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Abstract 35 

Background: The diagnosis of malnutrition has evolved with the GLIM recommendations, 36 

which advocate for integrating phenotypic criteria, including muscle mass measurement. The 37 

GLIM framework specifically suggests using skeletal muscle index (SMI) assessed via CT scan 38 

at the third lumbar level (L3) as a first-line approach. However, manual segmentation of muscle 39 

from CT images is often time-consuming and infrequently performed in clinical practice. This 40 

study aims to develop and validate an open-access, user-friendly software tool called ODIASP 41 

for automated SMI determination. 42 

Methods: Data were retrospectively collected from a clinical data warehouse at Grenoble Alpes 43 

University Hospital, including epidemiological and imaging data from CT scans. All 44 

consecutive adult patients admitted in 2018 to our tertiary center who underwent at least one 45 

CT scan capturing images at the L3 vertebral level and had a recorded height were included. 46 

The ODIASP tool combines two algorithms to automatically perform L3 slice selection and 47 

skeletal muscle segmentation, ensuring a seamless process. Agreement between cross-sectional 48 

muscle area (CSMA) values obtained via ODIASP and reference methodology was evaluated 49 

using the intraclass correlation coefficient (ICC). The prevalence of reduced SMI was also 50 

assessed. 51 

Results: SMI values were available for 2,503 participants, 53.3% male, with a median age of 52 

66 years [51-78] and a median BMI of 24.8 kg/m² [21.7-28.7]. There was substantial agreement 53 

between the reference method and ODIASP (ICC: 0.971; 95% CI: 0.825 to 0.989) in a 54 

validation subset of 674 CT scans. After correcting for systematic errors (a 5.8 cm² [5.4-6.3] 55 

overestimation of the CSMA), the agreement improved to 0.984 (95% CI: 0.982 to 0.986), 56 

indicating excellent agreement. The prevalence of reduced SMI was estimated at 9.1% overall 57 
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(11.0% in men and 6.6% in women). To facilitate usage, the ODIASP software is encapsulated 58 

in a user-friendly interface.  59 

Conclusions: This study demonstrates that ODIASP is a reliable tool for automated muscle 60 

segmentation at the L3 vertebra level from CT scans. The integration of validated AI algorithms 61 

into a user-friendly platform enhances the ability to assess SMI in diverse patient cohorts, 62 

ultimately contributing to improved patient outcomes through more accurate assessments of 63 

malnutrition and sarcopenia. 64 

Key words 65 

Sarcopenia, Malnutrition, Image Processing, Computer-Assisted, Computational Neural 66 

Networks, Skeletal Muscle, Body composition  67 
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Introduction 68 

Since the release of the GLIM recommendations, malnutrition diagnosis has been based 69 

on both phenotypic and etiological criteria 1. In current clinical practice, phenotypic criteria for 70 

malnutrition primarily involve mainly Body Mass Index (BMI) and weight loss assessments 2,3. 71 

However, a large proportion of patients are not weighed during hospitalization 4. The GLIM 72 

framework recommends that muscle mass assessments should be performed as a first-line 73 

approach to detect muscle mass reduction using one of three methods: dual-energy x-ray 74 

absorptiometry (DEXA), computerized tomography (CT) scan, or bioelectrical impedance 75 

analysis (BIA). For CT, the cross-sectional muscle area (CSMA) at the third lumbar vertebra 76 

(L3) is recommended to calculate the skeletal muscle index (SMI). However, manual 77 

segmentation of muscle from CT images is time-consuming3. 78 

AI algorithms have the potential to automate SMI determination, potentially extending 79 

the use of CT scan for malnutrition diagnosis in clinical practice and across large volumes of 80 

CT scans 5. Although research in AI-driven CT scan analysis is expanding, a significant gap 81 

persists between technological advancements and clinical integration. We hypothesize that part 82 

of this gap arises from the lack of user-friendly interfaces that facilitate the application of these 83 

algorithms. Furthermore, few comprehensive solutions exist that provide a fully automated 84 

pipeline for SMI determination, including both L3 slice identification and muscle segmentation. 85 

Existing tools are often developed within specific cohorts, limiting their applicability for 86 

malnutrition screening in broader, unselected patient populations 6–8. 87 

This study is a part of a larger research project: the Optimization of the DIAgnosis of 88 

SarcoPenia through the automated determination of SMI (ODIASP) study. Our primary 89 

objective was to develop and validate an open-access, user-friendly software for the automated 90 

determination of the Skeletal Muscle Index (SMI) in clinical research. Additionally, we aimed 91 
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to evaluate the potential of this tool in identifying the risk of reduced SMI within a cohort of 92 

patients managed at a tertiary hospital.  93 
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Methods  94 

 95 

Ethics statement 96 

The ODIASP study was conducted in accordance with the ethical standards laid down 97 

in the 1964 Declaration of Helsinki and its later amendments. Ethical approval was obtained on 98 

18 August 2021 by the regional ethics committee (CECIC Rhône-Alpes-Auvergne, Clermont-99 

Ferrand, IRB 5891). In compliance with current French legislation for retrospective studies 100 

using clinical data, participants were individually informed that their data could be used for 101 

research purposes (in line with the MR-004 CNIL reference methodology). Individuals who 102 

objected to the use of their data or those with incomplete or outdated contact information were 103 

excluded from the study. 104 

 105 

Study participants 106 

All consecutive participants aged 18 years and older, admitted to Grenoble University 107 

Hospital (CHU Grenoble Alpes) between January and December 2018, who underwent at least 108 

one CT scan potentially capturing images at the L3 vertebral level and who had a recorded 109 

height were retrospectively included in the study. Participants with non-abdominal CT scans, 110 

including spinal or thoracic CT scans, were also eligible, as these may contain images at the L3 111 

level. This inclusion was particularly relevant for assessing whether the ODIASP software 112 

could effectively detect CT scans that lacked an L3 slice. When multiple CT scans were 113 

available for a patient during the inclusion period, the scan most likely to include the L3 slice 114 

was selected for analysis. A subset of this population had been previously defined for 115 

preliminary research 9 and was utilized for validation. 116 

Data collection 117 
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Data were retrospectively collected from the clinical data warehouse (CDW) PREDIMED 118 

(French acronym for Plateforme de Recueil et d’Exploitation des Données bIoMEDicales), 119 

implemented at the Grenoble Alpes University Hospital 10,11. All structured data were 120 

pseudonymized and CT scans were de-identified. This de-identification of CT scans was carried 121 

out by: 1) removing all identifiable Digital Imaging and Communication in Medicine (DICOM) 122 

tags following the basic profile recommendations of the DICOM standard1, and 2) excluding 123 

all derived images (i.e., images where pixel values are derived or computed from other images, 124 

such as screenshots or dose reports) based on the ‘ImageType’ DICOM attribute. 125 

The following data were collected 126 

- General data: age, sex, height, weight 127 

- Imaging data: CT scans, including abdominal area, in DICOM format with 128 

metadata. Since contrast enhancement does not influence cross-sectional skeletal 129 

muscle area, both CT images with and without contrast administration were eligible 130 

12,13. CT images could originate from different CT machines (Optima CT660 GE 131 

Healthcare, Revolution CT GE Healthcare, Siemens Somatom Definition Edge, 132 

Revolution HD GE Healthcare, Revolution EVO GE Healthcare , Toshiba Aquilion 133 

and Siemens Somatom Definition AS+). 134 

 135 

Cross sectional muscle area (CSMA) determination 136 

Reference Method 137 

All processing was performed on a single GPU machine (NVIDIA TITAN RTX 16 138 

graphics card, a 3.7 GHz CPU, and 64 GB of RAM) with an Intel(R) Xeon(R) W-2135 139 

processor. The third lumbar (L3) vertebra was manually identified by a medical expert on the 140 

sagittal reconstruction using the Picture Archiving and Communication System (PACS) in 141 

 
1 https://dicom.nema.org/medical/dicom/current/output/html/part15.html#sect_E.1.1 
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DICOM format. For each participant, a slice approximately halfway along the vertebra was 142 

selected for muscle segmentation, with the identification of slices at both the lower and upper 143 

extremities. Skeletal muscle was then manually segmented with SliceOmatic Version 5.0 144 

(Tomovision, Canada) according to previously published methods to obtain the CSMA9. The 145 

abdominal muscles (transversus abdominis, external and internal obliques and rectus 146 

abdominis), the paraspinal muscles (erector spinae and quadratus lumborum) and the psoas 147 

muscle were segmented using Hounsfield unit (HU) values ranging from -29 to 150 14.  148 

ODIASP tool 149 

 The ODIASP tool integrates two open-source algorithms: 1) for the automatic selection 150 

of a slice at the level of the L3 vertebra, and 2) for the automatic segmentation of skeletal muscle 151 

in this slice (Figure 1). For the first step, we employed the L3 slice selection algorithm 152 

developed by Bridge et al. 15 This algorithm, based on a DenseNet Convolutional Neural 153 

Network (CNN), was trained and validated using ODIASP project data through 5-fold cross-154 

validation. A batch size of 64 images, a learning rate of 0.001, and a dropout rate of 0 were 155 

selected, while other hyperparameters proposed by Bridge et al. were maintained during the 156 

training phase. For the second step, we utilized the AutoMATiCA algorithm developed by Paris 157 

et al. 16. The proposed U-Net model for automated segmentation of skeletal muscle was 158 

previously validated on ODIASP project CT data 9. 159 

 160 

Figure 1. Schematic overview of the architecture of the ODIASP tool 161 
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The ODIASP tool is based on two previously published algorithms from Bridge et al. 15 and 162 

Paris et al. 16. 163 

Statistical analysis 164 

Characteristics of the cohort were presented as medians with interquartile ranges (IQR) 165 

or using frequencies and proportions depending on their nature. The agreement between the 166 

CSMA values calculated by ODIASP and those obtained using the reference methodology was 167 

assessed using the intraclass correlation coefficient (ICC) along with 95% confidence intervals. 168 

This analysis was complemented with a mixed regression model. The interpretation of the 169 

strength of agreement between the two methods was based on the criteria established by Koo 170 

and Li: an ICC value < 0.5 indicated poor reliability, a value between 0.5 and 0.75 indicated 171 

moderate reliability, a value between 0.75 and 0.90 indicated substantial reliability, and a value 172 

> 0.90 indicated excellent reliability 17. For determining the reduction in SMI within our sample, 173 

thresholds were derived from the study by van der Werf et al 18 and are applicable only to the 174 

subpopulation aged 20 to 79 years with a BMI ranging from 17 to 35 kg/m². and were applicable 175 

only to the subsample of participants aged 20 to 79 years with a BMI ranging from 17 to 35 176 

kg/m². Statistical analyses were conducted using Stata (version 15) with p-values <0.05 177 

considered statistically significant and without adjustment for test multiplicity.  178 
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Results 179 

Participant inclusion and characteristics 180 

A total of 3300 participants were included and 2503 participants were analyzed (Figure 181 

2). Their median age was 66 [51–78] years with 1334 (53.3%) males. The median BMI was 182 

24.8 [21.7–28.7] kg/m², with 174 (7.3%) having a BMI < 18.5 kg/m² and 459 (19.3%) classified 183 

as obese. The median SMI was 45.1 [38.4–52.5] cm²/m². Participants were hospitalized in the 184 

following units: day hospital (11.0%), medicine (27.4%), geriatrics (2.8%), surgery (10.4%), 185 

intensive care (6.1%), rehabilitation (1.8%), and emergency care (40.5%). 186 

 187 

Validation of the ODIASP tool 188 

 The ODIASP tool operates through two main steps: first, identifying a L3 slice and 189 

second, segmenting the skeletal muscle (Figure 1). For the first step, we validated the algorithm 190 
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from Bridge et al. The algorithm correctly identified the L3 slice in 88% of cases (95% CI: 191 

85.49 to 90.50, n=596). For slices outside the L3 level (n=80), the median distance from the 192 

chosen L3 slice was -5.6 mm [-17.5 to 12.5], indicating that the slices were, on average, 5.6 193 

mm below the lower extremity of the L3 vertebra. The algorithm for the second step, muscle 194 

segmentation, was previously validated externally 9.  195 

To validate the entire pipeline, we compared the cross-sectional muscle area (CSMA) 196 

obtained using the reference method with that generated by the ODIASP tool in the validation 197 

subset. ODIASP failed to provide results for two participants (Figure 2). There was substantial 198 

agreement between the reference method and ODIASP (ICC: 0.971; 95% CI: 0.825 to 0.989) 199 

(Figure 3). After correcting for systematic errors (a 5.8 cm² [5.4-6.3] overestimation of the 200 

CSMA), there was excellent agreement (ICC:0.984, 95% CI: 0.982 to 0.986). 201 

 202 
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 203 

Figure 3. Scatterplot comparing cross-sectional muscle area (CSMA) measurements obtained 204 

with the reference method and the ODIASP tool (n = 674). 205 

Each data point represents an individual measurement, and the dashed line signifies 206 

perfect agreement between the two methods. The proximity of data points to the dashed line 207 

indicates a high degree of agreement. 208 

 209 

An Open-Access and User-Friendly Interface 210 

To facilitate the use of the ODIASP tool, we encapsulated the code into a user-friendly 211 

software interface (Figure 4A). The interface displays the sagittal view with the chosen L3 slice 212 

localization, the L3 slice itself, and its segmentation, allowing for easy visual validation of 213 

results (Figure 4B). This software is freely available at https://odiasp.timc.fr/ (Figure 4C).  214 
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 215 

Figure 4. The ODIASP tool: an open access software with user-friendly interface   216 

(A) User interface 217 

(B) Example of muscle segmentation 218 

(C) QR code for downloading the ODIASP Software 219 

ODIASP allows processing of large sets of CT scans without the need for pre-treatment. 220 

It takes approximately 4 minutes to analyze one CT scan. In some cases, ODIASP did not 221 

correctly identify or segment muscle. However, the interface allows for quick visual inspection 222 

of the results if necessary. 223 

Risk of reduced SMI in a large cohort of hospitalized participants 224 

Based on previously published cut-off values for individuals aged 20–79 years with a 225 

BMI between 17 and 35 kg/m², 103 of 937 men (11.0%) and 46 of 699 women (6.6%) were 226 

considered to have reduced skeletal muscle mass, representing a total of 9.1% of the participants 227 

with an available cut-off 18.  228 
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Discussion 229 

 This study aimed to develop and validate a tool for the automated determination of SMI 230 

at the L3 vertebra level using CT scan in a large population. We integrated AI algorithms into 231 

a user-friendly software, making advanced technologies accessible to clinical researchers who 232 

may be unfamiliar with them. 233 

Reliability of the ODIASP automated tool  234 

Most previous studies have focused on tissue segmentation at the L3 level 16,19,20, with 235 

few addressing the challenge of developing a fully automated pipeline for L3 SMI 236 

determination. To our knowledge, we are the first to develop and validate automated AI 237 

software for L3 SMI determination in an unselected population of patients managed at a tertiary 238 

hospital across various units, including emergency and intensive care. Previous tools have been 239 

developed for specific populations, such as cancer patients 6,7 or mixed cohorts including 240 

cancer, sepsis, and healthy subjects 8. Our approach involved utilizing previously published 241 

algorithms and validating them in our cohort, demonstrating good reliability across a large 242 

sample. We achieved accurate identification of most L3 slices, with 88% correctly positioned 243 

at the L3 vertebra, which aligns with previous findings (Delrieu et al.: 91.2% and 74.1% in, two 244 

datasets6). Slices identified outside of the L3 level showed a median deviation of -5.6 mm [-245 

17.5; 12.5], typically locating them at adjacent vertebrae, given the approximate height of 246 

vertebrae (30 mm) and intervertebral disks (10 mm) 21. A prior study indicates that CSMA at 247 

neighboring vertebrae are relatively comparable 22. The reliability of muscle segmentation was 248 

previously validated 9, and our full pipeline demonstrated substantial to excellent reliability. 249 

Clinical implications 250 

 The prevalence of reduced SMI has mainly been studied in cancer populations 23–25. To 251 

our knowledge, our study is the first to assess it in a large cohort of unselected patients, with 252 

the sole inclusion criteria being the availability of a CT scan. The cut-offs for defining reduced 253 
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SMI remains controversial, while the cut-offs proposed by Prado et al. 14 have been widely 254 

used, they are specific to patients with obesity and cancer and can lead to an overestimation of 255 

reduced SMI prevalence 26. In our study, we referred to the cut-offs by Van der Werf et al.18, 256 

which are applicable to a Caucasian population and align well with our predominantly 257 

Caucasian cohort. Furthermore, Van der Werf et al. provide age- and BMI-specific cut-offs, 258 

enhancing the relevance of our findings. Our research indicates that 9% of the patients in our 259 

tertiary hospital setting have reduced muscle mass.  260 

Study limitations 261 

Several limitations should be acknowledged. First, we trained the algorithm of Bridge 262 

et al. on our dataset since it was only available in an untrained version. Consequently, our tool 263 

lacks full external validation. Second, when testing ODIASP on the analyzed populations, we 264 

identified some processing failures. Human oversight remains essential for maintaining data 265 

quality; thus, our software provides features for visual manual validation, in line with the recent 266 

European Union AI Act emphasizes the necessity of human oversight in algorithmic decision-267 

making 27. Third, processing large datasets can be time-consuming; for instance, analyzing 268 

1,000 scans requires just over 24 hours with a standard desktop computer. However, the process 269 

is fully automated and runs in the background. Our approach involved testing ODIASP under 270 

real-life conditions, using scans with multiple series, including those that did not contain the L3 271 

vertebra, which lengthened the process but reduced the time necessary to preprocess the data. 272 

Additionally, it is important to acknowledge that some CT scans may have insufficient quality 273 

for accurate segmentation, a factor that should be considered in future clinical research.. Lastly, 274 

ODIASP tends to slightly overestimate the CSMA compared to the ground truth. This 275 

discrepancy reflects a systematic error comparable to inter-expert variability and could be partly 276 

influenced by the overestimation observed with AutoMATiCA or the fact that the ground truth 277 

was constructed at our center by only two experts 9,16.  278 
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Futures directions 279 

Future work will focus on enhancing the reliability of our software. A strength of this 280 

project is our access to diverse medical imaging data through the CDW PREDIMED, allowing 281 

for the inclusion of patients from various units and with different pathologies. However, our 282 

study is monocentric, which may lead to overfitting and limit generalizability. Traditional 283 

training methods can overestimate model accuracy by about 20% due to hidden Data 284 

Acquisition Bias-Induced Shortcuts (DABIS) 28. Strategies to increase reliability include using 285 

external training datasets and applying appropriate data preparation and partitioning techniques 286 

(training, validation, and testing sets) to improve generalizability 29–31. Additionally, methods 287 

to address biases without external datasets can also be applied 28. Our objective is to develop 288 

extensive cohorts for studying malnutrition and sarcopenia in inpatients. However, many 289 

patients do not undergo abdominal CT scans. To address this limitation, we plan to enhance 290 

ODIASP's capabilities to analyze chest CT scans, considering the growing interest in assessing 291 

SMI at the T12 vertebra level 32. We also plan to validate the segmentation of other tissues—292 

intermuscular, visceral, and subcutaneous adipose tissue—performed in AutoMATiCA before 293 

integrating it into ODIASP 16. It is important to note that ODIASP is not yet CE marked or FDA 294 

approved, limiting its use to clinical research rather than routine practice. Our ultimate goal is 295 

to deploy this software in clinical settings after obtaining all mandatory regulatory 296 

authorization. 297 

 298 

Conclusion 299 

The results of this study demonstrate that ODIASP is a reliable tool for the automated 300 

segmentation of muscles at the L3 vertebra level from CT scans. Integrating validated AI 301 

algorithms into a user-friendly software platform can significantly enhance clinical researchers' 302 

ability to assess SMI in large, diverse patient cohorts. We anticipate that our research will 303 
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facilitate a deeper understanding of the impact of reduced SMI, ultimately contributing to 304 

improve patient outcomes through more accurate malnutrition and sarcopenia assessments.   305 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.25.24316094doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24316094
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

Funding 306 

This work was supported by a grant from the Regional Delegation for Clinical Research 307 

of the University Hospital Grenoble Alpes in 2019 and MIAI@Grenoble Alpes, (ANR-19-308 

P3IA-0003). The funding bodies did not have any involvement in the design/conduct of the 309 

research, in data analysis/interpretation, or in writing/approval of the manuscript. 310 

 311 

Conflict of interest Statement 312 

Katia Charrière, Antoine Ragusa, Béatrice Genoux, Antoine Vilotitch, Svetlana 313 

Artemova, Charlène Dumont, Paul-Antoine Beaudoin, Pierre-Ephren Madiot, Gilbert R. 314 

Ferretti, Ivan Bricault, Jean-Luc Bosson, Eric Fontaine, Alexandre Moreau-Gaudry, Joris Giai 315 

and Cécile Bétryhave no relevant conflict of interest to disclose. 316 

 317 

Ethical guidelines statement 318 

The ODIASP study was conducted in accordance with the ethical standards laid down 319 

in the 1964 Declaration of Helsinki and its later amendments. Ethical approval was obtained on 320 

18 August 2021 by the regional ethics committee (CECIC Rhône-Alpes-Auvergne, Clermont-321 

Ferrand, IRB 5891). In compliance with current French legislation for retrospective studies 322 

using clinical data, participants were individually informed that their data could be used for 323 

research purposes (in line with the MR-004 CNIL reference methodology)  324 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.25.24316094doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24316094
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

References 325 

1.  Cederholm T, Jensen GL, Correia MITD, Gonzalez MC, Fukushima R, Higashiguchi 326 
T et al. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global 327 
clinical nutrition community. Clin Nutr 2019;38:1–9. 328 
2.  Ulmann G, Cherbuy C, Guerriero E, Jirka A, Le Gall M, Neuzillet C et al. 329 
Modifications des recommandations de la Haute Autorité de santé concernant le diagnostic de 330 
la dénutrition : application par les professionnels de la nutrition en pratique clinique. Nutrition 331 
Clinique et Métabolisme 2023;37:168–175. 332 
3.  Barazzoni R, Jensen GL, Correia MITD, Gonzalez MC, Higashiguchi T, Shi HP et al. 333 
Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership 334 
Initiative on Malnutrition (GLIM) diagnosis of malnutrition. Clinical Nutrition 335 
2022;41:1425–1433. 336 
4.  Lambert K, Ferguson A, Meletis M, Charlton K. How frequently are patients weighed 337 
in hospital ? Results from a five-year cross-sectional audit of clinical practice in nine 338 
hospitals. Clinical Nutrition ESPEN 2020;36:157–161. 339 
5.  Rozynek M, Kucybała I, Urbanik A, Wojciechowski W. Use of artificial intelligence 340 
in the imaging of sarcopenia: A narrative review of current status and perspectives. Nutrition 341 
2021;89:111227. 342 
6.  Delrieu L, Blanc D, Bouhamama A, Reyal F, Pilleul F, Racine V et al. Automatic 343 
deep learning method for third lumbar selection and body composition evaluation on CT 344 
scans of cancer patients. Front Nucl Med 2024;3. 345 
7.  Islam S, Kanavati F, Arain Z, Costa OFD, Crum W, Aboagye EO et al. Fully 346 
automated deep-learning section-based muscle segmentation from CT images for sarcopenia 347 
assessment. Clinical Radiology 2022;77:e363–e371. 348 
8.  Ha J, Park T, Kim H-K, Shin Y, Ko Y, Kim DW et al. Development of a fully 349 
automatic deep learning system for L3 selection and body composition assessment on 350 
computed tomography. Sci Rep 2021;11:21656. 351 
9.  Charrière K, Boulouard Q, Artemova S, Vilotitch A, Ferretti GR, Bosson J-L et al. A 352 
comparative study of two automated solutions for cross-sectional skeletal muscle 353 
measurement from abdominal computed tomography images. Medical Physics 2023;50:4973–354 
4980. 355 
10.  Artemova S, Madiot P-E, Caporossi A, Group P, Mossuz P, Moreau-Gaudry A. 356 
PREDIMED: Clinical Data Warehouse of Grenoble Alpes University Hospital. MEDINFO 357 
2019: Health and Wellbeing e-Networks for All 2019;1421–1422. 358 
11.  Charrière K, Madiot P-E, Artemova S, Tep P, Lenne C, Cohard B et al. ODIASP: 359 
Clinically Contextualized Image Analysis Using the PREDIMED Clinical Data Warehouse, 360 
Towards a Better Diagnosis of Sarcopenia. Stud Health Technol Inform 2022;290:1068–1069. 361 
12.  Paris MT, Furberg HF, Petruzella S, Akin O, Hötker AM, Mourtzakis M. Influence of 362 
Contrast Administration on Computed Tomography-Based Analysis of Visceral Adipose and 363 
Skeletal Muscle Tissue in Clear Cell Renal Cell Carcinoma. JPEN J Parenter Enteral Nutr 364 
2018 doi:10.1002/jpen.1067. 365 
13.  van Vugt JLA, Coebergh van den Braak RRJ, Schippers HJW, Veen KM, Levolger S, 366 
de Bruin RWF et al. Contrast-enhancement influences skeletal muscle density, but not 367 
skeletal muscle mass, measurements on computed tomography. Clin Nutr 2017 368 
doi:10.1016/j.clnu.2017.07.007. 369 
14.  Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L et al. 370 
Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of 371 
the respiratory and gastrointestinal tracts: a population-based study. The Lancet Oncology 372 
2008;9:629–635. 373 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.25.24316094doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24316094
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

15.  Bridge CP, Rosenthal M, Wright B, Kotecha G, Fintelmann F, Troschel F et al. Fully-374 
Automated Analysis of Body Composition from CT in Cancer Patients Using Convolutional 375 
Neural Networks. 2018. pp. 204–213. 376 
16.  Paris MT, Tandon P, Heyland DK, Furberg H, Premji T, Low G et al. Automated 377 
body composition analysis of clinically acquired computed tomography scans using neural 378 
networks. Clinical Nutrition 2020;39:3049–3055. 379 
17.  Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation 380 
Coefficients for Reliability Research. J Chiropr Med 2016;15:155–163. 381 
18.  van der Werf A, Langius JAE, de van der Schueren MAE, Nurmohamed SA, van der 382 
Pant KAMI, Blauwhoff-Buskermolen S et al. Percentiles for skeletal muscle index, area and 383 
radiation attenuation based on computed tomography imaging in a healthy Caucasian 384 
population. Eur J Clin Nutr 2018;72:288–296. 385 
19.  Shen H, He P, Ren Y, Huang Z, Li S, Wang G et al. A deep learning model based on 386 
the attention mechanism for automatic segmentation of abdominal muscle and fat for body 387 
composition assessment. Quant Imaging Med Surg 2023;13:1384–1398. 388 
20.  Pu L, Gezer NS, Ashraf SF, Ocak I, Dresser DE, Dhupar R. Automated segmentation 389 
of five different body tissues on computed tomography using deep learning. Med Phys 390 
2023;50:178–191. 391 
21.  Zhou SH, McCarthy ID, McGregor AH, Coombs RRH, Hughes SPF. Geometrical 392 
dimensions of the lower lumbar vertebrae – analysis of data from digitised CT images. Eur 393 
Spine J 2000;9:242–248. 394 
22.  Park J, Gil JR, Shin Y, Won SE, Huh J, You M-W et al. Reliable and robust method 395 
for abdominal muscle mass quantification using CT/MRI: An explorative study in healthy 396 
subjects. PLoS One 2019;14:e0222042. 397 
23.  Raoul P, Cintoni M, Coppola A, Alfieri S, Tortora G, Gasbarrini A et al. Preoperative 398 
low skeletal muscle mass index assessed using L3-CT as a prognostic marker of clinical 399 
outcomes in pancreatic cancer patients undergoing surgery: A systematic review and meta-400 
analysis. Int J Surg 2023 doi:10.1097/JS9.0000000000000989. 401 
24.  de Luis Roman D, López Gómez JJ, Muñoz M, Primo D, Izaola O, Sánchez I. 402 
Evaluation of Muscle Mass and Malnutrition in Patients with Colorectal Cancer Using the 403 
Global Leadership Initiative on Malnutrition Criteria and Comparing Bioelectrical Impedance 404 
Analysis and Computed Tomography Measurements. Nutrients 2024;16:3035. 405 
25.  Anabtawi NM, Pasala MS, Grimshaw AA, Kharel P, Bal S, Godby K et al. Low 406 
skeletal muscle mass and treatment outcomes among adults with haematologic malignancies: 407 
A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2024;15:1084–1093. 408 
26.  Caudron L, Bussy A, Artemova S, Charrière K, Lakkiss SE, Moreau-Gaudry A et al. 409 
Sarcopenia diagnosis: comparison of automated with manual computed tomography 410 
segmentation in clinical routine. JCSM Rapid Communications 2021;4:103–110. 411 
27.  European Parliament. EU AI Act: first regulation on artificial intelligence. Topics | 412 
European Parliament. 413 
2024https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-414 
regulation-on-artificial-intelligence. Accessed 25 July 2024. 415 
28.  Ong Ly C, Unnikrishnan B, Tadic T, Patel T, Duhamel J, Kandel S et al. Shortcut 416 
learning in medical AI hinders generalization: method for estimating AI model generalization 417 
without external data. NPJ Digit Med 2024;7:124. 418 
29.  Xie C, Du R, Ho JW, Pang HH, Chiu KW, Lee EY et al. Effect of machine learning 419 
re-sampling techniques for imbalanced datasets in 18F-FDG PET-based radiomics model on 420 
prognostication performance in cohorts of head and neck cancer patients. Eur J Nucl Med Mol 421 
Imaging 2020;47:2826–2835. 422 
30.  Bradshaw TJ, Huemann Z, Hu J, Rahmim A. A Guide to Cross-Validation for 423 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.25.24316094doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24316094
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Artificial Intelligence in Medical Imaging. Radiol Artif Intell 2023;5:e220232. 424 
31.  Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, Harvey H et al. 425 
Preparing Medical Imaging Data for Machine Learning. Radiology 2020;295:4–15. 426 
32.  Molwitz I, Ozga AK, Gerdes L, Ungerer A, Köhler D, Ristow I et al. Prediction of 427 
abdominal CT body composition parameters by thoracic measurements as a new approach to 428 
detect sarcopenia in a COVID-19 cohort. Sci Rep 2022;12:6443. 429 
 430 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 27, 2024. ; https://doi.org/10.1101/2024.10.25.24316094doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.25.24316094
http://creativecommons.org/licenses/by-nc-nd/4.0/

