assess the 305

potential impact of including these variables in the pricing model, and to determine 306

possible loadings or discounts accordingly. 307

Fig 7. Feature A (with values A1-A6) evaluation as a risk factor for
mortality. Transfer model results and evaluation of drift from CMI. A. The
mortality rates for the UK are displayed on a logarithmic scale, segmented
by Feature A. Red line represents CMI mortality rates. B. Exponentiated
effects of Feature A on the ratio of transfer to CMI. The red line represents
the exponentiated intercept, while the gray line represents the no-effect line.

For example, considering Feature A with values A1, A2, A3, A4, A5, A6, absent 308

from the CMI, Fig 7 (a) shows that the predicted mortality rates increase from A1 to 309

A6. Consequently, the drift model’s exponentiated effects reveal that policies falling 310

under A1 have a 33% lower mortality ratio compared to the average, while those under 311

A6 exhibit a 24% higher ratio, both ceteris paribus. Therefore, a UK insurer may 312

include an extra risk factor in their pricing strategy due to the relative risk of A1 being 313

approximately 54% (67/124) of A6. This justifies a 33% loading for A6 policyholders. It 314
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is suggested that selection effects would significantly impact the risk profile. The 315

estimation of all other variables is presented in S3 Appendix. 316

In summary, the transfer learning framework effectively provides mortality risk 317

predictions for the UK, leveraging a pretrained model from 8 other countries due to a 318

lack of local mortality portfolio data, while refining the model using open-source UK 319

total population mortality rates and data synthesized from the available countries 320

accordingly to their similarity degree. While the model performs well with less 321

culture-specific risk factors, discrepancies with CMI mortality tables highlight the need 322

for evaluation using the drift model. This is essential for comprehensive risk assessment 323

and to inform pricing strategies, particularly in scenarios where data is not available. 324

Summary and outlook 325

This research presents a novel transfer learning framework designed to provide accurate 326

mortality risk predictions for the UK, despite the complete absence of local mortality 327

portfolio data. By leveraging pretrained and specialized models from eight other 328

countries, along with UK population mortality rates obtained from open sources and 329

synthesized data, we refine predictions for this data-scarce environment. 330

The framework establishes a solid foundation for mortality risk estimation and 331

pricing, particularly benefiting small countries with insufficient data. Our predictive 332

model shows strong agreement with the CMI mortality tables for age and gender, with 333

only slight deviations detected via the drift model. Expert validation further supports 334

the inclusion of additional variables to enhance mortality risk estimation. 335

The approach offers several practical benefits, including strong predictive 336

performance, reduced reliance on local data, and lower computational demands, making 337

it efficient for multi-centre studies. It simplifies the development and deployment of ML 338

models by eliminating the need for extensive training data in each new country. Our 339

findings suggest that transfer learning is particularly effective for factors that are less 340

influenced by cultural differences, although it may experience drift when capturing local 341

specificities. 342

While the reliance on synthetic data helps overcome data scarcity, it may introduce 343

uncertainties, particularly when source countries differ demographically or economically 344

from the target country. The effectiveness of the drift model also depends on the quality 345

and similarity of external data used in the transfer learning process. 346

Future research could focus on addressing uncertainties in predictions by employing 347

variance estimation to create confidence intervals. Incorporating additional 348

socio-economic and regional factors may further improve mortality predictions. 349

Expanding the framework to other regions and markets, especially those lacking 350

sufficient local data, would provide valuable insights into its broader applicability. 351

Testing the model in different settings could refine its use for life insurance product 352

development in underserved demographic segments and emerging markets. 353

Supporting information 354

S1 Appendix. Methodology details of pretraining and specialization. 355

S2 Appendix. Lee-Carter model. 356

S3 Appendix. Additional results of the drift model. 357
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