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1. Methods 

1.1. Data and pre-processing 

For the example predictions we used data of the 1st scanning session (ses-2) of the UK Biobank1, recorded at 
three different sites in the UK (Cheadle, Reading, Newcastle). The exact protocol and acquisition parameters 
of both the structural imaging as well as the rs-fMRI can be found in Miller et al. (2016)2. The initital structural 
and functional pre-processing was carried out by pipelines developed and run by the UKB3.  

For the grey matter volume (GMV) features 41,180 T1-weighted pre-processed images were retrieved 
from UKB and converted into a DataLad4 dataset for provenance tracking with subsequent computations of 
voxel-based morphometry (CAT 12.7 (default settings); MNI152 space; 1.5mm isotropic)5. We extracted the 
parcel-wise GMV as the winsorized mean (limits 10%) of the voxel-wise values per parcel using the cortical 
Schaefer et al. (2018)6 atlas (1000 ROIs), subcortical Tian et al. (2020)7 (S4 3T) and cerebellar Diedrichsen et 
al. (2009)8 (SUIT space) atlas. To retrieve the functional connectivity (FC) features, 5000 subjects of the UKB 
pre-processed rs-fMRI datasets were normalized to MNI space using FSL. After denoising, each subject’s time 
course was parcellated with the Schaefer et al. (2018) cortical atlas (400 ROIs) by averaging across all voxels 
of each parcel. The FC was eventually calculated as the Pearson correlations of the parcel-wise time-series. 

All non-imaging variables, including the exemplarily target hand grip strength (HGS) and the 
investigated example confounders were obtained directly from the UK Biobank13. We chose HGS as a robust, 
objective and reliable target14–17 to avoid further conceptual problems oftentimes coming along with more 
latent variables as targets, such as intelligence or executive functioning measures18. Healthy subjects were 
(rather conservatively) defined by excluding the ICD-10 criteria chapters F, G and I60 to I69, which excludes 
subjects with a history of mental and behavioural disorders, diseases of the nervous system or with a 
cerebrovascular disease. All NaN values and outliers larger than the 4th standard deviation were removed from 
the non-imaging data. Additionally, the HGS was averaged over left and right hand and there was a check for 
balance of sex distributions in the HGS.  

1.2. Modelling Setup 

10% of the data were set apart to be used as a locked test set for a related project and left untouched for this 
project. The remaining 90% of the data were split into a training (0.8) and test (0.2) set. The learning algorithms 
were then fitted on the training set by using a stratified 5-fold cross-validation (CV) scheme with one repetition. 
Hyperparameters were tuned within a nested CV, i.e. to each fold of the outer CV a shuffled 5-fold CV scheme 
was applied to find the best hyperparameters. This was achieved through a grid search with RMSE (root mean 
squared error) error metric to identify the best hyperparameter. The outer CV on the training set served to 
control for the fitting behaviour (e.g. overfitting) of the model and to control for the generalization error. A 
final estimator, retrained on the entire training set (using RMSE) was eventually used to make the predictions 
on the initially held-out test set. These predictions were used to report and visualize the predictive 
performances in Figure 1 of the manuscript. All applied splits were stratified for binned age, binned HGS (2 
bins) and sex (as either defined in the NHS central registry or self-reported). Within the CV scheme, continuous 
features and confounders were z-scored (mean of zero and unit variance) and categorical confounders (sex) 
were one-hot-encoded. Z-scoring the confounds didn’t make a difference in the predictions. Outer CV 
performance was evaluated using RMSE, mean absolute error (MAE), coefficient of determination (R2), 
Pearson’s r and Spearman’s r. The confound removal was applied within the CV to avoid data leakage. Therein, 
for each feature, a linear regression was fit using the confounds as independent variables and the features as 
dependent variables. The new, confound-free features were calculated as the residuals of the fitted linear 
regression (original features minus predicted/fitted features). 

1.3. Algorithms and sample sizes 

For the ridge regression used for the “vanilla model” and the ones showing the feature and confounder impact 
we use scikit-learn’s20 RidgeCV implementation that comes with an in-built and optimized nested CV. We 
tuned the best hyperparameter alpha, i.e. the amount of regularization, within a grid of [10, 100, 1e3, 1e4, 1e5, 
1e6] and identified the best hyperparameter through RMSE scoring. As comparison algorithm for the 
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“algorithm impact”-model a grid-search CV was used to find the best hyperparameters for a support vector 
regression (SVR) with the non-linear radial basis function (RBF) kernel (C in [0.5, 0.1, 0.3]; gamma = ‘scale’; 
epsilon in [.1, .5, .6]). 

For the GMV features with the linear ridge regression and the non-linear SVR(RBF) algorithm we 
used the data of N=27 846 subjects (Ntrain=22 276, Ntest=5 570) (Table S1). For the sex and age adjusted ridge 
regression data of N=23 242 (Ntrain=18 593, Ntest=4 649) subjects was used and the FC model was trained and 
tested with N=4 172 (Ntrain=3 337, Ntest=835) subjects (Table 1). 

 
Table S1. Overview of sample sizes. 

 Ntrain Ntest (hold-out) 

GMV 
Ridge Regression (linear) 
o Vanilla 
o Sex & Age adjusted 

22,276 
18,593 

5,570 
4,649 

GMV 
SVR(RBF) (non-linear)  
No confound removal 

22,276 5,570 

FC 
Ridge Regression (linear)  
No confound removal 

3,337 835 

 

1.4. Statistics for Confound Continuum 

To investigate the statistical confound-feature and confound-target relationship, we broadly inspected non-
imaging variables in the UKB and narrowed them down to 130 problem-related variables, sorted into 12 
higher-level categories (colour coding in Figure 2A of the manuscript). Each variable was then (independently) 
correlated with parcel-wise GMV features and HGS (Figure S1), using Pearson’s r for continuous confounds, 
Spearman rank correlation for ordinate variables and a point biserial correlation for binary variables. For the 
variables sex, age, scan-site and scan-time we additionally investigated the distribution of the parcel-wise 
correlation coefficients and checked their anatomical positions. The main manuscript shows only correlations 
with the target, with reduced annotations, while Figure S1 visualizes the correlations of the 130 selected 
variables with both, parcellated GMV features (Figure S1B) and the target HGS (Figure 1S A), including 
detailed annotations. Grey bars in Figure S1 are only for improved readability of the graph and do not imply 
statistical meaning. 

1.5. Code availability 

All corresponding codes together with additional information on code execution and replication can be found 
on GitHub under https://github.com/verakye/ConfoundContinuum. 
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2. Supplementary figures 

 

Figure S1. Correlations of 130 summary behavioural variables with the exemplary target HGS (A) and the 1088 
parcellated GMV features (B) that could potentially be considered as confounding variables. The variables were sorted 
into 12 higher-level categories. Boxplots in B) indicate median (IQR) correlation over GMV parcels. Correlations refer 
to Pearson’s r for continuous confounds, Spearman correlations for ordinal variables and point-biserial correlation 
coefficients for binary variables. Grey areas indicate absolute correlations smaller than |r|=0.3 for HGS (A) and  |r|=0.075 
for GMV (B) for better readability and visualization of correlation strengths.   

A  HGS correlations B  GMV correlations
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