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Supplementary Note 1-11: 90 
 91 
Supplementary Note 1A: Characterizing newly defined cis-pQTLs within European and African 92 
ancestries 93 
To verify that newly defined cis-pQTLs were comparable, we assessed the within-ancestry 94 
concordance of cis-pQTL effect sizes in European (Supplementary Figure 1a) and in African 95 
ancestries (Supplementary Figure 1b). We found high concordance of effects suggesting that 96 
within each ancestry, the newly defined cis-pQTLs are comparable. 97 
 98 
Methods: 99 
We assessed the within-ancestry concordance between European ancestry proteomics cohorts 100 
by aligning the effect allele of cis-pQTLs in each cohort to the minor allele in the UKB 50k 101 
reference panel. Similarly, when comparing the within-ancestry concordance between African 102 
ancestry proteomics cohorts, we first aligned effect alleles of cis-pQTLs in each cohort to the 103 
minor allele of the corresponding variant in the African ancestry HGDP+1kGP reference panel. 104 
 105 
 106 
Supplementary Note 1B: Further details on defining “strict variant-to-gene” (strict V2G)  107 
cis-pQTLs 108 
 109 
Upon defining cis-pQTLs in each cohort, we performed two additional steps to select genetic 110 
instruments which we term strict V2G cis-pQTLs.  111 
 112 
First, to minimize potential horizontal pleiotropic effects, we removed cis-variants associated with 113 
two or more protein-coding genes (Supplementary Note Table 1), thus retaining cis-pQTLs 114 
associated with a single protein-coding gene, which we term “strict” cis-pQTLs.  115 
 116 
Second, we leveraged multiple sources of evidence to assign variants to genes using Open 117 
Targets Genetics V2G score. As expected, upon performing strict V2G filtering within each cohort, 118 
we found that strict V2G cis-pQTLs had a larger proportion of proteins with a single associated 119 
cis-pQTL compared to all cis-pQTLs (Supplementary Note Table 2), and the maximum number 120 
of cis-pQTLs associated with a single protein was either the same or lower across all cohorts in 121 
all ancestries (Supplementary Note Table 3). The number of strict V2G cis-pQTLs for each 122 
protein is shown in Supplementary Note Table 4. The maximum number of strict V2G cis-pQTLs 123 
per protein was larger in all European ancestry cohorts compared to African ancestry cohorts and 124 
the Kyoto University Nagahama East Asian ancestry cohort (Supplementary Note Table 3). For 125 
example, the UKB-PPP European ancestry cohort had a range of 1 up to 21 strict V2G cis-pQTLs 126 
per protein while the number of strict V2G cis-pQTLs per protein in the Kyoto University 127 
Nagahama East Asian ancestry cohort ranged from 1 to 3.  128 
 129 
 130 
Supplementary Note 1C: Further details on instrumentable proteins in each cohort 131 
 132 
In European ancestries, we identified 1,485 instruments for 1,102 proteins for ARIC (n = 7,213; 133 
Supplementary Table 2), 2,083 instruments for 1,243 proteins for deCODE (n = 35,559; 134 
Supplementary Table 3), 1,637 instruments for 1,194 proteins for Fenland (n = 10,708; 135 
Supplementary Table 4), and 2,194 instruments for 1,292 proteins for UKB-PPP (n = 34,557; 136 
Supplementary Table 5). In African ancestries, we identified 1,080 instruments for 877 proteins 137 
for ARIC (n = 1,871; Supplementary Table 6), and 604 instruments for 554 proteins for UKB-138 
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PPP (n = 931; Supplementary Table 7). Finally, in the Kyoto University Nagahama East Asian 139 
ancestry cohort, 663 instruments were identified from 602 proteins (n = 1,823; Supplementary 140 
Table 8).  141 
 142 
We also assessed whether any instrumentable proteins were shared across cohorts within 143 
European and African ancestries. Here, we use proteins to refer to the protein-coding gene name 144 
in order to avoid double counting SomaScan v4 aptamers and to enable harmonization with Olink 145 
assays. Protein-coding genes were quantified based on Ensembl gene IDs. Within European 146 
ancestries, 434 proteins were shared across all fours cohorts while 375 were unique to the ARIC, 147 
deCODE, and Fenland cohorts measured with the SomaScan v4 platform, and 652 were unique 148 
to the UKB-PPP cohort which measured proteins using Olink Explore 3072 (Extended Data Fig. 149 
4a), highlighting the value of using two proteomics platforms. In African ancestries, 259 proteins 150 
were jointly instrumentable by the ARIC and UKB-PPP cohorts while 591 were unique to ARIC 151 
and 294 to UKB-PPP (Extended Data Fig. 4b) which emphasizes the value of having two cohorts 152 
from two separate proteomics platforms. The Kyoto University Nagahama East Asian cohort (n = 153 
1,823) was able to instrument 581 proteins (Extended Data Fig. 4c).  154 
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Supplementary Note 2: Assessing sample overlap in two-sample MR for UK Biobank GWAS 155 
outcomes and proteomics cohort 156 
 157 
To estimate the extent of bias in two-sample MR causal estimates for European exposures that 158 
use proteomics GWAS from the UKB-PPP and European GWAS outcomes that were generated 159 
from UK Biobank individuals, we calculated relative bias1 based on the equation: 160 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏 = 𝜙𝜙 ×
1
𝐹𝐹

 161 
The proportion of sample overlap, ϕ, ranges between 0 (no sample overlap) and 1 (complete 162 
sample overlap), while the F-statistic of the exposure is denoted by F. Assessments of sample 163 
overlap for the European UKB-PPP and African UKB-PPP proteomics cohorts and corresponding 164 
UKB outcomes are shown in Supplementary Note Table 5. 165 
 166 
Since 51 of 179 European GWAS outcomes were based on the UK Biobank, we estimated the 167 
extent of potential bias towards the null due to sample overlap in two-sample MR causal estimates 168 
for European exposures that used proteomics GWAS from the UKB-PPP (n = 34,557). The 169 
relative bias1 when assuming maximum overlap between proteomics GWAS and the 51 UKB 170 
outcome GWAS using the minimum F-statistic of 29.8 was estimated to be between 0.250% and 171 
0.769% (Supplementary Note Table 5). However, we note that we utilized three additional 172 
proteomics cohorts from ARIC, deCODE, and Fenland which may consequently provide further 173 
levels of support for these protein-phenotype associations and mitigate this bias.  174 
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Supplementary Note 3: Cohort level description of putatively causal protein-phenotype pairs in 175 
European and African ancestry 176 
 177 
Our analysis involves two different levels of resolution when describing the results. At the ancestry 178 
level, this pertains to European, African, and East Asian ancestries. At the cohort level this 179 
involves four cohorts (ARIC, deCODE, Fenland, and UKB-PPP) for European ancestries, two 180 
cohorts (ARIC and UKB-PPP) for African ancestries, and the Kyoto University Nagahama cohort 181 
for individuals of East Asian ancestry. In the main text, we focus findings at the ancestry level to 182 
avoid complicating the results and describe the cohort level details here: 183 
 184 
In European ancestries, we identified a total of 6,771 putatively causal protein-phenotype 185 
associations (1,764 pairs in ARIC; 1,731 in deCODE, 1,788 in Fenland, and 1,488 in UKB-PPP) 186 
pertaining to 3,949 unique pairs (Supplementary Table 14 and Extended Data Fig. 5a). In 187 
African ancestries, we identified a total of 72 associations involving 35 associations in ARIC and 188 
37 associations in UKB-PPP, with 56 unique protein-phenotype associations across both cohorts 189 
involving 28 proteins and 11 phenotypes (Supplementary Table 15 and Extended Data Fig. 5b). 190 
The direction of effect was consistent among all common associations between ARIC and UKB-191 
PPP including well known proteins known to affect HDL cholesterol such as APOC1, CD36, 192 
DPEP2, and ITIH4 serving as positive controls.  193 
 194 
  195 
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Supplementary Note 4: Proteins involved in a multitude of traits and diseases 196 
 197 
When quantifying the number of associated phenotypes that each protein was associated with, 198 
we found pleiotropic proteins associated with up to 49, 5, and 58 unique phenotypes in European, 199 
African, and East Asian ancestries, respectively (Supplementary Note Table 6). In European 200 
ancestries, 13 proteins were putatively causal for 20 or more outcomes including GCKR, GPN1, 201 
BTN3A2, SORT1, RSPO3, HP, RAB21, TIMD4, MST1, APOB, EFEMP1, PCSK9, and PLCG1. 202 
Since some phenotype categories had a greater number of outcomes than other categories, we 203 
quantified the number of associated phenotype categories each protein was implicated in as well 204 
(Supplementary Note Table 7). These targets present complex scenarios and may have effects 205 
in multiple tissues or organs.  206 
 207 
For example, in European ancestries, GCKR (implicated in 10 phenotype categories) increases 208 
the risk of type 2 diabetes as previously reported2 but our study shows that it also decreases the 209 
risk of inflammatory bowel disease (IBD) and cholelithiasis. MST1 (9 phenotype categories) is a 210 
macrophage-stimulating protein and hepatocyte growth factor-link protein highly expressed in the 211 
liver, suggesting its involvement in immune-related and liver diseases. MST1 has been implicated 212 
in IBD3 and its pQTLs have also been found to associate with Crohn’s disease, ulcerative colitis, 213 
IBD, and primary sclerosing cholangitis (PSC)4, a rare liver condition associated with IBD and 214 
causing severe liver scarring. We found that increased genetically predicted MST1 levels were 215 
protective against IBD, including both Crohn’s disease and ulcerative colitis, and PSC. However, 216 
despite these protective effects, our results suggest that higher MST1 protein levels may 217 
potentially lead to harmful cardiovascular events, such as increased systolic blood pressure and 218 
diastolic blood pressure and a higher risk of coronary artery disease.  219 
 220 
In African ancestries, APOA5, APOE, and HP had effects on the most phenotypes with both being 221 
associated with 5 outcomes (Supplementary Note Table 6). All proteins had effects on 222 
phenotypes within a single category aside from ABO and ITIH4 which were causal for outcomes 223 
from three and two phenotype categories, respectively (Supplementary Note Table 7).  224 
 225 
In East Asian ancestries, ALDH2 was the most pleiotropic protein and putatively causal for 58 226 
phenotypes (from 12 phenotype categories) including multiple diseases such as stroke (any 227 
ischemic stroke), epilepsy, colorectal cancer, esophageal cancer, hepatic cancer, lung cancer 228 
among many others. Notably, ALDH2 was not instrumented in European nor African and was 229 
uniquely instrumented in East Asian ancestry. The next most pleiotropic protein in East Asian 230 
ancestries was ABO associated with 14 phenotypes (4 phenotype categories) as expected due 231 
to known pleiotropy at this locus. MLN, a small peptide hormone secreted by cells in the small 232 
intestine which regulates gastrointestinal contractions and motility was causal for 10 phenotypes 233 
(6 phenotype categories) including cardiovascular outcomes (angina pectoris and stable angina 234 
pectoris), gastrointestinal (chronic hepatitis B), autoimmune (rheumatoid arthritis), cancer (gastric 235 
cancer), and various biomarkers implicating its involvement in multiple biological processes and 236 
influence in a multitude of health conditions. 237 
 238 
To summarize, of our putatively causal findings, we identified many proteins influencing traits or 239 
diseases in the same categories revealing the common mechanistic interplay between specific 240 
outcomes. On the contrary, many proteins also demonstrated effects on various traits or diseases 241 
that may not be directly linked to each other, underscoring the complexity of protein functions and 242 
the intricate network of biological pathways involved in health and disease. For instance, a higher 243 
genetically predicted level of MST1 decreased the risk of IBD and its subtypes including both 244 
Crohn’s disease and ulcerative colitis. This protective effect is likely due to MST1’s role in 245 
modulating immune responses and inflammation, which are central to the pathogenesis of these 246 
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conditions. Meanwhile, increased MST1 was associated with adverse cardiovascular outcomes 247 
including higher risk of coronary artery disease. In the context of IBD, MST1 may enhance 248 
mucosal healing and modulate inflammatory pathways, contributing to its protective effects. 249 
Conversely, the impact of MST1 on the cardiovascular system may involve mechanisms related 250 
to vascular inflammation and endothelial function, leading to increased blood pressure and 251 
atherosclerosis, highlighting the importance of understanding context-specific regulation of these 252 
potential targets.   253 
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Supplementary Note 5A: Validating cardiovascular related putatively causal protein-phenotype 254 
pairs from prior studies in European ancestries 255 
 256 
We validated many previously known findings for cardiovascular phenotypes in European 257 
ancestries (Fig. 4a and Supplementary Figure 2a). For instance, COL6A3 (SomaScan aptamer: 258 
11196-31, Olink assay: OID20292) was positively associated with coronary artery disease (CAD) 259 
in all four European ancestry cohorts. This effect is concordant with our previous extensive work 260 
on COL6A35. In addition, we replicated previously reported findings of MMP12 on stroke by Sun 261 
et al.6 that was also further validated by Zheng et al.7 who extended to stroke subtypes. Similar 262 
to Zheng’s study, European ancestry MMP12 pQTLs from deCODE and UKB-PPP were 263 
associated with lower risk of any ischemic stroke (deCODE: OR = 0.92, 95% CI: 0.89–0.95, P = 264 
1.9 × 10-7, PPmax = 0.98; UKB-PPP: OR = 0.92, 95% CI: 0.90–0.95, P = 1.9 × 10-7, PPmax = 1) and 265 
large artery stroke (deCODE: OR = 0.77, 95% CI: 0.70–0.86, P = 6.0 × 10-7, PPmax = 1; UKB-PPP: 266 
OR = 0.79, 95% CI: 0.72–0.87, P = 6.0 × 10-7, PPmax = 0.99). 267 
 268 
Additionally, ITIH4 was shown in a prior study using mouse lines and colocalization to act as a 269 
novel vascular smooth muscle cell-expressed gene implicated in atherosclerotic plaques8. 270 
However, genetic evidence of causality was not determined. Here, we found a positive association 271 
between ITIH4 with CAD (deCODE: OR = 1.43, 95% CI: 1.27–1.60, P = 1.5 × 10-9, PPmax = 1; 272 
Fenland: OR = 1.18, 95% CI: 1.12–1.25, P = 1.5 × 10-9, PPmax = 1), pulse pressure (deCODE: β 273 
= 1.46, 95% CI: 1.00–1.93, P = 5.5 × 10-10, PPmax = 1; Fenland: β = 0.69, 95% CI: 0.47–0.91, P = 274 
5.5 × 10-10, PPmax = 0.99),  and systolic blood pressure (deCODE: β = 1.66, 95% CI: 0.98–2.34, 275 
P = 1.8 × 10-6, PPmax = 0.97; Fenland: β = 0.78, 95% CI: 0.46–1.11, P = 1.8 × 10-6, PPmax = 0.94), 276 
consistent with and confirming the findings of earlier research using animal studies.  277 
 278 
Interestingly, we also identified a few proteins that were protective against cardiovascular events. 279 
For example, SWAP70 was protective against coronary artery disease (ARIC: OR = 0.95, 95% 280 
CI: 0.93–0.96, P = 5.7 × 10-11, PPmax = 1; deCODE: OR = 0.92, 95% CI: 0.89–0.96, P = 1.5 × 10-281 
9, PPmax = 0.94), small vessel stroke (deCODE: OR = 0.78, 95% CI: 0.68–0.89, P = 2.6 × 10-4, 282 
PPmax = 0.84), and any ischemic stroke (ARIC: OR = 0.94, 95% CI: 0.92–0.97, P = 4.5 × 10-6, 283 
PPmax = 0.98; deCODE: OR = 0.90, 95% CI: 0.86–0.95, P = 3.0 × 10-5, PPmax = 0.92).  284 
 285 
PTN was protective against peripheral artery disease in two cohorts (Fenland: OR = 0.79, 95% 286 
CI: 0.70–0.89, P = 7.5 × 10-5, PPmax = 0.97, and UKB-PPP: OR = 0.49, 95% CI: 0.37–0.65, P = 287 
8.5 × 10-7, PPmax = 0.89), mood swings (deCODE: OR = 0.98, 95% CI: 0.97–0.99, P = 1.4 × 10-5, 288 
PPmax = 0.81; Fenland: OR = 0.97, 95% CI: 0.96–0.99, P = 1.4 × 10-5, PPmax = 0.84), and 289 
anthropometric outcomes such as waist-to-hip ratio (deCODE: β = -0.04, 95% CI: -0.06, -0.03, P 290 
= 2.3 × 10-6, PPmax = 0.97; Fenland: β = -0.04, 95% CI: -0.07, -0.03, P = 4.0 × 10-6, PPmax = 0.95).  291 
 292 
Further, DKKL1 was previously reported as putatively causal for multiple sclerosis9 which we also 293 
found (ARIC: OR = 0.46, 95% CI: 0.37–0.58, P = 3.5 × 10-11, PPmax = 1; Fenland: OR = 0.28, 95% 294 
CI: 0.19–0.41, P = 4.3 × 10-11, PPmax = 1), but here we also identified it as protective against risk 295 
of large artery stroke (ARIC: OR = 0.59, 95% CI: 0.44–0.79, P = 4.2 × 10-4, PPmax = 0.87; Fenland: 296 
OR = 0.42, 95% CI: 0.26–0.67, P = 3.0 × 10-4, PPmax = 0.89) as well as metabolic/endocrine 297 
disorders such as hypothyroidism/myxoedema (ARIC: OR = 0.99, 95% CI: 0.98–0.99, P = 1.2 × 298 
10-5, PPmax = 0.95; Fenland: OR = 0.98, 95% CI: 0.97–0.99, P = 2.6 × 10-5, PPmax = 0.84). 299 
 300 
 301 
Supplementary Note 5B: Validating non-cardiovascular disease related putatively causal 302 
protein-phenotype pairs from prior studies in European ancestries 303 
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 304 
We also validated findings in other non-cardiovascular disease categories in European ancestries.  305 
Network plots for these associations are shown for autoimmune (Supplementary Figure 2b), 306 
neurological (Supplementary Figure 2c), psychiatric (Supplementary Figure 2d), 307 
metabolic/endocrine (Supplementary Figure 2e), and gastrointestinal phenotypes 308 
(Supplementary Figure 2f).  309 
 310 
For example, a one standard deviation increase in genetically predicted NPNT levels was 311 
associated with a decreased risk of asthma which is consistent with findings in our previous work10.  312 
 313 
Notably, increased levels of genetically predicted RAB21 was protective against Parkinson’s 314 
disease and associated with increased cognitive performance and educational attainment 315 
consistent with findings of the involvement of RAB21 in neuronal development11 (Supplementary 316 
Figure 2c). Further, RAB21 has been implicated in obesity in concord with our findings showing 317 
protective effects of RAB21 on visceral (VAT), abdominal subcutaneous (ASAT), and 318 
gluteofemoral (GFAT) adipose tissue volumes (Supplementary Figure 2e).  319 
 320 
INHBB has previously been implicated in serum urate levels12 and in our analysis was found to 321 
be positively associated with urate and negatively associated with estimated glomerular filtration 322 
rate in all four European ancestry cohorts. In addition, we found a positive effect of genetically 323 
predicted INHBB levels on risk of type 2 diabetes in the UKB-PPP cohort (OR: 1.09, 95% CI: 324 
1.04–1.13 per standard deviation (s.d.) increase in the protein level, P = 9.8 × 10-5, PPmax = 1) 325 
which had not previously been reported. 326 
 327 
Lastly, STAT3 was positively associated with inflammatory bowel disease but negatively 328 
associated with multiple sclerosis which is concordant with recent findings showing opposite 329 
effects across these two diseases13 and supported by an earlier randomized, placebo-controlled 330 
multicenter study showing divergent outcomes of anti-TNF therapies, which are effective for 331 
inflammatory bowel disease but worsen multiple sclerosis14. 332 
 333 
 334 
Supplementary Note 5C: Exploratory analyses using ARIC African proteomics cohort to 335 
assess causal effects on binary cardiovascular and autoimmune-related outcomes in the Million 336 
Veteran Program 337 
 338 
We identified 7 putatively causal associations for binary cardiovascular outcomes which are 339 
shown in Supplementary Note Table 8. The protein PCYOX1 was implicated in all diseases. 340 
 341 
 342 
Supplementary Note 5D: Additional note on uniquely instrumentable proteins in East Asian 343 
ancestry and putatively causal protein-phenotype pairs from these proteins 344 
 345 
Of the 325 unique protein-phenotype pairs identified in the Kyoto University Nagahama East 346 
Asian ancestry cohort, we found that 67 (20.6%) protein-phenotype associations were from 8 347 
proteins (ALDH2, ANXA7, APOA1, DDOST, GSS, PLA2G7, PRSS2, UGT1A1) specific to East 348 
Asian and not instrumentable by European nor African ancestries. For instance, in European 349 
ancestry, ALDH2 had no genome-wide significant pQTLs in ARIC, and upon LD clumping, only 350 
had trans-pQTLs in UKB-PPP, while in both Fenland and deCODE, the strict cis-pQTL did not 351 
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have the highest V2G score and was filtered out given the risk of horizontal pleiotropy. Similarly, 352 
in African ancestries, ALDH2 had no genome-wide significant pQTLs upon LD clumping. 353 
 354 
An example of one association from uniquely instrumentable proteins in East Asian ancestry is 355 
APOA1 and cholesterol levels. APOA1 was positively associated with both HDL cholesterol and 356 
total cholesterol levels concordant with its function as the main protein in high density 357 
lipoproteins mediating efflux of cholesterol.  Additionally, causal effects of UGT1A1 on total 358 
bilirubin has been previously identified in African ancestries15 and our study supports these 359 
findings in East Asian ancestries (β = -0.44, 95% CI: -0.46, -0.43, P = 1.00 × 10-300, PPmax = 1). 360 
  361 
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Supplementary Note 6: Discordant effects across ancestries for putatively causal protein-362 
phenotypes pairs 363 
 364 
For putatively causal associations with inconsistent MR effect estimates across ancestries, we 365 
identified 12 protein-phenotype pairs involving 9 proteins and 6 phenotypes, composed of lipid 366 
and anthropometric traits (Supplementary Figure 3). One pair showed discordant MR estimates 367 
across all three ancestries, four were discordant between European and African ancestries, and 368 
seven between European and East Asian ancestries. For instance, ABO was negatively 369 
associated with total cholesterol levels in Europeans but positively associated in African and East 370 
Asian ancestries. This discrepancy may require further study due to the high-impact PAV 371 
instrumental variable used for ABO in African ancestries (Supplementary Table 15). Similar 372 
discordance was seen with ABO and LDL cholesterol: negative in Europeans and positive in East 373 
Asian ancestries, likely due to ABO’s pleiotropic nature. CD36 also showed discordant 374 
associations: positively associated with HDL cholesterol in Europeans (deCODE, Fenland, UKB-375 
PPP) but negatively in Africans (ARIC, UKB-PPP), and negatively associated with triglycerides in 376 
Europeans but positively in Africans. The cis-pQTL proxying CD36 in African ancestries was a 377 
high-impact PAV. While increased CD36 typically decreases HDL and increases triglycerides, a 378 
previous study showed an inverse relationship between monocyte CD36 and HDL in African 379 
ancestries16, aligning with our findings. Other discordant associations included DEF6 with height 380 
(negative in Europeans, positive in Africans) and CA4 (positive in Europeans, negative in 381 
Africans). Between European and East Asian ancestries, discordance was found for GHR and 382 
AOC1 with height, APOB with LDL and total cholesterol, and ACP1 with body mass index. Notably, 383 
GHR and height associations were inconsistent within European cohorts (deCODE and UKB-384 
PPP), likely due to differences in proteomics platforms.  385 
 386 
We also identified discordant effects for phenotypically related outcomes that were not exact 387 
matches and highlight an example using APOB. APOB plays a predominant role in the etiology 388 
of coronary artery disease as shown in recent studies17–19. Likewise, our results showed that 389 
APOB was positively associated with coronary artery disease (CAD) in European ancestries with 390 
evidence in deCODE (β = 0.65, 95% CI: 0.51–0.80, P = 3.4 × 10-18, PPmax = 1), and Fenland (β = 391 
0.43, 95% CI: 0.33–0.53, P = 2.9 × 10-18, PPmax = 1). However, APOB in East Asian ancestries 392 
was found to be negatively associated with myocardial infarction (β = -0.08, 95% CI: -0.11,-0.05, 393 
P = 1.4 × 10-8, PPmax = 1), LDL cholesterol (β = -0.06, 95% CI: -0.07, -0.05, P = 1.3 × 10-30, PPmax 394 
= 1), HMG CoA reductase inhibitors (β = -0.14, 95% CI: -0.16, -0.12, P = 3.1 × 10-44, PPmax = 1), 395 
and vasodilators used in cardiac diseases (β = -0.06, 95% CI: -0.08, -0.03, P = 5.0 × 10-6, PPmax 396 
= 0.98). When querying the instruments used for APOB in European ancestries in Open Targets 397 
Genetics we found that the single cis-pQTL proxying APOB in deCODE, rs563290, and Fenland, 398 
rs541041, were intergenic variants (Ensembl VEP impact: Modifier). In contrast, the most severe 399 
consequence of the pQTL for APOB in East Asian ancestries, rs13306194, was missense 400 
(Ensembl VEP impact: Moderate) and could potentially be altering epitope binding rather than 401 
being a true biological signal. Nonetheless, this pQTL may still hold biological significance due to 402 
being the top hit from variant-to-gene mapping, although further investigation may be required. 403 
 404 
In summary, while inconsistent effects were found across ancestries for a few protein-phenotype 405 
associations we highlight that in three associations, ABO with total cholesterol levels, CD36 with 406 
HDL cholesterol levels, and CD36 with triglycerides, the protein level in African ancestries was a 407 
PAV of high impact so we advise caution in the interpretation of these results. Further, ABO is 408 
known to play a multi-faceted role in diseases and pQTLs at this locus have been associated with 409 
many proteins6. However, since we used variant-to-gene mapping which leverages biological 410 
evidence to select instruments, these PAVs of high impact may potentially still be functionally 411 
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relevant. Notably, we found that decreased CD36 in African ancestries was associated with 412 
increased HDL cholesterol which was consistent with findings from a previous study16. Thus, 413 
further exploration may be required with larger sample sizes to elucidate whether these findings 414 
are biologically plausible. 415 
  416 
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Supplementary Note 7A: Druggability of instrumentable protein-coding genes at the cohort 417 
level  418 
 419 
We compared instrumentable protein-coding genes against the druggable genome composed of 420 
4,479 genes from Finan et al.20 which classifies genes into Tier 1, 2, or 3 according to druggability. 421 
Tier 1 refers to efficacy targets of approved small molecules, biotherapeutic drugs, and clinical-422 
phase drug candidates; Tier 2 includes proteins closely associated with drug targets or linked to 423 
drug-like compounds; Tier 3 encompasses secreted or extracellular proteins, those distantly 424 
related to approved drug targets, and proteins from important druggable gene families not covered 425 
in Tier 1 or Tier 2. All ancestries had proportionally comparable number of instrumentable protein-426 
coding genes in Tier 1 and 2 (Supplementary Figure 4). 427 
 428 
We found that 71, 29, and 210 proteins were shared in Tier 1, Tier 2, and Tier 3 across three 429 
ancestries, respectively (Supplementary Figure 5) while 26, 10, and 78 proteins were shared in 430 
Tier 1, Tier 2, and Tier 3 among all seven cohorts across three ancestries, respectively 431 
(Supplementary Figure 6).  432 
 433 
 434 
Supplementary Note 7B: Overlap of protein-phenotype pairs stratified by ancestry in the 435 
druggable genome and DrugBank 436 
 437 
7B.1 Druggable genome 438 
We found that 57.7%, 78.5% and 74.2% of putatively causal protein-phenotype associations in 439 
European, African, and East Asian ancestries, respectively, overlapped with the druggable 440 
genome (Supplementary Note Table 9). 441 
 442 
7B.2. DrugBank 443 
Across ancestries, a similar proportion of proteins from the putatively causal protein-phenotype 444 
associations—33.6% in European, 35.7% in African and 35.5% in East Asian ancestry—had 445 
approved or investigational drugs available based on DrugBank21 (Supplementary Note Tables 446 
10–12).  447 
 448 
 449 
Supplementary Note 7C: Druggability of protein-phenotype pairs by integrating the druggable 450 
genome, DrugBank, and Open Targets Platform 451 
 452 
We provide druggability visualization for proteins implicated in various diseases (stratified by 453 
disease category) which may be potentially explored as opportunities for drug development for 454 
European (Supplementary Figure 7) and East Asian ancestries (Supplementary Figure 8). For 455 
instance, increased genetically predicted ANGPTL4 (Tier 3 target) leads to increased risk of CAD 456 
(Supplementary Figure 7 - Cardiovascular). 457 
  458 
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Supplementary Note 8: Prioritization of targets for CAD and T2D 459 
 460 
We applied filtering steps to prioritize proteins involved in CAD (Supplementary Figure 9a) and 461 
T2D (Supplementary Figure 9b). See Supplementary Note 8 Methods below. In European 462 
ancestries, we found directional concordance between MR estimates and hazard ratios from 463 
Cox regression for incident CAD for 18 proteins, ANGPTL4, C1R, C1S, COL6A3, COMT, DDT, 464 
DUSP13, FES, FN1, IL6R, ITIH4, MST1, PCSK9, PDE5A, PLG, SCARF2, TGFB1, and TIMP2. 465 
Two of these proteins, ITIH4 and ANGPTL4 were putatively causal for more than one 466 
phenotype in African ancestries, albeit for different outcomes, while three proteins, IL6R, 467 
PCSK9, and PLG were putatively causal for more than one phenotype in East Asian ancestries 468 
(Supplementary Figure 9a, Supplementary Note Table 13). 469 
 470 
We also found directional concordance between MR estimates and hazard ratios from Cox 471 
regression for incident T2D for 8 proteins, ACE, ANGPTL4, INHBB, LRIG1, MINDY1, PAM, 472 
PAPPA, and TFRC in European ancestries. ANGPTL4 was the only putatively causal protein from 473 
this list present in African ancestries while in East Asian ancestries, three of these proteins, INHBB, 474 
LRIG1, and TFRC were putatively causal (Supplementary Figure 9b, Supplementary Note 475 
Table 14). 476 
 477 
We found that, in European ancestries, each standard deviation increase in ANGPTL4 levels was 478 
associated with increased odds of incident CAD (OR = 1.17, SE = 0.016, P = 1.89 × 10-22) and 479 
increased odds of incident T2D (OR = 1.21, SE = 0.023, P = 4.02 × 10-17). These results are 480 
consistent with our findings from MR, where increased circulating ANGPTL4 levels were 481 
associated with increased risk of CAD and T2D. Notably, MR estimates in African ancestries for 482 
ANGPTL4 also supported this concordance in European ancestries with ANGPTL4 being 483 
negatively associated with high density lipoprotein cholesterol levels and positively associated 484 
with triglycerides supporting ANGPTL4 as a potential therapeutic target for intervention.  485 
 486 
In addition, each standard deviation increase in INHBB levels was associated with a 1.19-fold 487 
increased hazard of T2D (SE = 0.022, P = 3.63 × 10-14), aligning with MR findings of increased 488 
T2D risk. MR evidence in East Asian ancestries showed that higher genetically predicted INHBB 489 
levels increase the risk of blood urea nitrogen and G-glutamyl transpeptidase, both linked to T2D 490 
risk. However, in East Asian ancestries, reducing INHBB levels might lower HDL cholesterol and 491 
raise LDL cholesterol, potentially increasing cardiovascular risk. Thus, therapeutic strategies 492 
targeting INHBB must be carefully evaluated for adverse lipid profile effects. Comprehensive 493 
research is needed to ensure benefits outweigh risks and to develop strategies that selectively 494 
modulate INHBB without harming cardiovascular health. 495 
 496 
We found corroborative evidence of causality between ANGPTL4 and coronary artery disease 497 
and type 2 diabetes which was validated through observational association analyses on incident 498 
coronary artery disease and incident type 2 diabetes risk in European ancestries. Additionally, 499 
through MR we also identified similar causal roles for ANGPTL4 in African ancestries for related 500 
biomarkers such as HDL cholesterol and triglycerides which were in directions congruent with our 501 
CAD and T2D findings. ANGPTL4 is an inhibitor of lipoprotein lipase (LPL) which leads to 502 
increased triglyceride levels and prior studies have shown that the ANGPTL4 coding variant E40K 503 
has been associated with lower plasma triglyceride levels22 and lower risk of both CAD and T2D23. 504 
While no current therapies exist for ANGPTL4, a closely related protein ANGPTL3, which also 505 
inhibits LPL does and is targeted by zodasiran, an RNA interference therapy. Zodasiran targets 506 
ANGPTL3 expression in the liver and demonstrated efficacy in reducing triglyceride levels in 507 
patients with mixed hyperlipidemia24. Mechanistically, ANGPTL4 and ANGPTL3 act differently. 508 
Whereas ANGPTL3 inhibitory activity on LPL is hindered through binding to heparin, ANGPTL4 509 
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is unaffected by heparin binding suggesting that ANGPTL4 may employ distinct regulatory 510 
mechanisms in modulating LPL activity, potentially involving alternative molecular interactions or 511 
structural characteristics that confer resistance to heparin inhibition. Further research into these 512 
mechanisms could unveil novel therapeutic strategies for managing cardiovascular diseases. 513 
 514 
 515 
Supplementary Note 8 Methods 516 
 517 
8.1. Prioritizing targets for CAD and T2D 518 
For European protein-phenotype associations, we first subsetted to those with consistent MR 519 
effect across all four cohorts (ARIC, deCODE, Fenland, and UKB-PPPP) then integrated Cox 520 
regression effects and determined directional concordance between MR effect estimates and 521 
observational association estimates. Those with discordance between the two estimates were 522 
removed and the remaining proteins were retained as potential candidates. We performed this 523 
procedure for both incident CAD and incident T2D. A detailed flow diagram is shown in 524 
Supplementary Figure 9.  525 
 526 
We highlight that when comparing the direction of MR effect estimates with observational 527 
association estimates, we removed proteins with inconsistent direction and those which did not 528 
have an observational association estimate. Since Cox regression was performed on the UKB-529 
PPP Olink Explore 3072 proteins, MR effect estimates from SomaScan v4 proteins would not 530 
have a corresponding observational association estimate meaning proteins exclusive to 531 
SomaScan v4 were not considered. Therefore, only proteins from Olink or common proteins 532 
between SomaScan and Olink were analyzed in this analysis. 533 
 534 
8.2. Observational associations between circulating protein abundances and incident CAD and 535 
T2D in the UK Biobank 536 
We assessed whether MR effect estimates were in alignment with observational associations as 537 
this can provide an additional source of evidence supporting the purported protein-phenotype 538 
association. To perform observational association analysis on incident CAD and T2D, we used 539 
individual level data from the UK Biobank to determine whether circulating protein abundances 540 
were able to predict future risk of these diseases based on 10 years of follow-up. 541 
 542 
CAD was defined as in our previous study5. Briefly, we used three criteria: (i) a record of ICD-10 543 
codes I20-I25 (ischemic heart disease), (ii) an operation record of percutaneous transluminal 544 
coronary angioplasty (PTCA) or coronary artery bypass grafting (CABG), and (iii) a death record 545 
associated with ICD-10 codes I20-I25. The time to event was determined by subtracting the event 546 
registration date from the enrollment date (data field: 53), focusing on events occurring within 10 547 
years of enrollment. We excluded individuals with pre-existing CAD who met these criteria prior 548 
to enrollment, as well as those without a recorded event date. Controls were defined as individuals 549 
without a CAD record based on doctor diagnosis (data field: 6150), self-reported heart attack 550 
(data field: 20002), or an ICD-10 record of I20-I25. 551 
 552 
T2D was defined using ICD-10 code E-11 while controls were defined as individuals without any 553 
type of diabetes based on self-reports. 554 
 555 
We used Cox proportional hazards models (function: coxph()) adjusting for age, sex, BMI, 556 
recruitment center, time to Olink processing, batch, and the first 10 principal components to 557 
associate 2,922 Olink 3072 Explore platform proteins from 4,750 cases with incident CAD and 558 
32,565 controls and 3,066 cases with incident T2D and 37,453 controls. Protein levels were 559 
inverse rank normal transformed prior to analysis.  560 
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Supplementary Note 9: Detailed description of Kyoto University Nagahama East Asian cohort 561 
 562 
9.1. Study Cohort 563 
Whole-genome sequencing (WGS) and proteome analysis were conducted using samples from 564 
the Nagahama Prospective Genome Cohort for Comprehensive Human Bioscience (Nagahama 565 
Study). A subset of 2,000 individuals (1,392 women, mean age 56.7 years; 608 men, mean age 566 
62.0 years) was selected from 8,559 participants in the first follow-up health check (2012-2016). 567 
Ethical approval was obtained from the Kyoto University Graduate School of Medicine and the 568 
Nagahama Municipal Review Board (No. 278). All participants provided written informed 569 
consent. 570 
 571 
9.2. Plasma Samples and Protein Quantification 572 
Plasma was isolated from EDTA-treated blood by centrifugation and stored at −80 °C. Protein 573 
levels were measured using SomaScan assay v4, targeting 4,740 unique proteins with 5,284 574 
SOMAmers. After quality control, 1,997 plasma samples and 4,392 SOMAmers (4,196 proteins) 575 
were retained. Data were normalized and used for protein quantitative trait locus (pQTL) 576 
analysis. Some proteins had multiple SOMAmers targeting different forms, distinguished by 577 
annotations in the SomaId and Target columns. 578 
 579 
9.3. Whole-Genome Sequencing 580 
WGS was performed on 1,573 samples using Illumina platforms and 385 samples using a 581 
DNBSEQ-G400 instrument, following standard protocols (GATK and DRAGEN). After quality 582 
control, including kinship analysis and variant concordance checks, 1,823 samples and 583 
4,642,253 variants were retained for protein association analysis. 584 
 585 
9.4. pQTL Analysis 586 
Genetic associations with 4,392 SOMAmers were analyzed using PLINK (v.2.00a3LM) with age, 587 
sex, variant-calling pipeline, and the first five genetic principal components as covariates. The 588 
genome-wide significance threshold was set at 1.08 × 10−8 after Bonferroni correction. 589 
 590 
9.5. Linkage Disequilibrium (LD) Clumping 591 
LD clumping was performed using PLINK, defining clumping regions as 500 kb around index 592 
variants with an LD threshold of R2 ≥ 0.8. Each region was assigned a unique ID. 593 
 594 
9.6. Conditional Analysis 595 
Independent signals at the loci were identified through stepwise selection in GCTA-COJO with 596 
the following parameters: --maf 0.01 --cojo-slct, --cojo-collinear 0.9 –cojo-p 5e-8  597 
 598 
 599 
  600 
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Supplementary Note 10: Detailed description of PWCoCo and SharePro 601 
 602 
We performed colocalization analyses using PWCoCo and SharePro as complementary methods 603 
to safeguard against potential putative causal associations confounded by LD and ensure higher 604 
confidence in our findings. Since differences in LD structures between populations under study 605 
can introduce bias in MR analyses, the presence of a shared causal variant between the exposure 606 
and outcome can help mitigate this issue and increase the robustness of the MR findings.  607 
 608 
10.1. Pairwise conditional and colocalization analysis (PWCoCo) 609 
 610 
Pairwise conditional and colocalization analysis (PWCoCo) (https://github.com/jwr-git/pwcoco) 611 
integrates methods from conditional analyses (GCTA-COJO)25 and colocalization analyses 612 
(coloc)26 which relaxes the simplified single causal variant assumption of coloc thereby allowing 613 
the assessment of whether multiple causal variants exist and colocalize within a region. Through 614 
conditional analyses, independent signals from both traits (here protein GWAS and outcome 615 
GWAS) can be identified and colocalization can be conducted on each pair of conditionally 616 
independent signals for the two GWAS while upholding the strict single variant assumption of 617 
coloc. PWCoCo has been shown to outperform existing methods in scenarios where the single 618 
variant assumption is violated27. It also enables the identification of previously missed disease-619 
causing variants through its ability to perform independent colocalization of secondary signals 620 
and offers key improvements through its computational efficiency and ease-of-use. We performed 621 
PWCoCo using default settings and set the maximum number of causal variants in the region, k, 622 
to 5. PWCoCo, similar to coloc, reports five colocalization probabilities: H0 – no association with 623 
either trait; H1 – association with trait 1, not with trait 2; H2 – association with trait 2, not with trait 624 
1; H3 – association with trait 1 and trait 2, two independent SNPs; H4 – association with trait 1 625 
and trait 2, one shared SNP (i.e., the probability that both traits are associated through the sharing 626 
of a single causal variant). We considered the maximum H4 posterior probability (PPH4) across 627 
all tested pairs of conditionally independent signals and report evidence of colocalization if the 628 
maximum PPH4 ≥ 0.8. We note that this is different from PPmax used in the main text which we 629 
use to denote the maximum PP between PWCoCo and SharePro colocalization methods. 630 
 631 
10.2. Shared sparse Projection for colocalization analysis (SharePro) 632 
 633 
Shared sparse Projection for colocalization analysis (SharePro) 634 
(https://github.com/zhwm/SharePro_coloc) is a novel colocalization method which extends upon 635 
the coloc framework. SharePro uses an efficient variational inference algorithm that leverages LD 636 
modelling and integration with colocalization assessment through grouping of correlated variants 637 
into effect groups to accurately estimate posterior colocalization probabilities which together 638 
overcome the aforementioned limitations. Further, SharePro has increased power for identifying 639 
biologically plausible signals in simulation analyses, outperforming coloc and PWCoCo while 640 
maintaining low computational cost and a low false positive rate28. We used SharePro (v.5.0.0) 641 
default settings which sets the maximum number of causal variants in the region, K, to 10.  642 
 643 
We emphasize that for SharePro, when K is larger than the true number of causal variants, it 644 
consistently provides adequate results in comparison to setting K to the true number of causal 645 
variants. Namely, K = 10 should always yield results similar to, or better than K = 5 which was set 646 
in PWCoCo due to the COJO step requiring a substantial increase in computational time with a 647 
larger defined K, which is not the case in SharePro. 648 
 649 
For the required LD input files to SharePro, we used the UKB 50k reference panel for European, 650 
the HGDP + 1kGP reference panel for African, and the 1kGP East Asian reference panel for East 651 

https://github.com/jwr-git/pwcoco
https://github.com/zhwm/SharePro_coloc
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Asian ancestries similar to what we utilized at the LD clumping stage previously described. 652 
SharePro reports the “share” column (colocalization probabilities) for all effect groups, and we 653 
reported evidence of colocalization for the protein GWAS and outcome GWAS pair if the 654 
maximum colocalization probability of any effect group was > 0.8. We also note that this is 655 
different from PPmax used in the main text which we use to denote the maximum PP between 656 
PWCoCo and SharePro colocalization methods. 657 
  658 
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Supplementary Note 11: 
STROBE-MR checklist of recommended items to address in reports of Mendelian randomization studies1 2  
Note: Page number will be added at the proof-reading stage. 
 

Item 
No. 

Section Checklist item  Page 
No. 

Relevant text from manuscript 

1 TITLE and 
ABSTRACT 

Indicate Mendelian randomization (MR) as the study’s design in the title and/or the 
abstract if that is a main purpose of the study 

1, 2 Specified in the title abstract  

 INTRODUCTION    

2 Background Explain the scientific background and rationale for the reported study. What is the 
exposure? Is a potential causal relationship between exposure and outcome 
plausible? Justify why MR is a helpful method to address the study question 

3 Explained in paragraph 1 of the introduction 
section.  

3 Objectives State specific objectives clearly, including pre-specified causal hypotheses (if any). 
State that MR is a method that, under specific assumptions, intends to estimate 
causal effects 

3 Explained in paragraph 1 of the introduction 
section. 

 METHODS    

4 Study design and 
data sources 

Present key elements of the study design early in the article. Consider including a 
table listing sources of data for all phases of the study. For each data source 
contributing to the analysis, describe the following:  

 Explained in the Methods section and sources of 
data are presented in supplementary table 1 
(ST10-12).  

 a) Setting: Describe the study design and the underlying population, if possible. 
Describe the setting, locations, and relevant dates, including periods of recruitment, 
exposure, follow-up, and data collection, when available. 

 The study design and the underlying population are 
described in the Methods section. The remainder 
are described in the main text. 

 b) Participants: Give the eligibility criteria, and the sources and methods of selection of 
participants. Report the sample size, and whether any power or sample size 
calculations were carried out prior to the main analysis  

 (b)–(e) were described in the Methods section and 
Supplementary Note 

 c) Describe measurement, quality control and selection of genetic variants   

 d) For each exposure, outcome, and other relevant variables, describe methods of 
assessment and diagnostic criteria for diseases 

  

 e) Provide details of ethics committee approval and participant informed consent, if 
relevant 

  

5 Assumptions 
 

Explicitly state the three core IV assumptions for the main analysis (relevance, 
independence and exclusion restriction) as well assumptions for any additional or 
sensitivity analysis 

 Explicitly stated in the introduction and in the 
Methods. 
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6 Statistical 
methods: main 
analysis 

Describe statistical methods and statistics used   

 a) Describe how quantitative variables were handled in the analyses (i.e., scale, units, 
model) 

 (a)–(e) were described in the Methods as well as 
the Results section. 

 b) Describe how genetic variants were handled in the analyses and, if applicable, how 
their weights were selected 

  

 c) Describe the MR estimator (e.g. two-stage least squares, Wald ratio) and related 
statistics. Detail the included covariates and, in case of two-sample MR, whether the 
same covariate set was used for adjustment in the two samples 

  

 d) Explain how missing data were addressed   

 e) If applicable, indicate how multiple testing was addressed   

7 Assessment of 
assumptions 

Describe any methods or prior knowledge used to assess the assumptions or justify 
their validity  

 7–9 were described in the Methods section as well 
as the Results section. 

8 Sensitivity 
analyses and 
additional 
analyses 

Describe any sensitivity analyses or additional analyses performed (e.g. comparison 
of effect estimates from different approaches, independent replication, bias analytic 
techniques, validation of instruments, simulations) 

  

9 Software and pre-
registration 

   

 a) Name statistical software and package(s), including version and settings used    

 b) State whether the study protocol and details were pre-registered (as well as when 
and where) 

  

 RESULTS    

10 Descriptive data    

 a) Report the numbers of individuals at each stage of included studies and reasons for 
exclusion. Consider use of a flow diagram 

 Described in the Methods and Supplementary 
Tables. 

 b) Report summary statistics for phenotypic exposure(s), outcome(s), and other relevant 
variables (e.g. means, SDs, proportions) 

 Described in the Methods and Supplementary 
Tables. 

 c) If the data sources include meta-analyses of previous studies, provide the 
assessments of heterogeneity across these studies 

 Discussed in the original papers. We also 
evaluated the heterogeneity and horizontal 
pleiotropy in our analyses. 
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 d) For two-sample MR: 
   i.  Provide justification of the similarity of the genetic variant-exposure associations 
between the exposure and outcome samples 
   ii.  Provide information on the number of individuals who overlap between the 
exposure and outcome studies 

 Described in the Methods, Results, and 
Supplementary Note.  

11 Main results    

 a) Report the associations between genetic variant and exposure, and between genetic 
variant and outcome, preferably on an interpretable scale 

 (a)–(c) were described in the Results. 

 b) Report MR estimates of the relationship between exposure and outcome, and the 
measures of uncertainty from the MR analysis, on an interpretable scale, such as 
odds ratio or relative risk per SD difference 

  

 c) If relevant, consider translating estimates of relative risk into absolute risk for a 
meaningful time period 

  

 d) Consider plots to visualize results (e.g. forest plot, scatterplot of associations between 
genetic variants and outcome versus between genetic variants and exposure) 

 Described in the Methods, Results, Main Figures 
and Supplementary Figures using forest plots. 

12 Assessment of 
assumptions 

   

 a) Report the assessment of the validity of the assumptions  Described in the Methods and Results. 

 b) Report any additional statistics (e.g., assessments of heterogeneity across genetic 
variants, such as I2, Q statistic or E-value) 

 Described in the Methods and Results. 

13 Sensitivity 
analyses and 
additional 
analyses 

   

 a) Report any sensitivity analyses to assess the robustness of the main results to 
violations of the assumptions 

 (a)-(d) were described in the Methods and Results. 

 b) Report results from other sensitivity analyses or additional analyses   

 c) Report any assessment of direction of causal relationship (e.g., bidirectional MR)   

 d) When relevant, report and compare with estimates from non-MR analyses   

 e) Consider additional plots to visualize results (e.g., leave-one-out analyses)  We did not perform leave-one-out analyses but 
assessed the robustness of the analyses using two 
colocalization methods (PWCoCo and SharePro) 
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which are described in the Methods, Results, and 
Supplementary Note. 

 DISCUSSION    

14 Key results  Summarize key results with reference to study objectives  Described in the Discussion. 

15 Limitations Discuss limitations of the study, taking into account the validity of the IV assumptions, 
other sources of potential bias, and imprecision. Discuss both direction and 
magnitude of any potential bias and any efforts to address them  

 Described in the Discussion. 

16 Interpretation    

 a) Meaning: Give a cautious overall interpretation of results in the context of their 
limitations and in comparison with other studies 

 (a)–(c) were described in the Results and 
Discussion. 

 b) Mechanism: Discuss underlying biological mechanisms that could drive a potential 
causal relationship between the investigated exposure and the outcome, and whether 
the gene-environment equivalence assumption is reasonable. Use causal language 
carefully, clarifying that IV estimates may provide causal effects only under certain 
assumptions  

  

 c) Clinical relevance: Discuss whether the results have clinical or public policy 
relevance, and to what extent they inform effect sizes of possible interventions 

  

17 Generalizability    Discuss the generalizability of the study results (a) to other populations, (b) across 
other exposure periods/timings, and (c) across other levels of exposure 

 Described in the limitations section in the 
Discussion. 

 OTHER 
INFORMATION 

   

18 Funding Describe sources of funding and the role of funders in the present study and, if 
applicable, sources of funding for the databases and original study or studies on 
which the present study is based 

 Described in the Acknowledgments. 

19 Data and data 
sharing  

Provide the data used to perform all analyses or report where and how the data can 
be accessed, and reference these sources in the article. Provide the statistical code 
needed to reproduce the results in the article, or report whether the code is publicly 
accessible and if so, where 

 Described in the Data Availability and Code 
availability. 

20 Conflicts of 
Interest   

All authors should declare all potential conflicts of interest  Described in the Competing Interests 

This checklist is copyrighted by the Equator Network under the Creative Commons Attribution 3.0 Unported (CC BY 3.0) license. 
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Supplementary Figure 1. Within-ancestry cis-pQTL effect size concordance. 
Cis-pQTL effect size concordance for (a) European and (b) African ancestry cohorts. In European 
and African ancestry proteomics cohorts, the effect allele of cis-pQTLs in each cohort was aligned 
to the minor allele of the corresponding variant in their respective reference panels—UKB 50k for 
European and HGDP+1kGP for African ancestry—to harmonize alleles across each ancestral 
cohort for plotting. Red line is the diagonal while blue line is the best-fit line with standard errors 
shown by blue shading. Horizontal and vertical gray dashed lines show y = 0 and x = 0, 
respectively.

(a) European ancestry cohorts pairwise comparison

(b) African ancestry cohorts pairwise comparison



Supplementary Figure 2. Protein-phenotype network plots for other phenotypes in 
European ancestry; six phenotype categories)
Significant estimates between proteins (orange circles) and traits (green rectangles). Arrow 
thickness indicates how often a protein measurement has a causal effect on the outcome trait.  For 
simplicity, we only depict protein-phenotype pairs in which all European cohorts showed concordant 
direction of effect estimates. Red arrows indicate a positive causal estimate of the protein on the 
outcome while blue arrows indicate a negative causal estimate of the protein on the outcome.

a. Cardiovascular (binary traits only)
b. Autoimmune
c. Neurological
d. Psychiatric
e. Metabolic/endocrine
f. Gastrointestinal

We note the following:
- Eczema appears in both Autoimmune and Skin network plots
- Type 1 diabetes appears in both Autoimmune and Metabolic/endocrine network plots
- Inflammatory bowel disease, Ulcerative colitis, Crohn’s disease, and Celiac disease appear in 
both Autoimmune and Gastrointestinal network plots
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PDE5A

MSRA

NUDT12

RABEPK

DPT

MPL

Thoracic aortic aneurysm

FBP1

ZPR1

ATP5IF1

SOST

Stroke (small vessel stroke)

ENPEP

MMP12

GM2A

IL6R

EFCAB14

SWAP70

SEMA3C

KDELC2

ITIH3

COL18A1

Hypertrophic cardiomyopathy

PLEK

PFKFB2

TES

GPA33

RBPMS2

HGFAC

CDKN1A

PRKCA

UMOD

HPGDS

DNAJB4

SORT1

QSOX2

TAGLN

GMPR

PLCG2

FES

EIF4E2

FBLN5

CPXM1

CCBL2

PKD1

GLRX

FER

SERPINE2

PRPSAP2

MRC2

HHIP

LAYN

HSPG2

TIE1

Stroke (large artery stroke)

EDN1

FOXO3

CRIM1

ZFYVE19

CD164L2

MXRA7

FBN2

ABO

SERPING1

TNFSF12

ERAP1

LRIG1

ULK3

DLK1

THBS2

PDGFRA

VWF

FLRT2

QPCTL

SCARF2
ERAP2

NUCB2

GRK5

TIMP2

APOB

CETN3

DNAJC17

SAT2

ANKRD54

BTN3A2

SHMT1

CD46

Pulmonary embolism +/- DVT

PLXNB2

Complex trait (outcome)

Positive causal estimate

Negative causal estimate

Protein trait (exposure)

One significant estimate
Two significant estimates
Three significant estimates
Four significant estimates
Five significant estimates
Seven significant estimates

a. Cardiovascular (binary traits only)



SHISA5

PDE4A

SCGN

SPRED2

MST1

ZPR1

IL27RA

ITGB7

Hayfever/allergic rhinitis
ULK3CD40

ADAMTS4

CTRB2

CTSS

ICOSLG

IL23R

Psoriasis

FCGR3B

TLR1

TNFAIP3

RIPK2

GCKR NFKB1

Type 1 diabetes

IL10RA

CEBPB

CCL25

IL18R1

CTRB1

SCAMP3

KLRB1

IL7R

TNFSF11

ASPH

B4GALT1

Ulcerative colitis

HYAL1

DARS1

Rheumatoid arthritis

HGFAC

IL2RB

RNASET2

IL1RL1

MMP9

Inflammatory bowel disease

CCL8

Celiac disease

LGALS9

PADI2

BTN3A2
CEACAM1

Crohn's disease

ASF1A

MAPKAPK2

CD28

LILRA5

SIRPG

CXCL5
DLD

CD274

IL12RB1

NMB

B3GNT2

Eczema

IgA nephropathy

GPN1

STAT6

DCN

CARD9
STAT3

GRP

ULBP3

LTBR

ANXA2

PARK7

FLT3

FYN

FCRL1

PGM1

APOB

TIMD4

CHI3L1F11

TNFRSF14

IDUA

Systemic lupus erythematosus

ARHGAP45

TNFSF8

AFP

ITLN1

IL12B

APOH

UBLCP1

GCA

PIGR

FAM172A

IL1R2

PLAU

Complex trait (outcome)

Positive causal estimate
Negative causal estimate

Protein trait (exposure)

One significant estimate
Two significant estimates
Three significant estimates
Four significant estimates

b. Autoimmune



TF

Cognitive performance

ASF1A

NUDT12

SLC9A3R2

MST1

IL2RA

PLOD2

AKT3

FCRL1

RPS6KA1

CD40

Autism spectrum disorder

Educational attainment

MTMR6

TXNDC15

IRF3

CTSS

SERPINA1

AGRN

ICAM5

Epilepsy (focal)

GCKR

PTN

C1R

PSME2

SCLY

NAE1

CD33

F2

RAB21

DYNLL2

SLAMF1

Mood swings

SOD1

DKKL1

LINGO1

STK4

Bipolar disorder

BPNT1

ENPP5

KIFBP

KLRB1

ITIH1

NPTXR

MSRA

ERLEC1

HYAL1

TNFRSF1A

SCGN

DNAJB4

RMDN1

FUT5

CR1

CLN5

CTSF

ESAMKLC1

POR

ENTPD5

NTM

RELT

ITIH3

CD46

TBCA

ADAM22

TNFRSF14

CD164

ACE

ADAMTS4

NRK1

NEO1

CFHR1

FCGR2A

Parkinson's disease

DNAJC17TANK

BTN3A2

MTHFD1

HIP1R

TMEM106B

FRZB

ST8SIA6

FGFR1

PSCA

XPNPEP1

NECTIN2

CDH6

MAP2

DNPH1

NIT2

SCG3

MMP16

UROS

Multiple sclerosis

SLAMF7

FAM172A

NT5C2

PTPRF

TNFSF14

CHMP1A

RAB2B

FHIT

Epilepsy (GGE)

Schizophrenia

SRA1

CREB3L4

MAP2K3

LTA4H

FOXO3

IGFLR1

GRAMD1C

ASIP

C1S

Intracranial aneurysm

MAP1LC3A
SUGP1

CD86

CTSH

TNFSF12

PPA2

NUDCD3

STAT3

Bulimia nervosa

PLXNB2

MEGF9

Neuroticism

TIE1

ACAA1

NRP1

LMAN2L

ERI1

IDUA

NMB

TPP1

Migraine

ULBP3

SDCCAG8

SHMT1

PLEK

C2CD2L

MRVI1

SHANK3NEGR1

CD68

CD55

Amyotrophic lateral sclerosis (ALS)

MAD1L1

RSPO3

B3GALTL

YWHAB

Attention deficit and hyperactivity disorder

NME4

Anxiety/panic attacks

GGACT ULK3

GRN

FES

Alzheimer's disease

CERT

CNPY3

PLEKHO1

DPP4

BCHE
BIN1

CD2AP

CCM2

DBN1

MARK3

SERPING1

Complex trait (outcome)

Positive causal estimate

Negative causal estimate

Protein trait (exposure)

One significant estimate
Two significant estimates
Three significant estimates
Four significant estimates

c. Neurological



DKKL1

LINGO1

STK4

Bipolar disorder

SOD1

ENPP5

KIFBP

KLRB1

ITIH1

BPNT1

MSRA

ERLEC1

HYAL1

TNFRSF1A

NPTXR

DNAJB4
RMDN1

FUT5

CR1

SCGN

CTSF

ESAM

KLC1

POR

CLN5

NTM

RELT

ITIH3

CD46

ENTPD5

ADAM22

TNFRSF14

CD164

ACE

TBCA

NRK1

NEO1

CFHR1

FCGR2A

ADAMTS4

DNAJC17

TANK

BTN3A2

MTHFD1

Parkinson's disease

TMEM106B

FRZB

ST8SIA6

FGFR1

HIP1R

XPNPEP1

NECTIN2

CDH6

MAP2

PSCA

NIT2

SCG3

MMP16

UROS

DNPH1

SLAMF7

FAM172A

NT5C2

PTPRF

Multiple sclerosis

CHMP1A

RAB2B

FHIT

Epilepsy (GGE)

TNFSF14

SRA1

CREB3L4

MAP2K3

LTA4H

Schizophrenia

IGFLR1

GRAMD1C

ASIP

C1S

FOXO3

MAP1LC3A

SUGP1

CD86

CTSH

Intracranial aneurysm

PPA2

NUDCD3

STAT3

Bulimia nervosa

TNFSF12

MEGF9

NeuroticismTIE1

ACAA1

PLXNB2

LMAN2L

ERI1

IDUA

NMB

NRP1

Migraine

ULBP3

SDCCAG8

SHMT1

PLEK

TPP1

MRVI1

SHANK3

NEGR1

CD68

CD55

C2CD2L

MAD1L1

RSPO3 B3GALTL

YWHAB

Attention deficit and hyperactivity disorder

Amyotrophic lateral sclerosis (ALS)

Anxiety/panic attacks

GGACT

ULK3

GRN

FES

NME4

CERT

CNPY3

PLEKHO1

DPP4

BCHE

Alzheimer's disease

CD2AP

CCM2

DBN1

MARK3

SERPING1

BIN1

ASF1A

NUDT12

SLC9A3R2

MST1

TF

Cognitive performance

AKT3

FCRL1

RPS6KA1

CD40

IL2RA

PLOD2

MTMR6

TXNDC15

IRF3

CTSS

Autism spectrum disorder

Educational attainment

ICAM5

Epilepsy (focal)

GCKR

PTN

SERPINA1

AGRN

PSME2

SCLY

NAE1

CD33

C1R

RAB21

DYNLL2

SLAMF1

Mood swings

F2

Complex trait (outcome)

Positive causal estimate
Negative causal estimate

Protein trait (exposure)

One significant estimate
Two significant estimates
Three significant estimates
Four significant estimates

d. Psychiatric



APOH

EPS8L2

NAE1

FGF7

PIGR

ANGPTL4

PKD2
Abdominal subcutaneous adipose tissue 

adjusted for BMI and height (ASATadj) 

TG

RSPO3

PAPPA

EFNA1

POMC

NAPG

KLRB1

NFKB1

Visceral adipose tissue adjusted for BMI and 
height (VATadj) 

TIMP4

FAP

ITIH1

Liver volume

HHIP

EFEMP1

PAM

Abdominal subcutaneous adipose tissue and 
gluteofemoral adipose tissue ratio 

(ASAT/GFAT)

FCRL1

FOXO1

CTRB1

SERPINA1

LRIG1

PRDX1

IL7R

CCN4

RMDN1

ITIH3

NQO1

B3GAT3

FAM162A

FKBP4

B4GALT1

ENTPD6

TANK

TAGLN

IL2RB

PRPSAP2

MINDY1

IL1RL1

NCF1

Type 1 diabetes

ERO1LB

CD83

ATP1B2

CCL25

GKN2

HSF1

CD59

SEMA3E

ITIH5

BTN3A2

PRG2

PCDH17

SDCCAG8

LYZ

CCL5

SCAMP3

PLXND1

CHRDL2

Visceral adipose tissue and abdominal 
subcutaneous adipose tissue ratio 

(VAT/ASAT)

PEPD

TNFSF11

ASF1A

ISLR2

Visceral adipose tissue (VAT)

ACE

CCL22

Gluteofemoral adipose tissue (GFAT)

LAYN

PCBD1

FGFR1

Hypothyroidism/myxoedema

Abdominal subcutaneous adipose tissue 
(ASAT)

IL27RA

RAB2A

SPP1

Hyperthyroidism/thyrotoxicosis

RAB21

PKN3

CASP9

DLD

RNASET2

DKKL1

CTRB2

GDI2

CSF1

Visceral adipose tissue and gluteofemoral 
adipose tissue ratio (VAT/GFAT) 

MSRA

PCSK7

HINT1

INHBB

Gluteofemoral adipose tissue adjusted for 
BMI and height (GFATadj) 

ATP5IF1

NPTX1

ASIP

NMB

DLL1

DNAJB4

MPPED2

NBL1

IL6R
Urate

MRC2

RPS6KA1

PGM1

GSTA1

MANBA
SIRPG

PPA1

GRN

ANXA2

Type 2 diabetes

THG1L

IRF3

PDE4A

FYN

PDHX

PLSCR3

ITIH4

ITGB7

INSR

GPN1

PRPSAP1

CD40

PRKCB

AS3MT

GCKR

CTSS

ICAM1

NTN4

ELOA

COMT

TFRC

Complex trait (outcome)

Positive causal estimate

Negative causal estimate

Protein trait (exposure)

One significant estimate
Two significant estimates
Three significant estimates
Four significant estimates
Five significant estimates

Seven significant estimates
Six significant estimates

e. Metabolic/endocrine



SHISA5

CEBPB

ULK3

CTRB1 IL23R

MMP9

GCKR

Celiac disease

IL10RA

CEACAM1

IL18R1

CD28

Accelerated liver age

DLD

Accelerated abdomen ageGRP

EFEMP1

F11

HYAL1

APOH

SULT2A1

PIGR

HGFAC

Cholelithiasis

IL1RL1

SERPINA1

CCL8

PLAU

BTN3A2

SCGN

MAPKAPK2

ZPR1

CXCL5

ICOSLG

IL12RB1

FCGR3B

CD274

STAT3

Primary sclerosing cholangitis

B3GNT2

LTBR

DTNB

GPN1

IDUA

RIPK2

Melaena

Hirschsprung's disease

SCAMP3
SCPEP1

RNASE4

TNFSF11

CARD9

TNFSF8

Ulcerative colitis

PARK7

IL12B

RNASET2

TIMD4

IL1R2

Inflammatory bowel disease

ARHGAP45

PDE4A

LGALS9

ITLN1

MST1

Crohn's disease

UBLCP1

CD40

LILRA5

FAM172A

CTSS

Accelerated pancreas age

KITLG

LRTM2

NFKB1

Complex trait (outcome)

Positive causal estimate

Negative causal estimate

Protein trait (exposure)

One significant estimate
Two significant estimates
Three significant estimates
Four significant estimates

f. Gastrointestinal



ABO – Total cholesterol levels                     ABO – Low density lipoprotein cholesterol levels

CD36 – High density lipoprotein cholesterol levels CD36 – Triglycerides

APOB – Low density lipoprotein cholesterol levels APOB – Total cholesterol levels

CA4 – Height GHR – Height

DEF6 – Height ACP1 – Body mass index

AOC1 – Height HGFAC – Triglycerides

PAV-High

PAV-High
PAV-High

PAV-High

PAV-High

Inconsistent within 
ancestry

Supplementary Figure 3. Protein-phenotype pairs with discordant direction across ancestries. Protein-phenotype associations that have an 
estimated causal effect (FDR < 0.05), passed MR sensitivity analyses, and colocalized (PP.H4 > 0.8) in either PWCoCo or SharePro but had 
inconsistent direction of MR effect estimates across ancestries. Sample sizes for each outcome can be found in Supplementary Tables 13, 14, and 
15 for European, African, and East Asian ancestries, respectively.

PAV-Moderate



Supplementary Figure 4. The overlap between instrumentable protein-coding genes and the druggable 
genome from Finan et al. 
The number of proteins classified into each tier when normalized by the number of instrumentable protein coding 
genes.



Tier 2

Tier 3

Unclassified

Tier 1

Supplementary Figure 5. UpSet plot showing the overlap 
between instrumentable proteins and the druggable genome 
across three ancestries.
(a) Tier 1, (b) Tier 2, (c) Tier 3, and (d) Unclassified groupings 
from Finan et al. The height of bars in the graphs display the 
number of instrumentable proteins common to a given cohort 
configuration. The x-axis shows the different cohort 
configurations. Horizontal bar graphs along with dots indicate a 
specific ancestry cohort and their frequency with ancestry 
denoted by shading (Green shading: East Asian ancestry cohort; 
Blue shading: African ancestry cohorts; Light red shading: 
European ancestry cohorts). The vertical red bar and red dotted 
line denote instrumentable proteins common to all cohorts 
across all three ancestries. 



Tier 2

Tier 3

Unclassified

Tier 1

Supplementary Figure 6. UpSet plot showing the overlap between 
instrumentable proteins and the druggable genome across 7 cohorts.
(a) Tier 1, (b) Tier 2, (c) Tier 3, and (d) Unclassified groupings from Finan et al. The 
height of bars in the graphs display the number of instrumentable proteins common 
to a given cohort configuration. The x-axis shows the different cohort configurations. 
Horizontal bar graphs along with dots indicate a specific ancestry cohort and their 
frequency with ancestry denoted by shading (Green shading: East Asian ancestry 
cohort; Blue shading: African ancestry cohorts; Light red shading: European 
ancestry cohorts). The vertical red bar and red dotted line denote instrumentable 
proteins common to all cohorts across all seven cohorts. 



Supplementary Figure 7. European ancestry druggability heatmaps for 12 disease categories. 

In the following supplementary figures, we show druggability heatmaps for different disease categories in 
European ancestries. 
Cell color displays the MR effect estimate based on Z score averaged across cohorts capped at -10 to +10 
with red showing a positive Z score indicating a positive MR effect of the protein on the phenotype and blue 
showing a negative Z score indicating a negative MR effect of the protein on the phenotype. For simplicity, 
in European ancestries, we only display protein-phenotypes with consistent effect across European cohorts. 
The y-axis shows the three drug databases. DrugBank (yellow square): DrugBank shows whether the 
protein has an available drug in the database. OpenTargets (pink square): Open Targets Platform shows 
whether the protein has available clinical trial information. Druggability: The druggable genome (as defined 
by Finan et al.) is shown for Tiers 1 (dark green, representing efficacy targets of approved small molecules 
and biotherapeutic drugs), Tier 2 (dark purple, representing proteins closely related to approved drug targets 
or which have associated drug-like compounds), Tier 3 (light purple, representing secreted or extracellular 
proteins, those distantly related to approved drug targets, and members of important druggable gene 
families not covered in Tier 1 or Tier 2), and Unclassified (gray, all other proteins not in Tiers 1 to 3). 
Proteins on the y-axis within each are sorted based on the number of supported databases.

In total, for Europeans, we assessed 15 different disease categories. 
However, here, we only show heatmaps for 12 disease categories and we do not show the following 3 
disease categories: 
• Anthropometry, due to the sheer size 
• Biomarker, due to the sheer size and 
• Reproductive and urogenital system, since there was only a single association. 

The remaining 12 disease categories are as follows: 

1. Cardiovascular 
• since Figure 7 already shows Tier 1 and Tier 2 for Cardiovascular diseases, we show Cardiovascular 

Tier 3 and Cardiovascular Unclassified here. 
2. Autoimmune 
• We show the entire Autoimmune heatmap here (including Tier 3 and Unclassified) while Figure 7 only 

shows Tier 1 and Tier 2 for Autoimmune diseases. 

For the remaining diseases, we do not stratify by druggability tier and show all protein-phenotypes together 
in the heatmaps. 
3. Renal 
4. Respiratory 
5. Metabolic/endocrine 
6. Neurological 
7. Psychiatric 
8. Musculoskeletal 
9. Gastrointestinal 
10. Miscellaneous 
11. Eye 
12. Cancer (all cancers are grouped together for simplicity which encompasses the following) Cancer/Skin 
Cancer/Metabolic disease 
Cancer Cancer/Respiratory 
Cancer/Neurological and psychiatric 
Cancer/Gastrointestinal 
Cancer/Renal



1. Cardiovascular Tier 3 (Left) and Cardiovascular Unclassified (Right)



2. Autoimmune 3. Renal 4. Respiratory



6. Neurological 7. Psychiatric

8. Musculoskeletal

5. Metabolic/endocrine



9. Gastrointestinal 10. Miscellaneous

11. Eye 12. Cancer



Supplementary Figure 8. East Asian ancestry druggability heatmaps for 11 disease 
categories. 

In the following supplementary figures, we show druggability heatmaps for East Asian disease 
categories. Cell color displays the MR effect estimate based on Z score averaged across cohorts 
capped at -10 to +10 with red showing a positive Z score indicating a positive MR effect of the 
protein on the phenotype and blue showing a negative Z score indicating a negative MR effect of 
the protein on the phenotype. For simplicity, in European ancestries, we only display protein-
phenotypes with consistent effect across European cohorts. The y-axis shows the three drug 
databases. DrugBank (yellow square): DrugBank shows whether the protein has an available drug 
in the database. OpenTargets (pink square): Open Targets Platform shows whether the protein has 
available clinical trial information. Druggability: The druggable genome (as defined by Finan et al.) 
is shown for Tiers 1 (dark green, representing efficacy targets of approved small molecules and 
biotherapeutic drugs), Tier 2 (dark purple, representing proteins closely related to approved drug 
targets or which have associated drug-like compounds), Tier 3 (light purple, representing secreted 
or extracellular proteins, those distantly related to approved drug targets, and members of 
important druggable gene families not covered in Tier 1 or Tier 2), and Unclassified (gray, all other 
proteins not in Tiers 1 to 3). Proteins on the y-axis within each are sorted based on the number of 
supported databases.

In total, for East Asians, we assessed 14 different disease categories. 
However, here, we only show heatmaps for 11 disease categories and we do not show the 
following 3 disease categories: 
• Renal, since there was only a single association. 
• Eye, since there was only a single association. 
• Autoimmune, since the heatmap for all proteins is already shown in Figure 8. 

For the remaining diseases, we do not stratify by druggability tier and show all protein-phenotypes 
together in the heatmaps. All diseases are shown separately except for Neurological and 
Psychiatric which we group together in one heatmap for simplicity. The remaining 11 disease 
categories are as follows: 
1. Cardiovascular 
• We show the entire Cardiovascular heatmap here (including Tier 3 and Unclassified) while 

Figure 8 only shows Tier 1 and Tier 2 for Cardiovascular diseases. 
• 2. Respiratory 
• 3. Metabolic/endocrine 
• 4. Neurological+Psychiatric (shown together for simplicity) 
• 5. Gastrointestinal 
• 6. Miscellaneous 
• 7. Cancer 
• 8. Haematology 
• 9. Anthropometry 
• 10. Biomarker



1. Cardiovascular 2. Respiratory

3. Metabolic/endocrine 4. Neurological and Psychiatric (shown 
together for simplicity)

5. Gastrointestinal 6. Miscellaneous



9. Anthropometry       

8. Haematology       

7. Cancer

10. Biomarker          



3,949 unique protein-phenotype pairs 
(995 proteins, 146 phenotypes)

18 proteins: ANGPTL4, C1R, C1S, 
COL6A3, COMT, DDT, DUSP13, FES, 

FN1, IL6R, ITIH4, MST1, PCSK9, PDE5A, 
PLG, SCARF2, TGFB1, TIMP2

Which of these proteins are present in 
more than one ancestry?

Supplementary Figure 9. Prioritizing proteins for coronary artery disease and type 2 
diabetes. 
Flow diagram showing filtering steps for MR estimates and Cox regression observational estimates 
to identify potential targets for (a) coronary artery disease and (b) type 2 diabetes. CAD = coronary 
artery disease; OR = odds ratio; T2D: Type 2 diabetes.

ARIC deCODE Fenland UKB-PPP
European

Legend

Method

Result

Subset to proteins that have ≥ 2 
associations with phenotypes including 

CAD as one of the phenotypes

60 proteins (33 unique)

Which have consistent MR effect direction 
as incident CAD Cox-regression OR 

estimate?

African: 
ITIH4, ANGPTL4

Present in Africans Present in East Asians

East Asian: 
IL6R, PCSK9, PLG 

Coronary artery disease

3,949 unique protein-phenotype pairs 
(995 proteins, 146 phenotypes)

8 proteins: ACE, ANGPTL4, INHBB, 
LRIG1, MINDY1, PAM, PAPPA, TFRC

Which of these proteins are present in 
more than one ancestry?

ARIC deCODE Fenland UKB-PPP
European

Subset to proteins that have ≥ 2 
associations with phenotypes including 

T2D as one of the phenotypes

35 proteins (23 unique)

Which have consistent MR effect direction 
as incident T2D Cox-regression OR 

estimate?

African: 
ANGPTL4

Present in Africans Present in East Asians

East Asian: 
INHBB, LRIG1, TFRC

Type 2 diabetesa b 
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