Supplementary files - Cost-effectiveness analysis of 21-valent pneumococcal conjugated vaccine among adults in Canada

Raphael Ximenes, PhD¹, Alison E. Simmons, MPH^{1,2}, Gebremedhin B. Gebretekle, PhD¹, Austin Nam, PhD¹, Eva Wong¹, Marina I. Salvadori^{1,3}, Alyssa R. Golden, PhD⁴, Beate Sander, PhD^{5,6,7,8}, Kyla J. Hildebrand^{9, 10,} Matthew Tunis, PhD¹, and Ashleigh R. Tuite, PhD MPH^{1,2}

¹ Centre for Immunization Surveillance and Programs, Public Health Agency of Canada, Ottawa, ON, Canada

² Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada

³ Department of Pediatrics, McGill University, Montreal, QC, Canada

⁴ National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, MB, Canada

⁵ University Health Network, Toronto, ON, Canada

⁶ Institute of Health Policy, Management and Evaluation (IHPME), University of Toronto, Toronto, ON,

Canada

⁷ Public Health Ontario, Toronto, ON, Canada

⁸ ICES, Toronto, ON, Canada

⁹ Department of Pediatrics, Division of Immunology, Faculty of Medicine, University of British Columbia,

Vancouver, BC, Canada

¹⁰ British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada

Corresponding author email: raphael.ximenes@phac-aspc.gc.ca

Funding statement:

This research was supported, in part, by a Canada Research Chair in Economics of Infectious Diseases held by Beate Sander (CRC-2022-00362).

Keywords: Pneumococcal, Invasive pneumococcal disease; Vaccines, PCV20, PCV21, Cost-effectiveness, High risk populations, health economic modeling

Appendix A. Supplementary Material

Supplementary Methods: Age- and region-specific incidence data for IPD were obtained from the International Circumpolar Surveillance program and the Canadian Notifiable Disease Surveillance System (1, 2). The model accounts for regional variations, such as significantly higher incidence of IPD and CAP in Northern Canada compared to the rest of the country. The serotype distribution by age group was obtained from The Public Health Agency of Canada's National Microbiology Laboratory [PHAC-NML]) (3). Serotypes were then categorized into distinct groups based on vaccine coverage. We classified serotypes covered by multiple vaccines and identified those unique to specific vaccines.

Data on age-specific inpatient CAP incidence were obtained from the Discharge Abstract Database (DAD) (4). The relative risk of PD in higher-risk populations (5-8), as well as estimates of case fatality (9, 10) and the risk of long term-sequelae (11-13) were obtained from the literature. Duration of vaccine protection was accounted for with a 15-year time horizon for the conjugate vaccine, assuming stable effectiveness for the first 5 years, followed by a linear decline in effectiveness, reaching zero by the end of the 15-year period. (11-13).

The costs associated with IPD and pneumonia-related hospitalizations were estimated using Resource Intensity Weights obtained from the Discharge Abstract Database (4). Hospitalization costs for IPD and CAP were adjusted for different age groups and regions, taking into account the higher healthcare costs in Northern Canada (14-18). The model also considered non-medical costs, such as transportation, which can be substantial in remote areas (4, 19-27). Additionally, indirect costs, such as lost productivity and caregiver burden (28-30), were included in the economic analysis for the societal perspective.

 Table S1. Epidemiologic parameters

Parameter	Base	Range	Reference	
IPD incidence (per 100,000)				
18-49 years				
Northern Canada ^a	11.2	8.4 - 14.0*		
Rest of Canada	5.2	3.9 – 6.5 [*]		
50-64 years				
Northern Canada	38.97	23.10 - 58.93	Canadian Notifiable Disease System	
Rest of Canada	14.45	13.83 - 15.09	(CNDSS) 2018-2019; International	
65-74 years	•		Circumpolar Surveillance (ICS) program	
Northern Canada	71.30	34.20 - 121.79	2018-2019 (1, 2)	
Rest of Canada	20.61	19.52 - 21.72		
75+ years				
Northern Canada	105.01	38.55 - 204.12		
Rest of Canada	31.06	29.51 - 32.65		
Inpatient CAP incidence (per	100,000)			
18-49 years	· •			
Northern Canada	167.37	143.86 - 190.88	-	
Rest of Canada	90.60	89.42 - 91.78	-	
50-64 years	1			
Northern Canada	568.81	500.44 - 637.18		
Rest of Canada	347.81	344.45 - 351.16		
65-74 years			DAD 2018-2019 (4)	
Northern Canada	1.777.32	1.562.12 - 1.992.51	-	
Rest of Canada	871 48	863 79 - 879 18	-	
75+ years	0,110	000119 019120	-	
Northern Canada	5 104 13	4 540 99 - 5 667 28	-	
Rest of Canada	2.845.89	2.829.82 - 2.861.95	-	
Relative risk of PD in higher	risk populations			
			Tyrell et al., 2021; Plevnesi et al., 2009;	
Experiencing homelessness	50	27 – 72	Shariatzadeh et al., 2005; Steinberg et	
			al., 2023 (31-34)	
18-64 years				
Chronic medical condition	4	3-6		
Immunocompromising	34	21 – 55	Shigayeva et al., 2022 (5)	
condition				
65+ years		40.25		
Chronic medical condition	1./	1.0 - 2.5		
Immunocompromising	4.3	2.5 – 7.4	Shigayeva et al., 2022 (5)	
Proportion of CAP cases man	aged in inpatie	nt setting (%) ^c		
18-49 years	3.27	0.69 - 5.86		
50-64 years	15 10	12 80 - 17 40	-	
65-74 years	24.76	22.66 -26.85	O'Reilly et al., 2023 (14)	
75+ years	32.65	30.53 - 34.76	-	
Proportion of CAP cases attri	buted to S. pne	umoniae (%) ^d		
18-49 years	19.5	14.6 - 24.4*	LeBlanc et al., 2022 (6)	
			Lansbury et al., 2022; LeBlanc et al	
50+ years	18.0	8.0-24.0	2022 (6, 35)	
Proportion of IPD cases with	meningitis (%)			

18-64 years	7.0	5.3 - 8.8*	Backbaus et al. 2016 (9)							
65+ years	5.0	3.8 – 6.3 [*]								
Proportion of IPD cases with meningitis who experience post-meningitis sequelae (%)										
Neurologic sequelae ^e	lit 2010 (10)									
Auditory sequelae ^f	20.9	17.1 – 24.7	511, 2010 (10)							
Case fatality (%)										
IPD										
18-49 years	5.7	4.9 - 6.6	Wijeveri et al. 2010 (7)							
50-64 years	10.9	9.9 – 12.0	Wijayash et al., 2019 (7)							
65+ years	17.2	16.2 – 18.3	1							
Inpatient pCAP										
16-49 years	3.8	1.4 - 6.2	a P a p a ct a 2022 (c)							
50-64 years	4.8	2.7 - 6.9	Lebianc et al., 2022 (6)							
65+ years	9.9	7.5 – 12.2								
Relative risk of death from Pl	D in higher risk p	population								
Chronic medical condition	1.5		Shigayeva et al., 2022 (5)							
Immunocompromising condition	1.9		Shigayeva et al., 2016 (8)							

Notes: IPD = invasive pneumococcal disease; CAP = community acquired pneumonia.

^{*a*} Values for Northern Canada were calculated by adjusting estimates for the Rest of Canada with multipliers (i.e., 2.15) extracted from the Canadian Notifiable Disease System (CNDSS) 2018-2019 and International Circumpolar Surveillance (ICS) program 2018-2019 (1, 2) ^{*b*} Parameters were derived using polynomial regression.

^d Proportion of CAP cases among hospitalized adults where *S. pneumoniae* was detected from blood culture, sputum culture, or urine antigen detection

^e Cranial nerve palsies

^fHearing loss

* Range defined as ±25% of the base value

Parameter	Base	Range	Reference
Vaccination coverage	(%)		
18-49 years	21.2	19.1 – 23.5	
50-64 years	28.8	26.5 - 31.1	Government of Canada, 2024 (36)
65-79 years	54.0	51.9 - 56.0	
With chronic medical	conditions (including immur	nocompromising	conditions)
18-49 years	24.3	21.6 - 27.3	
50-64 years	33.4	30.8 - 36.2	Covernment of Canada 2024 (26)
65-79 years	60.7	57.7 – 63.7	Government of Canada, 2024 (56)
80+ years	65.6	56.1-74.0	
Vaccine effectiveness			
Pneu-C at age 65 (%)			
VT-IPD	88	61-98	van Werkhoven et al., 2015 (12)
ST3-IPD	53	0 - 80	Lewis et al., 2019; Farrar et al., 2023 (37, 38)
VT-pCAP	68	39 - 85	van Werkhoven et al., 2015 (12)
ST3-pCAP	16	0-32	Stoecker, 2024 (39)
Pneu-P at age 65 (%)			•
VT-IPD	52	36 - 64	Farrar et al., 2023 (37)
ST3-IPD	2	0-21	Djennad et al., 2018 (40)
VT-pCAP	26	0-49	Farrar et al., 2023 (37)
ST3-pCAP	2	0-21	Assumption
Pneu-C in adults with	chronic medical conditions	(%)	
VT-IPD	75	41-98	Bonten et al., 2014; van Werkhoven et al., 2015; Stoecker, 2024 (12, 41, 42)
ST3-IPD	26	0-53	Stoecker, 2024 (39)
VT-pCAP	40	11-60	Suaya et al., 2018 (43)
ST3-pCAP	16	0-32	Stoecker, 2024 (39)
Pneu-C in adults with	mmunocompromising cond	litions (%)	• • • •
VT-IPD	67	0 – 99	Bonten et al., 2014 (41)
ST3-IPD	9	0-18	Stoecker, 2024 (39)
VT-pCAP	15	5 - 22	Stoecker, 2024 (39)
ST3-pCAP	5	0-11	Stoecker, 2024 (39)
Duration of protection	ı		
Pneu-C	15 years: stable for 5 years, linear decline to 0 over 10 years		Leidner, 2021; Patterson et al., 2016; van Werkhoven et al., 2015 (11-13)
Pneu-P	15 years: linear decline		Leidner, 2021 (11)

Table S2. Vaccine parameters

 Incurr
 to 0 over 15 years
 Letiticity 2021 (11)

 Notes: Pneu-C = pneumococcal conjugate vaccine; Pneu-P = pneumococcal polysaccharide vaccine; VT = vaccine-type serotypes; ST3 = serotype

 3.

Table S3. Direct and indirect cost parameters

Parameter	Base	Range	Reference							
Cost per dose of vaccine (\$)										
Vaccine administration	18	13 – 22	O'Reilly et al., 2017 (44)							
PCV-20	109.91		Pfizer (45)							
PCV-21	129.90		Merck (46)							
PPV-23	35.24		Merck (46)							
Cost per inpatient IPD case (\$)										
18-49 years	30,440	28,059 - 32,915								
50-64 years	30,793	28,909 – 32,735	DAD 2015-2019 (15-18)							
65-74 years	30,590	28,237 – 33,038								
75+ years	22,716	21,131 – 24,357								
Cost per inpatient CAP case (\$)										
18-64 years		1								
Northern Canada ^a	17,906	17,305 – 18,538								
Rest of Canada	14,986	14,483 – 15,515	Ω' Reilly et al. 2023 (14)							
65+ years										
Northern Canada ^a	15,436	15,167 – 15,713	-							
Rest of Canada	14,980	14,718 – 15,248								
Cost per outpatient CAP case (\$	5)		1							
18-64 years	1,255	1,219 – 1,290	Ω' Reilly et al. 2023 (14)							
65+ years	3,531	3,469 – 3,592								
Cost of care for patients with p	Cost of care for patients with post-meningitis sequelae per year (\$)									
Annual cost of care for those with auditory sequelae ^b	3,183	2,387 – 3,979*	Christenson et al. $2014(47)$							
Annual cost of care for those with neurologic sequelae ^c	10,593	7,945 – 13,241*								
Cost of medication, out-of-poc	ket (\$)		•							
18-64 years	19.08	14.32 - 28.86	Ontonio Drug Bonofit (48)							
65+ years	0		Official o Drug Berlefit (48)							
Cost of transportation, health s	system (\$)									
Inpatient										
Northern Canada	8,001	3,171 – 12,887	DAD 2018-2019; Glauser et al., 2015; Government of Northwest Territories 2018; Government of Nunavut; Rendell, 2016; Tam et al., 2009 (4, 19-23)							
Rest of Canada	418	210 - 626	DAD 2018-2019; Glauser et al., 2015; Government of Nunavut; Rendell, 2016 (4, 19, 21, 22)							
Outpatient										
Northern Canada	129	97 – 161	Government of Yukon; Pong and Pitblado, 2005 (24, 25)							
Rest of Canada	0		Assumed to be out-of-pocket							
Cost of transportation, out-of-	oocket (\$)									
Inpatient										
Northern Canada	153	75 – 405	DAD 2018-2019; Glauser et al., 2015; Government of Nunavut; Rendell, 2016 (4, 19, 21, 22)							

Rest of Canada	89	53 – 128	DAD 2018-2019; CRA 2022; Colbert 2020 26, 27)		
Outpatient	•	•			
Northern Canada	149	112 – 186*	Government of Yukon; Pong and Pitblado, 2005; CRA 2022 (24-26)		
Rest of Canada	4	3 – 5*	Pong and Pitblado, 2005; CRA 2022 (25, 26)		
Parking	16	0 - 32	Assumption		
Daily cost of travel subsidy for	overnight stay	, health system (\$)			
Northern Canada	164	82 – 327	Government of Yukon (24)		
Rest of Canada	0				
Mean annual income (\$)					
18-49 years ^d	57,423				
50-64 years ^e	80,810		Statistics Canada (49)		
65+ years	50,741				
Mean hourly caregiver income	(\$)				
All ages	28.67	24.64 - 37.89	Hollander et al., 2009 (28)		
Work time lost (days)					
Inpatient IPD or CAP	14.6	8.8 - 28.2	Pasquale et al. 2019 (50)		
Outpatient CAP	5.4	1.8 - 6.3			
Visit health care provider for	0.5		Assumption		
vaccination	0.5				
Reduction in employment due	to post-menir	ngitis sequelae (%)			
	25	15 - 35	Assumption used for lower estimate; Bizier		
	25	15 55	et al., 2016; Jiang et al., 2012 (51, 52)		
Neurologic sequelae	98	75 – 100	Assumption; Jiang et al., 2012 (52)		
Caregiver time lost (hours)					
Inpatient IPD or CAP	40.65	11.63 - 81.30	Wyrwich et al., 2015 (29)		
Neurologic sequelae	5,660	4,245 – 7,075 [*]	Ganapathy et al., 2015 (30)		

Notes: Costs were converted to Canadian dollars using purchasing power parities from the Organisation for Economic Co-operation and Development and inflated to 2023 dollars using the Canadian Consumer. Price Index. Product-specific values were used for health-related costs and transportation costs.

^{*a*} Values for Northern Canada were calculated by adjusting estimates for the Rest of Canada with multipliers extracted from the Discharge Abstract Database 2015-2019 (15-18)

^b The annual cost for auditory sequelae reflects the annual cost The shifting epidemiology and serotype distribution of invasive pneumococcal disease in Ontario, Canada, 2007-2017 of minor post-meningitis sequelae.

^c The annual cost of neurologic sequelae reflects the annual cost of severe post-meningitis sequelae.

^d Median total income in 2022 CAD, inflated to 2023 CAD, for 25 to 34 years of age

^e Median total income in 2022 CAD, inflated to 2023 CAD, for 45 to 54 years of age

* Range defined as ±25% of the base value

Table S4. Health utilities

Parameter	Base Range Reference			
Background health utility				
18-49 years	0.873	0.857 – 0.89		
50-64 years	0.847	0.83 - 0.864		
65-74 years	0.867	0.849 - 0.885		
75+ years	0.861	0.835 - 0.887		
Average background health utility		Yan et al., 2023 (53)		
Chronic medical or	0.926			
immunocompromising condition ^a	0.830			
No chronic medical or	0 800			
immunocompromising condition	0.899			
IPD and pCAP utility multipliers				
Hospitalization	0.8659	0.8323 - 0.8963	Mangen et al., 2017 (54)	
Outpatient CAR	0.0028	0 0017 - 0 0056	Oppong et al., 2013a; Oppong et al.,	
	0.9958	0.9917 - 0.9956	2013b (55, 56)	
Auditory Sequelae	0.6850	0.6214 - 0.7451	Galante et al., 2011 (57)	
Neurologic Sequelae	0.3441	0.2725 - 0.4164	Galante et al., 2011 (57)	

^a We assumed this background health utility also applies to individuals experiencing homelessness

Table S1. Mean Costs, QALYs, and ICERs for pneumococcal vaccination of adults aged 65 years and older at average risk of IPD, from health system and societal perspectives (per 100,000 population)

Serotype	In dive at affects		Rest	of Canada			Northern	Canada	
distribution data year	assumption	Strategies	Costs (\$)	QALYs	Sequential ICER	Strategies	Costs (\$)	QALYs	Sequential ICER
Health system	m perspective								
	No indirect	PCV21	127,406,265	1,378,631		PCV21	260,578,720	1,173,753	
	Effects	PCV20	129,647,781	1,378,472	Dominated	PCV20	268,584,936	1,173,461	Dominated
2022	Indirect Effects	PCV21	127,564,622	1,378,624		PCV21	260,999,450	1,173,741	
2022	from PCV15	PCV20	130,121,939	1,378,451	Dominated	PCV20	269,842,046	1,173,423	Dominated
	Indirect Effects	PCV21	127,821,235	1,378,613		PCV21	261,681,134	1,173,720	
	from PCV20	PCV20	130,890,091	1,378,416	Dominated	PCV20	271,877,732	1,173,362	Dominated
	No indirect	PCV21	126,356,529	1,378,682		PCV21	257,733,767	1,173,844	
	Effects	PCV20	129,975,821	1,378,456	Dominated	PCV20	269,522,644	1,173,430	Dominated
2015 2010	Indirect Effects	PCV21	126,536,703	1,378,673		PCV21	258,212,761	1,173,829	
2015-2019	from PCV15	PCV20	130,514,889	1,378,432	Dominated	PCV20	270,951,520	1,173,387	Dominated
	Indirect Effects	PCV21	126,808,856	1,378,661		PCV21	258,936,168	1,173,808	
	from PCV20	PCV20	131,328,910	1,378,395	Dominated	PCV20	273,108,195	1,173,322	Dominated
Societal pers	pective								
	No indirect	PCV21	164,786,256	1,378,631		PCV21	321,415,627	1,173,753	
	Effects	PCV20	168,082,639	1,378,472	Dominated	PCV20	331,911,406	1,173,461	Dominated
2022	Indirect Effects	PCV21	164,993,185	1,378,624		PCV21	321,946,568	1,173,741	
2022	from PCV15	PCV20	168,702,229	1,378,451	Dominated	PCV20	333,497,831	1,173,423	Dominated
	Indirect Effects	PCV21	165,328,503	1,378,613		PCV21	322,806,819	1,173,720	
	from PCV20	PCV20	169,705,986	1,378,416	Dominated	PCV20	336,066,804	1,173,362	Dominated
	No indirect	PCV21	163,414,965	1,378,682		PCV21	317,823,008	1,173,844	
	Effects	PCV20	168,528,715	1,378,456	Dominated	PCV20	333,139,604	1,173,430	Dominated
2015 2010	Indirect Effects	PCV21	163,650,399	1,378,673		PCV21	318,427,470	1,173,829	
2015-2019	from PCV15	PCV20	169,233,122	1,378,432	Dominated	PCV20	334,942,787	1,173,387	Dominated
	Indirect Effects	PCV21	164,006,022	1,378,661		PCV21	319,340,367	1,173,808	
	from PCV20	PCV20	170,296,818	1,378,395	Dominated	PCV20	337,664,437	1,173,322	Dominated

Table S2. Mean Costs, QALYs, and ICERs for pneumococcal vaccination of adults aged 50 years at average risk of IPD, from health system and societal perspectives (per 100,000 population)

Serotype	Indirect		Rest	of Canada		Northern Canada			
distribution	effects								
data year	assumpti	Strategies	Costs (\$)	QALYs	Sequential ICER	Strategies	Costs (\$)	QALYs	Sequential ICER
	on								
Health system	n perspective	1	I	1	1			1	T
	No	No	121,709,132	2,099,334		PCV20	266,005,115	1,892,721	
	indirect	vaccine							
	Effects	PCV20	123,337,835	2,099,437	15,840	PCV21	266,563,217	1,892,721	1,765,679
		PCV21	123,901,032	2,099,437	3,246,243	No vaccine	267,888,430	1,892,530	Dominated by
									PCV20
	Indirect	No	121,709,132	2,099,334		PCV20	266,138,328	1,892,717	
	Effects	vaccine							
2022	from	PCV20	123,386,599	2,099,434	16,704	PCV21	266,607,624	1,892,720	145,953
	PCV15	PCV21	123,917,288	2,099,436	299,422	No vaccine	267,888,430	1,892,530	Dominated by
									PCV20
	Indirect	No	121,709,132	2,099,334		PCV20	266,669,455	1,892,699	
	Effects	vaccine							
	from	PCV20	123,581,051	2,099,425	20,604	PCV21	266,784,721	1,892,714	7,802
	PCV20	PCV21	123,982,116	2,099,433	49,201	No vaccine	267,888,430	1,892,530	Dominated by
									PCV20
	No	No	121,709,132	2,099,334		PCV21	265,299,501	1,892,764	
	indirect	vaccine							
	Effects	PCV21	123,437,274	2,099,460	13,662	No Vaccine	267,888,430	1,892,530	Dominated by
									PCV20
		PCV20	123,526,358	2,099,427	Dominated by	PCV20	266,530,502	1,892,702	Dominated by
2015-2010					PCV21				PCV21
2013-2013	Indirect	No	121,709,132	2,099,334		PCV21	265,388,371	1,892,761	
	Effects	vaccine							
	from	PCV21	123,469,789	2,099,459	14,098	No Vaccine	267,888,430	1,892,530	Dominated by
	PCV15								PCV20
		PCV20	123,623,802	2,099,422	Dominated by	PCV20	266,796638	1,892,694	Dominated by
					PCV21				PCV21

	Indirect Effects	No vaccine	121,709,132	2,099,334		PCV21	265,572,690	1,892,755	
	from PCV20	PCV21	123,537,230	2,099,455	15,037	No Vaccine	267,888,430	1,892,530	Dominated by PCV20
		PCV20	123,825,880	2,099,412	Dominated by PCV21	PCV20	267,348,446	1,892,676	Dominated by PCV21
Societal persp	pective								
	No indirect	No vaccine	161,968,709	2,099,334		No vaccine	343,080,452	1,892,530	
	Effects	PCV20	173.493.328	2.099.437	112.084	PCV20	349.569.706	1.892.721	34.016
		PCV21	174,054,200	2,099,437	3,250,765	PCV21	350,122,989	1,892,721	1,750,430
	Indirect Effects	No vaccine	161,968,703	2,099,334		No vaccine	343,080,452	1,892,530	
2022	from	PCV20	173,574,903	2,099,434	115,575	PCV20	349,770,210	1,892,717	35,885
	PCV15	PCV21	174,081,392	2,099,436	285,769	PCV21	350,189,827	1,892,720	130,503
	Indirect Effects	No vaccine	161,968,703	2,099,334		No vaccine	343,080,452	1,892,530	
	from	PCV21	174,189,842	2,099,433	123,442	PCV21	350,456,380	1,892,714	40,118
	PCV20	PCV20	173,900,196	2,099,425	Extendedly dominated	PCV20	350,569,624	1,892,699	Dominated by PCV21
	No indirect	No vaccine	161,968,703	2,099,334		No vaccine	343,080,452	1,892,530	
	Effects	PCV21	173,275,973	2,099,460	89,392	PCV21	348,213,134	1,892,764	21,971
		PCV20	173,816,232	2,099,427	Dominated by PCV21	PCV20	350,379,417	1,894,702	Dominated by PCV21
	Indirect Effects	No vaccine	161,968,703	2,099,334		No vaccine	343,080,452	1,892,530	
2015-2019	from	PCV21	173,330,365	2,099,459	90,973	PCV21	348,346,893	1,892,761	22,827
	PCV15	PCV20	173,979,242	2,099,422	Dominated by PCV21	PCV20	350,779,983	1,892,694	Dominated by PCV21
	Indirect Effects	No vaccine	161,968,703	2,099,334		No vaccine	343,080,452	1,892,530	
	from	PCV21	173,443,184	2,099,455	94,385	PCV21	348,624,316	1,892,755	24,673
	PCV20	PCV20	174,317,292	2,099,412	Dominated by PCV21	PCV20	351,610,525	1,892,676	Dominated by PCV21

Table S3. Mean Costs, QALYs, and ICERs for pneumococcal vaccination of adults aged 50 years with immunocompromising conditions (RR = 34), from health system and societal perspectives (per 100,000 population)

Serotype distribution			Re	st of Canada	
data year	Indirect effects assumption	Strategies	Costs	QALYs	Sequential ICER
Health system perspect	ive				
2022	No indirect Effects	PCV20	2,257,012,222	1,691,426	
	No indirect Effects	PCV21	2,257,633,083	1,691,428	341,785
	Indirect Effects from DCV/1E	PCV20	2,257,554,999	1,691,400	
2022	mairect Effects from PCV15	PCV21	2,257,814,057	1,691,419	13,149
	Indirect Effects from DCV/20	PCV21	2,258,535,466	1,691,384	
	Indirect Effects from PCV20	PCV20	2,259,716,210	1,691,294	Dominated
	No indirect Effects	PCV21	2,252,167,757	1,691,708	
	No indirect Effects	PCV20	2,259,024,960	1,691,325	Dominated
2015 2010	Indian at Effects from DC) (1 E	PCV21	2,252,531,488	1,691,690	
2015-2019	Indirect Effects from PCV15	PCV20	2,260,107,271	1,691,272	Dominated
	Indirect Effects from PCV20	PCV21	2,253,285,471	1,691,653	
		PCV20	2,262,347,702	1,691,168	Dominated
Societal perspective					
	No. in diagonal Effects	PCV20	3,073,396,106	1,691,426	
	No indirect Effects	PCV21	3,073,984,363	1,691,428	298,254
2022	Indirect Effects from DCV/1E	PCV21	3,074,312,419	1,691,419	
2022	Indirect Effects from PCV15	PCV20	3,074,380,015	1,691,400	Dominated
	Indian at Effects from DCV/20	PCV21	3,075,620,142	1,691,384	
	mairect Effects from PCV20	PCV20	3,078,297,772	1,691,294	Dominated
	No indirect Effects	PCV21	3,063,886,165	1,691,708	
	No indirect Effects	PCV20	3,077,078,915	1,691,325	Dominated
2015 2010	Indirect Effects from DCV/1E	PCV21	3,064,545,499	1,691,690	
2012-2018		PCV20	3,079,040,883	1,691,272	Dominated
	Indirect Effects from DCV/20	PCV21	3,065,912,251	1,691,653	
	Indirect Effects from PCV20	PCV20	3,083,102,328	1,691,162	Dominated

Table S4. Mean Costs, QALYs, and ICERs for pneumococcal vaccination of adults aged 50 years with chronic medical conditions (RR = 4), from health system and societal perspectives (per 100,000 population)

Serotype distribution	In diment offerste ensumention	Rest of Canada					
data year	Indirect effects assumption	Strategies	Costs	QALYs	Sequential ICER		
Health system perspec	tive						
2022	No indirect Effects	PCV20	464,680,848	2,011,123			
	No marrect effects	PCV21	465,328,641	2,011,124	1,225,461		
	Indiract Effects from DCV/1E	PCV20	464,826,930	2,011,116			
	Indirect Effects from PCV13	PCV21	465,377,339	2,011,121	101,313		
	Indiract Effects from BCV/20	PCV20	465,409,270	2,011,086			
	Indirect Effects from PCV20	PCV21	465,571,537	2,011,111	6,496		
	No indirect Effects	PCV21	463,943,832	2,011,196			
	No marrect effects	PCV20	465,256,927	2,011,093	Dominated by PCV21		
2015 2010	Indiract Effects from DCV/1E	PCV21	464,041,335	2,011,191			
2013-2019	mairect Effects from PCV15	PCV20	465,548,697	2,011,078	Dominated by PCV21		
	Indian at Effects from DC) (20	PCV21	464,234,548	2,011,181			
	marrect Effects from PCV20	PCV20	466,153,537	2,011,048	Dominated by PCV21		
Societal perspective							
	No indianat Effects	PCV20	627,198,060	2,011,123			
	No maneet enects	PCV21	627,838,260	2,011,124	1,211,098		
2022	Indiract Effects from DCV/1E	PCV20	627,450,550	2,011,116			
		PCV21	627,922,431	2,011,121	86,858		
	Indiract Effects from BCV/20	PCV21	628,258,085	2,011,111			
	Indirect Effects from PCV20	PCV20	628,457,079	2,011,086	Dominated by PCV21		
	No indirect Effects	PCV21	625,416,503	2,011,196			
	No maneet enects	PCV20	628,203,078	2,011,093	Dominated by PCV21		
2015 2010	Indiract Effects from DCV/1E	PCV21	625,585,072	2,011,191			
2012-2013		PCV20	628,707,380	2,011,078	Dominated by PCV21		
	Indiract Effects from PCV/20	PCV21	625,934,531	2,011,181			
	Indirect Effects from PCV20	PCV20	629,752,807	2,011,048	Dominated by PCV21		

Table S9. Mean Costs, QALYs, and ICERs for pneumococcal vaccination of adults aged 50 years who are unhoused populations (RR = 50), from health system and societal perspectives (per 100,000 population)

Serotype distribution	Indirect offects assumption	Rest of Canada					
data year	Indirect effects assumption	Strategies	Costs	QALYs	Sequential ICER		

Health system perspective							
	No indirect Effects	PCV20	3,357,617,681	1,830,102			
		PCV21	3,357,063,583	1,830,108	74,501		
2022		PCV21	3,358,625,104	1,830,081			
	Indirect Effects from PCV15	PCV20	3,359,299,737	1,830,021	Dominated		
	Indirect Effects from PCV/20	PCV21	3,360,857,668	1,829,974			
	Indirect Effects from PCV20	PCV20	3,365,945,589	1,829,704	Dominated		
	No indirect Effects	PCV21	3,341,262,194	1,830,933			
	No maneet enects	PCV20	3,364,334,167	1,829,761	Dominated		
2015 2010	Indiract Effects from DCV/1E	PCV21	3,342,419,325	1,830,878			
2015-2019	Indirect Effects from PCV15	PCV20	3,367,650,150	1,829,603	Dominated		
	Indirect Effects from PCV20	PCV21	3,344,810,135	1,830,764			
		PCV20	3,374,449,818	1,829,278	Dominated		
Societal perspective							
	No indirect Effects	PCV20	4,574,652,469	1,830,102			
		PCV21	4,575,010,814	1,830,108	59,872		
2022	Indianat Effects from DC)/1E	PCV21	4,575,970,943	1,830,081			
	Indirect Effects from PCV15	PCV20	4,577,528,595	1,830,021	Dominated		
	Indiract Effects from BCV/20	PCV21	4,579,788,418	1,829,974			
	marrect Effects from PCV20	PCV20	4,588,892,948	1,829,704	Dominated		
2015-2019	No indiract Effects	PCV21	4,546,225,581	1,830,933			
	No indirect Effects	PCV20	4,586,441,928	1,829,761	Dominated		
	Indirect Effects from PCV15	PCV21	4,548,203,759	1,830,878			
		PCV20	4,592,111,670	1,829,603	Dominated		
	Indirect Effects from PCV20	PCV21	4,552,291,082	1,830,764			
		PCV20	4,651,061,119	1,827,856	Dominated		

Table S10. Mean Costs, QALYs, and ICERs for pneumococcal vaccination of adults aged 33 years with immunocompromising conditions (RR = 34), from health system and societal perspectives (per 100,000 population)

Serotype distribution data	Indirect effects - assumption		Rest of Canada			
		Stratogios	Costs	QALYs	Sequential ICER	
year		Strategies				
Health system perspective						

2022	No indirect Effects	PCV20	1,952,943,411	2,349,621	
		PCV21	1,955,332,320	2,349,561	Dominated by PCV20
	Indirect Effects from	PCV20	1,953,119,872	2,349,616	
2022	PCV15	PCV21	1,955,390,815	2,349,560	Dominated by PCV20
	Indirect Effects from	PCV20	1,954,039,509	2,349,588	
	PCV20	PCV21	1,955,696,079	2,349,550	Dominated by PCV20
	No indirect Effects	PCV21	1,953,582,595	2,349,616	
	NO mairect Effects	PCV20	1,953,977,126	2,349,589	Dominated by PCV21
	Indirect Effects from	PCV21	1,953,681,391	2,349,613	
2015-2019	PCV15	PCV20	1,954,272,626	2,349,580	Dominated by PCV21
	Indirect Effects from	PCV21	1,954,008,945	2,349,603	
	PCV20	PCV20	1,955,250,791	2,349,550	Dominated by PCV21
Societal perspective					
	No indirect Effects	PCV20	2,810,495,976	2,349,621	
		PCV21	2,814,712,764	2,349,561	Dominated by PCV20
2022	Indirect Effects from	PCV20	2,810,838,311	2,349,616	
2022	PCV15	PCV21	2,814,826,251	2,349,560	Dominated by PCV20
	Indirect Effects from	PCV20	2,812,622,461	2,349,588	
	PCV20	PCV21	2,815,418,503	2,349,550	Dominated by PCV20
	No indirect Effects	PCV21	2,811,288,383	2,349,616	
2015-2019	NO INDIPECT ETTECTS	PCV20	2,812,517,337	2,349,589	Dominated by PCV21
	Indirect Effects from	PCV21	2,811,480,049	2,349,613	
	PCV15	PCV20	2,813,090,629	2,349,580	Dominated by PCV21
	Indirect Effects from	PCV21	2,812,115,513	2,349,603	
	PCV20	PCV20	2,814,988,400	2,349,550	Dominated by PCV21

Table S11. Mean Costs, QALYs, and ICERs for pneumococcal vaccination of adults aged 18-49 years with chronic medical conditions (RR = 4), from health system and societal perspectives (per 100,000 population)

Serotype distribution	Indirect effects assumption	Rest of Canada					
data year		Strategies	Costs	QALYs	Sequential ICER		
Health system perspective							
2022	No indirect Effects	No vaccine	352,745,598	2,585,328			
		PCV20	352,907,400	2,585,406	2,084		
		PCV21	353,960,132	2,585,391	Dominated by PCV20		

		No Vaccine	352,745,598	2,585,328			
	Indirect Effects from PCV15	PCV20	352,961,329	2,585,405	2,830		
		PCV21	353,978,069	2,585,390	Dominated by PCV20		
		No vaccine	352,745,598	2,585,328			
	Indirect Effects from PCV20	PCV20	353,242,727	2,585,397	7,217		
		PCV21	354,071,715	2,585,388	Dominated by PCV20		
		No vaccine	352,745,598	2,585,328			
	No indirect Effects	PCV20	353,218,349	2,585,398	6,820		
		PCV21	353,436,472	2,585,405	31,219		
		No vaccine	352,745,598	2,585,328			
2015-2019	Indirect Effects from PCV15	PCV20	353,308,840	2,585,395	8,412		
		PCV21	353,466,671	2,585,404	18,442		
		No vaccine	352,745,328	2,585,328			
	Indirect Effects from PCV20	PCV21	353,566,843	2,585,401	11,264		
		PCV20	353,608,817	2,585,388	Dominated by PCV21		
Societal perspective							
	No indirect Effects	No vaccine	494,791,536	2,585,328			
		PCV20	500,772,943	2,585,406	77,056		
		PCV21	502,283,380	2,585,391	Dominated by PCV20		
	Indirect Effects from PCV15	No vaccine	494,791,536	2,585,328			
2022		PCV20	500,869,469	2,585,405	79,743		
		PCV21	502,315,486	2,585,390	Dominated by PCV20		
	Indirect Effects from PCV20	No vaccine	494,791,536	2,585,328			
		PCV20	501,373,148	2,585,397	95,544		
		PCV21	502,483,107	2,585,388	Dominated by PCV20		
		No vaccine	494,791,536	2,585,328			
	No indirect Effects	PCV21	501,341,472	2,585,405	85,840		
2015-2019		PCV20	501,332,149	2,585,398	Extendedly dominated		
		No vaccine	494,791,536	2,585,328			
	Indirect Effects from PCV15	PCV21	501,395,525	2,585,404	87,450		
		PCV20	501,494,121	2,585,395	Dominated by PCV21		
		No vaccine	494,791,536	2,585,328			
	Indirect Effects from PCV20	PCV21	501,574,824	2,585,401	93,040		
		PCV20	502,031,063	2,585,388	Dominated by PCV21		

Table S12. Mean Costs, QALYs, and ICERs for pneumococcal vaccination of adults aged 18-49 years of unhoused population (RR = 50), from health system and societal perspectives (per 100,000 population)

Serotype distribution	Indirect effects	Rest of Canada					
data year	assumption	Strategies	Costs	QALYs	Sequential ICER		
Health system perspective							
		PCV20	2,841,894,983	2,459,641			
	No indirect Effects	No vaccine	2,873,179,021	2,458,780	Dominated by PCV21		
		PCV21	2,849,561,000	2,459,460	Dominated by PCV20		
	la dine et Effe ete fre re	PCV20	2,842,566,191	2,459,625			
2022	Indirect Effects from	No vaccine	2,873,179,021	2,458,780	Dominated by PCV21		
	PCV15	PCV21	2,849,776,632	2,459,455	Dominated by PCV20		
	la dias et Effe et e facare	PCV20	2,846,023,666	2,459,541			
	Indirect Effects from	No vaccine	2,873,179,021	2,458,780	Dominated by PCV21		
	PCV20	PCV21	2,850,897,847	2,459,428	Dominated by PCV20		
		PCV21	2,842,942,021	2,459,625			
	No indirect Effects	No vaccine	2,873,179,021	2,458,780	Dominated by PCV20		
		PCV20	2,845,853,567	2,459,542	Dominated by PCV21		
	Indirect Effects from PCV15	PCV21	2,843,317,086	2,459,616			
2015-2019		No vaccine	2,873,179,021	2,458,780	Dominated by PCV20		
		PCV20	2,846,956,209	2,459,516	Dominated by PCV21		
	la dine et Effe ete fre re	PCV21	2,844,554,773	2,459,586			
	PCV20	No vaccine	2,873,179,021	2,458,780	Dominated by PCV20		
		PCV20	2,850,559,449	2,459,428	Dominated by PCV21		
Societal perspective							
		PCV20	4,085,198,206	2,459,641			
	No indirect Effects	No vaccine	4,134,168,120	2,458,780	Dominated by PCV21		
		PCV21	4,098,316,594	2,459,460	Dominated by PCV20		
2022	Indiract Effects from	PCV20	4,086,369,518	2,459,625			
	Indirect Effects from	No vaccine	4,134,168,120	2,458,780	Dominated by PCV21		
	FCVIS	PCV21	4,098,692,974	2,459,455	Dominated by PCV20		
	Indiract Effects from	PCV20	4,092,403,889	2,459,541			
		No vaccine	4,134,168,120	2,458,780	Dominated by PCV21		
		PCV21	4,100,650,063	2,459,428	Dominated by PCV20		
	No indirect Effects	PCV21	4,086,724,549	2,459,625			

2015-2019		No vaccine	4,134,168,120	2,458,780	Dominated by PCV20
		PCV20	4,092,140,500	2,459,542	Dominated by PCV21
	Indirect Effects from PCV15	PCV21	4,087,379,064	2,459,616	
		No vaccine	4,134,168,120	2,458,780	Dominated by PCV20
		PCV20	4,094,065,015	2,459,516	Dominated by PCV21
	Indirect Effects from PCV20	PCV21	4,089,539,079	2,459,586	
		No vaccine	4,134,168,120	2,458,780	Dominated by PCV20
		PCV20	4,100,354,503	2,459,428	Dominated by PCV21

References

1. Public Health Agency of Canada. IPD in Canada, 2011-2020. 2022.

2. National Advisory Committee on Immunization. Public health level recommendations on the use of pneumococcal vaccines in adults, including the use of 15-valent and 20-valent conjugate vaccines. Ottawa (ON): Public Health Agency of Canada; 2023.

3. PHAC-NML. Annual counts of vaccine serotypes by age group, 2011-2023 (Unpublished data, Personal communication). Public Health Agency of Canada's National Microbiology Laboratory. 2024.

4. Canadian Institute for Health Information. Discharge Abstract Database 2015-2019 [Accessed March 3, 2022].

5. Shigayeva A, Chung H, Kwong JC, Demczuk WH, Martin I, Almorhi H, et al. Burden of Invasive Pneumococcal Disease Among Adults with Underlying Chronic Conditions Post Implementation of PCV13 Immunization Programs in South Central Ontario, Canada. 12th International Symposium on Pneumoccci and Pneumococcal Diseases; Toronto, Canada2022.

6. LeBlanc JJ, ElSherif M, Ye L, MacKinnon-Cameron D, Ambrose A, Hatchette TF, et al. Recalibrated estimates of non-bacteremic and bacteremic pneumococcal community acquired pneumonia in hospitalized Canadian adults from 2010 to 2017 with addition of an extended spectrum serotype-specific urine antigen detection assay. Vaccine. 2022;40(18):2635-46.

7. Wijayasri S, Hillier K, Lim GH, Harris TM, Wilson SE, Deeks SL. The shifting epidemiology and serotype distribution of invasive pneumococcal disease in Ontario, Canada, 2007-2017. PLOS ONE. 2019;14(12):e0226353.

8. Shigayeva A, Rudnick W, Green K, Chen DK, Demczuk W, Gold WL, et al. Invasive Pneumococcal Disease Among Immunocompromised Persons: Implications for Vaccination Programs. Clin Infect Dis. 2016;62(2):139-47.

9. Backhaus E, Berg S, Andersson R, Ockborn G, Malmström P, Dahl M, et al. Epidemiology of invasive pneumococcal infections: manifestations, incidence and case fatality rate correlated to age, gender and risk factors. BMC Infectious Diseases. 2016;16(1):367.

10. Jit M. The risk of sequelae due to pneumococcal meningitis in high-income countries: A systematic review and meta-analysis. Journal of Infection. 2010;61(2):114-24.

11. Leidner AJ. Summary of three economic models assessing pneumococcal vaccines in

US adults. Presentation to the Advisory Committee on Immunization Practices. 2021.

12. van Werkhoven CH, Huijts SM, Bolkenbaas M, Grobbee DE, Bonten MJM. The Impact of Age on the Efficacy of 13-valent Pneumococcal Conjugate Vaccine in Elderly. Clinical Infectious Diseases. 2015;61(12):1835-8.

13. Patterson S, Webber C, Patton M, Drews W, Huijts SM, Bolkenbaas M, et al. A post hoc assessment of duration of protection in CAPiTA (Community Acquired Pneumonia immunization Trial in Adults). Trials in Vaccinology. 2016;5:92-6.

14. O'Reilly R, Lu H, Kwong JC, McGeer A, To T, Sander B. The epidemiology and healthcare costs of community-acquired pneumonia in Ontario, Canada: a population-based cohort study. J Med Econ. 2023;26(1):293-302.

15. Canadian Institute for Health Information (CIHI). Data Quality Documentation, Discharge Abstract Database — Current-Year Information, 2015–2016 [Internet]. Ottawa (ON): CIHI; 2016 [cited 2023 Mar 31]. Available from: <u>https://www.cihi.ca/sites/default/files/document/dad-data-guality_15-16_en.pdf</u>.

16. Canadian Institute for Health Information (CIHI). Data Quality Documentation, Discharge Abstract Database - Current-Year Information, 2016–2017 [Internet]. Ottawa (ON): CIHI; 2017 [cited 2023 Mar 31]. Available from: <u>https://www.cihi.ca/sites/default/files/document/current-year_information_dad_2016-2017-en-web.pdf</u>.

17. Canadian Institute for Health Information (CIHI). Data Quality Documentation, Discharge Abstract Database - Current-Year Information, 2017–2018 [Internet]. Ottawa (ON): CIHI; 2018 [cited 2023 Mar 31]. Available from: <u>https://www.cihi.ca/sites/default/files/document/current-year-information-dad-2017-2018-en-web.pdf</u>.

18. Canadian Institute for Health Information (CIHI). Data Quality Documentation Discharge Abstract Database - Current-Year Information 2018–2019 [Internet]. Ottawa (ON): CIHI; 2019 [cited 2023 Mar 31]. Available from: <u>https://www.cihi.ca/sites/default/files/document/current-year-information-dad-2018-2019-en-web.pdf</u>.

19. Glauser W, Pendharkar S, Nolan M. Why do you have to pay for an ambulance? : healthydebate; 2015 [Available from: <u>https://healthydebate.ca/2015/07/topic/ambulance-fees/</u>.

20. Government of Northwest Territories. Visitors to the NWT Emergency Medical Travel [Internet]. 2018 [Available from: <u>https://www.hss.gov.nt.ca/sites/hss/files/resources/visitors-</u> emergency-medical-travel.pdf.

21. Government of Nunavut. Medical Travel - Medevac [Internet]. [Available from: https://www.gov.nu.ca/health/information/medical-travel-medevac.

22. Rendell M. City Brief: Should City Reduce Ambulance Fees? Edge North. 2016 March 22, 2016.

23. Tam DY, Banerji A, Paes BA, Hui C, Tarride J-E, Lanctôt KL. The cost effectiveness of palivizumab in term Inuit infants in the Eastern Canadian Arctic. Journal of Medical Economics. 2009;12(4):361-70.

24. Government of Yukon. Find out which medical travel costs our health plan covers [Available from: <u>https://yukon.ca/en/medical-treatment-travel</u>.

25. Pong RW, Pitblado JR. Geographic distribution of physicians in Canada: beyond how many and where. Ottawa, Ontario: Canadian Institute for Health Information,; 2005. Contract No.: ISBN 1-55392-736-2 (PDF).

26. Canada Revenue Agency. Reasonable per-kilometre allowance 2022 [Available from: https://www.canada.ca/en/revenue-agency/services/tax/businesses/topics/payroll/benefits-

allowances/automobile/automobile-motor-vehicle-allowances/reasonable-kilometre-

allowance.html.

27. Colbert Y. 'My jaw dropped,' says Ontario woman of \$12K air ambulance bill in Nova Scotia. CBC News. 2020 November 27, 2020.

28. Hollander MJ, Liu G, Chappell NL. Who cares and how much? The imputed economic contribution to the Canadian healthcare system of middle-aged and older unpaid caregivers providing care to the elderly. Healthc Q. 2009;12(2):42-9.

29. Wyrwich KW, Yu H, Sato R, Powers JH. Observational longitudinal study of symptom burden and time for recovery from community-acquired pneumonia reported by older adults surveyed nationwide using the CAP Burden of Illness Questionnaire. Patient Relat Outcome Meas. 2015;6:215-23.

30. Ganapathy V, Graham GD, DiBonaventura MD, Gillard PJ, Goren A, Zorowitz RD. Caregiver burden, productivity loss, and indirect costs associated with caring for patients with poststroke spasticity. Clin Interv Aging. 2015;10:1793-802.

31. Tyrrell G, Lee C, Eurich D. Is there a need for pneumococcal vaccination programs for the homeless to prevent invasive pneumococcal disease? Expert Review of Vaccines. 2021;20(9):1113-21.

32. Plevneshi A, Svoboda T, Armstrong I, Tyrrell GJ, Miranda A, Green K, et al. Populationbased surveillance for invasive pneumococcal disease in homeless adults in Toronto. PLoS One. 2009;4(9):e7255.

33. Steinberg J, Bressler SS, Orell L, Thompson GC, Kretz A, Reasonover AL, et al. Invasive Pneumococcal Disease and Potential Impact of Pneumococcal Conjugate Vaccines Among Adults, Including Persons Experiencing Homelessness—Alaska, 2011–2020. Clinical Infectious Diseases. 2023;78(1):172-8. 34. Shariatzadeh MR, Huang JQ, Tyrrell GJ, Johnson MM, Marrie TJ. Bacteremic pneumococcal pneumonia: a prospective study in Edmonton and neighboring municipalities. Medicine (Baltimore). 2005;84(3):147-61.

35. Lansbury L, Lim B, McKeever TM, Lawrence H, Lim WS. Non-invasive pneumococcal pneumonia due to vaccine serotypes: A systematic review and meta-analysis. eClinicalMedicine. 2022;44.

36. Government of Canada. Adult National Immunization Coverage Survey (aNICS): 2023 results. Ottawa, ON: Government of Canada; 2024.

37. Farrar JL, Childs L, Ouattara M, Akhter F, Britton A, Pilishvili T, Kobayashi M. Systematic Review and Meta-Analysis of the Efficacy and Effectiveness of Pneumococcal Vaccines in Adults. Pathogens. 2023;12(5).

38. Lewis N, Hsiao A, Hansen J, Yee A, Chao C, Suaya JA, et al. 2711. Effectiveness of 13-Valent Pneumococcal Conjugate Vaccine Against Invasive Pneumococcal Disease in Older Adults. Open Forum Infectious Diseases. 2019;6(Supplement_2):S953-S4.

39. Stoecker C. Economic analysis and public health impact of PCV21 in adults [slides presented at Advisory Committee on Immunization Practices (ACIP) meeting June 27, 2024][Internet]. Atlanta (GA): Center for Disease Control and Prevention; 2024 Jun 27 [cited TBD]. Available from: TBD.

40. Djennad A, Ramsay ME, Pebody R, Fry NK, Sheppard C, Ladhani SN, Andrews NJ. Effectiveness of 23-Valent Polysaccharide Pneumococcal Vaccine and Changes in Invasive Pneumococcal Disease Incidence from 2000 to 2017 in Those Aged 65 and Over in England and Wales. eClinicalMedicine. 2018;6:42-50.

41. Bonten MJM, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Gault S, et al. Polysaccharide Conjugate Vaccine against Pneumococcal Pneumonia in Adults. New England Journal of Medicine. 2015;372(12):1114-25.

42. Stoecker C. Economic assessment of routine PCV20 for children [slides presented at Advisory Committee on Immunization Practices (ACIP) meeting June 22, 2023][Internet]. Atlanta (GA): Center for Disease Control and Prevention; 2023 Jun 22 [cited 2023 Jun 24]. Available from: <u>https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2023-06-21-23/02-</u>Pneumococcal-Stoecker-508.pdf.

43. Suaya JA, Jiang Q, Scott DA, Gruber WC, Webber C, Schmoele-Thoma B, et al. Post hoc analysis of the efficacy of the 13-valent pneumococcal conjugate vaccine against vaccine-type community-acquired pneumonia in at-risk older adults. Vaccine. 2018;36(11):1477-83.

44. O'Reilly R, Kwong JC, McGeer A, To T, Sander B. The Cost-Effectiveness of a Pneumococcal Conjugate Vaccine (PCV13) Program for Older Adults (65+) in Ontario, Canada: Update on the use of pneumococcal vaccine in immunocompetent adults 65 years of age and older – A Public Health Perspective in the Context of Infant Immunization and Changing Serotype Distributions. Society for Medical Decision Making 39th Annual North American Meeting (Poster Session 1) 2017.

45. Pfizer Canada. Personal communication: PCV20 Canadian list price update. 2024.

46. Merck Canada Inc. Personal communication: Disclosure of V116 (PCV-21; PNEU-C-21) List Price for Economic Evaluation. 2024.

47. Christensen H, Trotter CL, Hickman M, Edmunds WJ. Re-evaluating cost effectiveness of universal meningitis vaccination (Bexsero) in England: modelling study. BMJ. 2014;349:g5725.

48. Ontario Ministry of Health. Ontario Drug Benefit Formulary/Comparative Drug Index [Internet]. 2022 [Available from:

https://www.health.gov.on.ca/en/pro/programs/drugs/formulary43/edition 43.pdf.

49. Statistics Canada. Table 11-10-0239-01. Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas [Internet]. Ottawa (ON): Statistics Canada; 2024 May 24 [cited 2024 May 24]. Available from: https://doi.org/10.25318/1110023901-eng.

50. Pasquale CB, Vietri J, Choate R, McDaniel A, Sato R, Ford KD, et al. Patient-reported consequences of community-acquired pneumonia in patients with chronic obstructive pulmonary disease. Chronic Obstr Pulm Dis. 2019;6(2):132-44.

51. Bizier C, Contreras R, Walpole A. Hearing disabilities among Canadians aged 15 years and older, 2012 [Internet]. Statistics Canada,; 2016 [

52. Jiang Y, Gauthier A, Annemans L, van der Linden M, Nicolas-Spony L, Bresse X. Cost– effectiveness of vaccinating adults with the 23-valent pneumococcal polysaccharide vaccine (PPV23) in Germany. Expert Review of Pharmacoeconomics & Outcomes Research. 2012;12(5):645-60.

53. Yan J, Xie S, Johnson JA, Pullenayegum E, Ohinmaa A, Bryan S, Xie F. Canada population norms for the EQ-5D-5L. Eur J Health Econ. 2023.

54. Mangen M-JJ, Huijts SM, Bonten MJM, de Wit GA. The impact of community-acquired pneumonia on the health-related quality-of-life in elderly. BMC Infectious Diseases. 2017;17(1):208.

55. Oppong R, Jit M, Smith RD, Butler CC, Melbye H, Mölstad S, Coast J. Cost-effectiveness of point-of-care C-reactive protein testing to inform antibiotic prescribing decisions. Br J Gen Pract. 2013;63(612):e465-e71.

56. Oppong R, Kaambwa B, Nuttall J, Hood K, Smith RD, Coast J. The impact of using different tariffs to value EQ-5D health state descriptions: an example from a study of acute cough/lower respiratory tract infections in seven countries. The European Journal of Health Economics. 2013;14(2):197-209.

57. Galante J, Augustovski F, Colantonio L, Bardach A, Caporale J, Marti SG, Kind P. Estimation and Comparison of EQ-5D Health States' Utility Weights for Pneumoccocal and Human Papillomavirus Diseases in Argentina, Chile, and the United Kingdom. Value in Health. 2011;14(5, Supplement):S60-S4.