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Abstract 

Background: Liver fat is associated with cardiometabolic disease, cerebrovascular disease, and 

dementia. Cerebrovascular disease, most frequently cerebral small vessel disease, identified by 

MRI as white matter hyperintensities (WMH), often contributes to dementia. However, liver 

fat’s role in the relationship between cardiometabolic risk, WMH, and cognitive performance 

is unclear. 

Methods: In the UK Biobank cohort (n=32,628; 52.6% female; mean age 64.27.7 years; 

n=23,467 cognitive performance subsample), we used linear regression to investigate 

associations between cardiometabolic factors measured at baseline and liver fat, WMH, and 

cognitive performance measured at follow-up, on average, 9.3±2.0 years later. We used 

structural equation modeling to investigate whether liver fat mediates associations between 

cardiometabolic factors and WMH and whether WMH mediates associations between liver fat 

and cognitive performance.  

Results: Nearly all cardiometabolic factors were significantly associated with liver fat (|r| in 

[0.03,0.41], p in [1.4x10-8,0) and WMH (|r| in [0.05,0.14], p in [1.5x10-13,2.7x10-148]) in 

regression models. Liver fat was associated with WMH (r=0.09,p=3x10-64) and cognitive 

performance (r=-0.03,p=1.5x10-7). Liver fat mediated the associations between cardiometabolic 

factors and WMH (|βmediation| in [0.01,0.03], pmediation in [5.7x10-9,0) and WMH mediated the 

associations between liver fat and cognitive performance (βmediation=-0.01,pmediation0).  

Conclusions: Our findings indicate that liver fat mediates associations between 

cardiometabolic factors and WMH and that WMH mediates the association between liver fat 

and cognitive performance. This suggests that liver fat might be important for understanding 

the effects of cardiometabolic factors on cerebrovascular disease and cognitive function. 
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Experimental studies are warranted to determine relevant targets for preventing vascular-driven 

cognitive impairment.  
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Introduction 

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly nonalcoholic fatty 

liver disease (NAFLD) (1), affects 30% of adults (2) and is associated with cerebrovascular 

disease (3,4) and dementia (5,6). Vascular pathology, most frequently cerebral small vessel 

disease (CSVD) (7,8), is implicated in 50-70% of dementia cases (9–11). As MASLD (2) and 

dementia (12) cases are expected to increase, it is vital to understand liver fat’s role in the early 

stages of CSVD-driven cognitive impairment, both to identify at-risk individuals and establish 

efficient preventive measures and treatment strategies. 

MASLD is characterized by excessive fat accumulation in liver cells and one or more 

cardiometabolic abnormalities (13). As the diagnoses of MASLD and NAFLD are highly 

concordant (14–19), we use the term MASLD for both diagnoses. MASLD are associated with 

CSVD (20–23), identified as white matter hyperintensities (WMH) of presumed vascular origin 

on magnetic resonance imaging (MRI), albeit inconsistently (24–27), and prior studies have 

rarely used continuous liver fat measures. However, advances in rapid MRI allow for accurate 

liver fat quantification in large samples (28–30), facilitating novel large-scale research. 

Cardiometabolic risk factors are associated with WMH (31–34) and MASLD (35–39), and both 

WMH and MASLD are associated with cognitive performance (40–48), though MASLD 

inconsistently (27,49–51). Furthermore, the associations might be sexually dimorphic as males 

have higher risk of MASLD (52) and CSVD (53) and females have a higher risk of dementia 

(54). Despite the observed associations between cardiometabolic factors, liver fat, WMH, and 

cognitive performance, to our knowledge no study has explicitly tested for the role of liver fat 

in the relationship between cardiometabolic factors, WMH, and cognitive performance. We 

hypothesized that (i) cardiometabolic risk factors are associated with WMH and that liver fat 
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mediates these associations, (ii) liver fat is associated with cognitive performance and that 

WMH mediate this association, and (iii) there are sex-related differences in these associations. 

 

Methods and materials 

Participant sample 

This observational study used UK Biobank data (access number 27412) and was approved by 

the Norwegian Regional Committees for Medical and Health Research Ethics. All participants 

gave informed consent and could withdraw their consent (opt-out list dated April 26th, 2023). 

We included participants with liver and brain MRI (n=41,760), excluded participants with a 

history of chronic liver disease (except MASLD), malignancies of the liver, biliary tract, or 

central nervous system, encephalitis, myelitis, stroke, traumatic brain injury, and 

neurodegenerative and demyelinating disorders (n=767; Table S1), and excluded participants 

who lacked data on sex, education, anthropometric measurements, blood pressure, serum 

measures, smoking status, or alcohol consumption (n=8,376). The included participants 

(n=32,628) attended the baseline assessment between April 2007 and October 2010 and the 

follow-up assessment between August 2014 and April 2022 (follow-up, mean, 9.3±2.0 [range, 

4.3, 14.9] years). A subsample completed cognitive testing at follow-up (n=23,467; i.e., 

cognitive subsample).  

 

Liver and brain MRI 

Liver and brain MRI were performed at 4 sites (Cheadle, Newcastle, Reading, and Bristol) 

using Siemens 1.5T MAGNETOM Aera and 3T Skyra scanners, respectively (55,56). AMRA 
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Researcher (AMRA Medical AB) estimated liver fat percentage (57), and the University of 

Oxford’s Wellcome Centre for Integrative Neuroimaging estimated WMH volume with FSL 

BIANCA (58,59) and intracranial volume (ICV) with FreeSurfer (60).  

 

Demographic and clinical data 

From the baseline assessment, we included sex, education, ethnicity, body mass index (BMI), 

waist circumference, systolic blood pressure (SBP), diastolic blood pressure (DBP), high-

sensitivity c-reactive protein (CRP), glycated hemoglobin (HbA1c), high-density lipoprotein 

(HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol, and 

triglycerides. From the follow-up assessment, we included age, site, alcohol consumption, 

smoking status, liver fat, WMH, ICV, numeric memory, fluid intelligence, trail making test B, 

matrix test, symbol digit substitution, tower rearranging, paired associate learning, and pairs 

matching (Table S2). Assigned sex was gathered from NHS registers. We categorized 

education into higher (college or university degree), intermediate (A levels, O levels, or 

equivalent), and lower education (otherwise) and smoking status as current, former, and never. 

We calculated pulse pressure by subtracting DBP from SBP and alcohol consumption by 

converting total weekly and monthly alcohol consumption into grams of alcohol per week. 

We classified participants with probable hypertension (blood pressure 140/90mmHg or 

antihypertensive treatment), diabetes (HbA1c 48mmol/mol or antidiabetic treatment), or 

dyslipidemia (HDL cholesterol <1.03mmol/L, LDL cholesterol >4.13mmol/L, total cholesterol 

6.20mmol/L, triglycerides >2.25mmol/L, or lipid-lowering treatment (61)) based on clinical 

measurements and reported medication use (Table S3) in nurse-led interviews at the baseline 

assessment. 
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We also classified participants with probable steatotic liver disease based on current or former 

diagnostic criteria (MASLD, NAFLD, metabolic dysfunction-associated fatty liver disease 

(MAFLD)) as follows. Probable NAFLD: liver fat 5% and alcohol consumption <20/30g/day 

(female/male) (62). Probable MASLD: probable NAFLD and 1: BMI 25kg/m2 or 23kg/m2 

(Asian), waist circumference 80/94cm (female/male) or waist circumference 80/90cm 

(Asian, female/male), blood pressure 130/85mmHg or antihypertensive treatment, HbA1c 

39mmol/mol or diabetes, triglycerides 1.7mmol/L or lipid-lowering treatment, and HDL 

cholesterol ≤1.3/1.0mmol/L (female/male) or lipid-lowering treatment (63). Probable MAFLD: 

liver fat 5%, and diabetes, BMI 25kg/m2 or 23kg/m2 (Asian), or 2: waist circumference 

88/102cm (female/male) or waist circumference 80/90cm (Asian, female/male), blood 

pressure 130/85mmHg or antihypertensive treatment, HbA1c 39mmol/mol, triglycerides 

1.7mmol/L or lipid-lowering treatment, HDL cholesterol <1.3/1.0mmol/L (female/male) or 

lipid-lowering treatment, and CRP >2mg/L (64). 

 

Cardiometabolic principal component analysis 

We conducted principal component analysis (PCA) across 11 correlated cardiometabolic 

variables (Figure S1) to create uncorrelated composite measures of cardiometabolic risk. To 

stabilize variances (65), we log-transformed CRP and triglycerides (due to non-normal 

distributions; Figures S2-S3) and standardized the remaining variables (i.e., BMI, waist 

circumference, SBP, DBP, pulse pressure, HbA1c, HDL cholesterol, LDL cholesterol, and total 

cholesterol) by mean centering and dividing by the standard deviation. As PCA is sensitive to 

outliers (65), we removed values deviating >3 standard deviations from the mean (Table S4A). 

2,368 participants had 1 missing data point after outlier removal, but all participants had >50% 
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of data points and were included in the subsequent analyses. Next, we imputed missing data 

points with the missMDA R-package (66), conducted the PCA with the prcomp R-function, and 

extracted the first 3 principal components (PCs) based on their explained variance, 31.9%, 

23.6%, and 17.9%, respectively (Figure S4). PC1’s largest loadings were from SBP, DBP, and 

anthropometric measures (loadings in [0.37, 0.48]; Figure S5); PC2’s from cholesterol and 

anthropometric measures (|loadings| in [0.19, 0.64]); and PC3’s from pulse pressure, SBP, and 

anthropometric measures (|loadings| in [0.35, 0.50]). All PC1’s loadings indicated higher 

cardiometabolic risk. 

 

Cognitive principal component analysis 

Vascular cognitive impairment can affect multiple cognitive domains (11). Therefore, we 

computed a measure of general cognitive performance using PCA across 8 cognitive tests from 

the follow-up assessment (Figure S6). We log-transformed trail making test B and pairs 

matching (due to non-normal distributions; Figures S7-S8) and standardized the remaining 

variables (i.e., numeric memory, fluid intelligence, matrix test, symbol digit substitution, tower 

rearranging, and paired associate learning). We did not include reaction time (data field 20023) 

as it might be lower correlated with general cognitive performance (67) and have a different 

genetic basis (68) and prospective memory (data field 20018) as it was a binary variable. We 

conducted the PCA as described above. After outlier removal (Table S4B), 11,579 participants 

had 1 missing data point. 23,467 participants had >50% data points and were included in 

subsequent analyses. We imputed missing data points, computed the PCA, and extracted PC1 

based on its explained variance (40.7%; Figure S9). All cognitive tests contributed to PC1, 

with largest contributions from fluid intelligence, matrix test, and tower rearranging (loadings 
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in [0.40, 0.46]; Figure S10). All PC1’s loadings indicated better cognitive task performance, 

suggesting that cognitive PC1 is a measure of general cognitive performance. 

 

Statistical analysis 

We used R version 4.2.0 (69) and R-packages tidyverse (70), forcats (71), ggplot2 (72), 

patchwork (73), and lavaan (74) for analyses and data visualization. Continuous variables were 

assessed using histograms and quantile-quantile plots (Figures S2-S3, S7-S8). As residuals 

from linear regression analyses with liver fat, WMH, trail making test B, and pairs matching as 

outcomes and CRP and triglycerides as predictors were non-normal, we log-transformed these 

variables. Remaining continuous variables were standardized by mean-centering and dividing 

by the standard deviation. We used the total sample (n=32,628) for the analyses with liver fat 

and WMH as outcomes and the cognitive subsample (n=23,467) for the analyses with the 

cognitive outcome measures. We tested for sex-related differences in the total sample (Table 

S5) and differences between the total sample and cognitive subsample (Table S6) using t-tests 

and chi-squared tests. 

First, we conducted multiple linear regression analyses with liver fat, WMH, and cognitive PC1 

as outcomes to verify the assumptions of our planned mediation analyses. We used the 

cardiometabolic risk factors and cardiometabolic PC1-PC3 as predictors for all outcomes, liver 

fat and probable steatotic liver disease as predictors for WMH and cognitive PC1, and WMH 

as a predictor for cognitive PC1. Each predictor was analyzed by itself in a separate model. 

Next, we performed analyses with an interaction term between the predictor and sex to test for 

sex-related differences. For analyses with cognitive PC1 as the outcome, we conducted follow-

up analyses with individual cognitive tests. The regression analyses were adjusted for age, age2, 
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sex, age-by-sex, age2-by-sex, site, smoking status, alcohol consumption, ICV (WMH only), and 

education (cognitive analyses only). 

Next, we performed SEM mediation analyses (Figure 1) using the sem function in the lavaan 

R-package version 0.6-11 (74). We computed standard errors with bootstrapping using 10,000 

draws. Each model consists of two regression equations and includes outcome (Y), mediator 

(M), predictor (X), intercepts (i), and error terms (e). Additionally, we performed sex-stratified 

analyses for predictors that had significant sex interactions in relevant regression analyses. We 

did not include interaction terms as lavaan does not support them (74).  

 

Figure 1: Path diagram of the mediation analyses. The figure shows the path diagrams of 

the mediation analyses with A white matter hyperintensities as outcome, liver fat as mediator, 

and cardiometabolic factors as predictors and with B cognitive principal component 1 as 

outcome, white matter hyperintensities as mediator, and liver fat and steatotic liver disease as 

predictors. (Created with BioRender.com.) 

In the first set of mediation analyses, we used WMH as outcome, liver fat as mediator, 

cardiometabolic factors and cardiometabolic PC1-PC3 separately as predictors (Figure 1A) 

using the following model: 
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𝑀𝐿𝑖𝑣𝑒𝑟 𝑓𝑎𝑡 = 𝑖𝑀 + 𝑎𝑋𝐶𝑎𝑟𝑑𝑖𝑜𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟 + age + age2 +  sex + site + smoking status

+ alcohol consumption + 𝑒𝑀, 

𝑌𝑊𝑀𝐻 = 𝑖𝑌 + 𝑐′𝑋𝐶𝑎𝑟𝑑𝑖𝑜𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑏𝑀𝐿𝑖𝑣𝑒𝑟 𝑓𝑎𝑡 + age + age2 + sex + site

+ smoking status + alcohol consumption + 𝑒𝑌. 

Initially, we included ICV as a covariate in the second equation. However, model fit measures 

were poor. After removing ICV from the equation, the models were saturated and had good 

model fit measures: confirmatory fit index (CFI) in [1.000, 1.000], Tucker-Lewis Index (TLI) 

in [1.000, 1.000], root mean square error of approximation (RMSEA) in [0.000, 0.000], and 

standardized root mean squared residual (SRMR) in [1.0x10-16, 9.8x10-18].  

In the second set of mediation analyses, we used cognitive PC1 as outcome, WMH as mediator, 

and liver fat and probable steatotic liver disease separately as predictors (Figure 1B) using the 

following model: 

𝑀𝑊𝑀𝐻  =  𝑖𝑀 +  𝑎𝑋𝐿𝑖𝑣𝑒𝑟 𝑓𝑎𝑡 +  age + age2 +  sex + site + smoking status

+ alcohol consumption + ICV + 𝑒𝑀, 

𝑌𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑃𝐶1 =  𝑖𝑌 +  𝑐′𝑋𝐿𝑖𝑣𝑒𝑟 𝑓𝑎𝑡  +  𝑏𝑀𝑊𝑀𝐻 +  age + age2 +  sex + site + smoking status

+ alcohol consumption + ICV +  education +  𝑒𝑌. 

The fit measures were good: CFI in [0.993, 1.000], TLI in [0.918, 1.000], RMSEA in [0.034, 

0.000], and SRMR in [0.001, 0.005]. We conducted equivalent follow-up mediation analyses 

on individual cognitive tests, with good fit measures: CFI in [0.998, 1.000], TLI in [0.975, 

0.998], RMSEA in [0.007, 0.025], and SRMR in [0.002, 0.004].  
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We report partial correlation coefficients (r) (75) from the linear regression analyses and 

standardized regression coefficients (β) for direct, indirect, and total effects from the mediation 

analyses. We derived a study-wide Bonferroni threshold p≤0.05/N=0.05/156=0.0003, where N 

is the number of analyses. We planned 28 (14 sex-specific), 36 (18 sex-specific), and 38 (19 

sex-specific) regression analyses with liver fat, WMH, and cognitive PC1 as outcomes, 

respectively, and 42 (28 sex-specific) and 12 (8 sex-specific) mediation analyses with WMH 

and cognitive PC1 as outcomes, respectively. Follow-up analyses on individual cognitive tests 

were not included in the analysis count. Results are described as significant if they pass the 

Bonferroni threshold and we report unadjusted p-values. Since R uses double-precision values, 

some p-values are reported as 0, which indicate approximately equal to 0. 

 

Results 

Sample description 

The sample consisted of 32,628 UK Biobank participants (n=17,164 (52.6%) females; Table 

S5), who were mostly middle- to late-aged (mean age 64.2±7.7 years; range [48, 83]) and had 

completed higher (46.5%) or intermediate education (32.7%). On average, males had higher 

BMI (27.08±3.64 vs. 26.03±4.52) and liver fat (4.70±4.18 vs. 3.86±3.97), and higher risk of 

probable hypertension (53.5% vs. 36.1%), diabetes (3.1% vs. 1.5%), and dyslipidemia (61.0% 

vs. 46.2%). Probable steatotic liver disease prevalences varied based on the diagnostic criteria 

used, but males had consistently higher risk of steatotic liver diseases, probable NAFLD (20.3% 

vs. 15.5%), MASLD (19.8% vs. 15.0%), and MAFLD (26.8% vs. 17.0%). The cognitive 

subsample (n=23,467) had comparable demographic, clinical, and imaging data as the total 

sample (Table S6). 
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Cardiometabolic factors and liver fat 

Multiple linear regression analyses revealed significant associations between all 

cardiometabolic factors and liver fat (Figure 2AB, Table S7). BMI, waist circumference, 

triglycerides, and cardiometabolic PC1 (largest loadings from anthropometric and blood 

pressure measurements) showed medium-to-large effects (r in [0.323, 0.407], p-values  0). 

The remaining variables showed small-to-medium effects (|r| in [0.031, 0.269], p-values in 

[1.4x10-8, 8.9x10-246]). All variables except HDL cholesterol and PC3 (negative loadings from 

BMI and waist circumference) were associated with higher liver fat.  

Multiple linear regression analyses revealed significant interactions between sex and BMI, 

DBP, CRP, LDL cholesterol, and triglycerides on liver fat (Table S8). An increase in BMI was 

associated with a steeper increase in liver fat in males than females (r=0.028, p=4.5x10-7), while 

increases in DBP, CRP, LDL cholesterol, and triglycerides were associated with a steeper 

increase in liver fat in females than males (r in [-0.024, -0.070], p-values in [2.2x10-5, 7.7x10-

37]). 
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Figure 2: Linear associations between cardiometabolic factors and liver fat. The figure 

shows forest plots with the associations of A cardiometabolic risk factors and B cardiometabolic 

principal components with liver fat. The error bars correspond to 95% confidence intervals. The 

regression models were adjusted for age, age2, sex, age-by-sex, age2-by-sex, site, smoking 

status, and alcohol consumption. HDL, high-density lipoprotein; LDL, low-density lipoprotein. 

 

Cardiometabolic factors, liver fat, and white matter hyperintensities 

Linear regression revealed significant associations between all cardiometabolic risk factors 

(except LDL cholesterol, total cholesterol, and cardiometabolic PC3) and WMH (Figure 3AB, 

Table S9) with small-to-medium effects (r in [0.041, 0.143], p-values in [1.5x10-13, 2.7x10-

148]). BMI, waist circumference, SBP, DBP, and cardiometabolic PC1 had the largest effects. 

Liver fat and probable steatotic liver diseases were associated with higher WMH volume with 

small effects (r in [0.066, 0.094], p-values in [9.6x10-33, 3.0x10-64]; Figure 3C).  
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Linear regression analyses revealed significant interactions between sex and BMI, waist 

circumference, and cardiometabolic PC2 on WMH (Table S10). An increase in BMI, waist 

circumference, and cardiometabolic PC2 (largest loadings from BMI and waist circumference) 

was associated with a steeper increase in WMH in males than females (r in [0.022, 0.047], p-

values in [7.2x10-5, 3.3x10-17]).  

 

Figure 3: Linear associations between cardiometabolic factors, liver fat, and white matter 

hyperintensities. The figure shows forest plots with the associations of A cardiometabolic risk 

factors, B cardiometabolic principal components, and C liver fat and probable steatotic liver 

disease with white matter hyperintensities. The error bars correspond to 95% confidence 

intervals. The regression models were adjusted for age, age2, sex, age-by-sex, age2-by-sex, site, 
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smoking status, alcohol consumption, and intracranial volume. HDL, high-density lipoprotein; 

LDL, low-density lipoprotein; NAFLD, nonalcoholic fatty liver disease; MAFLD, metabolic 

dysfunction-associated fatty liver disease; MASLD, metabolic dysfunction-associated steatotic 

liver disease. 

 

Cardiometabolic factors, liver fat, white matter hyperintensities, and cognitive performance 

Linear regression revealed significant associations between cognitive PC1 and BMI, SBP, 

DBP, HbA1c, and cardiometabolic PC1 (r in [-0.027, -0.037], p-values in [3.9x10-5, 1.2x10-8]; 

Figure 4AB, Table S11). Liver fat and probable steatotic liver diseases were significantly 

associated with cognitive PC1 (r in [-0.030, -0.034], p-values in [3.5x10-6, 1.5x10-7]; Figure 

4C). Of all variables, WMH had the largest effect on cognitive PC1 (r=-0.071, p=1.2x10-27; 

Figure 4D). None of the predictors had significant interactions with sex (Table S12).  

In follow-up analyses on individual cognitive tests, cardiometabolic factors were significantly 

associated with a range of cognitive tests, most often numeric memory, matrix test, and paired 

associate learning (Table S13). Liver fat was significantly associated with all cognitive tests, 

except trail making test B and pairs matching. There were no significant interactions between 

any predictors and sex (Table S14). 
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Figure 4: Linear associations between cardiometabolic factors, liver fat, WMH, and the 

cognitive principal component 1. The figure shows forest plots with the associations of A 

cardiometabolic risk factors, B cardiometabolic principal components, C liver fat and probable 

steatotic liver disease, and D white matter hyperintensities with cognitive principal component 

1. The error bars correspond to 95% confidence intervals. The regression models were adjusted 

for age, age2, sex, age-by-sex, age2-by-sex, site, smoking status, alcohol consumption, 

education, and intracranial volume (only white matter hyperintensities). HDL, high-density 

lipoprotein; LDL, low-density lipoprotein; NAFLD, nonalcoholic fatty liver disease; MAFLD, 
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metabolic dysfunction-associated fatty liver disease; MASLD, metabolic dysfunction-

associated steatotic liver disease; WMH, white matter hyperintensities. 

 

Liver fat mediates the associations between cardiometabolic factors and white matter 

hyperintensities 

SEM mediation analyses revealed significant total and mediation (i.e., indirect) effects via liver 

fat on WMH for all cardiometabolic factors except LDL cholesterol, total cholesterol, and 

cardiometabolic PC3 (Table S15). BMI, waist circumference, SBP, and DBP had the largest 

direct effects (β in [0.086, 0.122], p-values  0; Figure 5AC), while waist circumference, HDL 

cholesterol, and triglycerides had the largest mediation effects (|β| in [0.020, 0.026], p-values  

0; Figure 5BD). The direct effects of HDL cholesterol and triglycerides were not significant, 

indicating that their associations with liver fat fully explain their associations with WMH.  
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Figure 5: Mediation analyses with white matter hyperintensities as the outcome and liver 

fat as the mediator. The figure shows forest plots with the A direct and B mediation (i.e, 

indirect) effects via liver fat of cardiometabolic risk factors and the C direct and D mediation 

effects via liver fat of cardiometabolic principal components on white matter hyperintensities. 

Error bars correspond to standardized 95% confidence intervals. HDL, high-density 

lipoprotein; LDL, low-density lipoprotein. Illustrations created with BioRender.com. 

 

Liver fat mediates the associations between cardiometabolic factors and white matter 

hyperintensities: Sex-related differences 

Sex-stratified analyses (Table S16) revealed higher direct effects (Figure 6A)  on WMH of 

BMI and waist circumference in males (β in [0.11, 0.12], p-values  0) than females (β=0.07, 
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p-values  0), while the mediation effects via liver fat (Figure 6B) were similar (β=0.02, p-

values in [3.9x10-8, 2.2x10-16]). Furthermore, cardiometabolic PC2 (largest loadings from 

anthropometric and cholesterol measures) had a significant total effect on WMH in males 

(β=0.06, p=2.3x10-10) but not in females (β=0.02, p=0.001). The results indicate that the direct 

effects of anthropometric measures on WMH might be stronger in males than females, while 

the mediation effects via liver fat are similar. 

 

Figure 6: Mediation analyses with white matter hyperintensities as the outcome and liver 

fat as the mediator in the total sample and in males and females separately. The figure 

shows forest plots with the A direct and B mediation effects via liver fat of cardiometabolic risk 

factors and the C direct and D mediation effects via liver fat of cardiometabolic principal 

components on white matter hyperintensities. Error bars correspond to standardized 95% 

confidence intervals. HDL, high-density lipoprotein; LDL, low-density lipoprotein. 

Illustrations created with BioRender.com. 
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White matter hyperintensities mediate the associations of liver fat and probable steatotic liver 

diseases with cognitive performance 

SEM mediation analyses revealed significant total and mediation effects via WMH on cognitive 

PC1 for both liver fat and probable steatotic liver diseases (Table S17). Effect sizes were 

comparable across predictors, for direct (β in [-0.020, -0.021], p-values in [0.0008, 0.0003]; 

Figure 7A) and mediation (β in [-0.004, -0.006], p-values in [4x10-14, 0; Figure 7B) effects.  

In follow-up analyses on individual cognitive tests, WMH mediated the associations between 

liver fat and numeric memory, symbol digit substitution, and paired associate learning (Table 

S18). 

 

Figure 7: Mediation analyses with cognitive principal component 1 as the outcome and 

white matter hyperintensities as the mediator. The figure shows forest plots with the A 

direct and B mediation effects via WMH of liver fat and probable steatotic liver disease on 

cognitive principal component 1. Error bars correspond to standardized 95% confidence 

intervals. NAFLD, nonalcoholic fatty liver disease; MAFLD, metabolic dysfunction-associated 

fatty liver disease; MASLD, metabolic dysfunction-associated steatotic liver disease. 

Illustrations created with BioRender.com. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.17.24315664doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.17.24315664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

 

Discussion 

In this study, we showed that liver fat mediates the associations between cardiometabolic risk 

factors and higher WMH and that WMH mediates the associations between higher liver fat and 

lower cognitive performance in middle- to late-aged participants. Furthermore, higher BMI and 

waist circumference might be more strongly associated with liver fat and WMH in males than 

in females. Our results implicate liver fat in CSVD and cognitive performance and indicate that 

a higher burden of WMH might partly explain the link between higher liver fat and lower 

cognitive performance. Liver fat might, therefore, be a relevant treatment target to prevent the 

development of vascular cognitive impairment. 

SEM mediation analyses revealed that liver fat mediates the link between nearly all 

cardiometabolic factors and WMH, expanding our results from the corresponding regression 

analyses. Our findings align with observed associations between WMH and BMI (34), blood 

pressure (76–78), CRP (79), HbA1c (80,81), HDL cholesterol (82), and triglycerides (83). The 

link between liver fat and WMH might be explained by liver fat’s association with exacerbated 

cardiometabolic risk (84–87) and inflammatory factors such as homocysteine (88–91). While 

causal interpretations remain speculative, our results implicate liver fat in the link between 

cardiometabolic risk and higher WMH volume. 

The cardiometabolic factors BMI, waist circumference, CRP, HDL cholesterol, triglycerides, 

and cardiometabolic PC1 (largest loadings from anthropometric and blood pressure measures) 

had the overall largest mediation effects via liver fat on WMH. Additionally, the associations 

of HDL cholesterol and triglycerides with liver fat fully explained their associations with 

WMH. Our findings align with the strong links between liver fat and anthropometric measures 
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(36) and the hypothesis that ectopic fat (e.g., liver fat) might be more strongly associated with 

cerebrovascular disease than subcutaneous fat (3,4,92), and observations that liver fat might 

initiate inflammatory pathways (93–95), alter lipid and lipoprotein regulation (87), and 

contribute to higher blood pressure through higher vasoconstriction (96) and impaired 

peripheral vasodilation (97). Taken together, our findings might suggest that interventions 

aimed at general and abdominal obesity, dyslipidemia, and low-grade inflammation, could be 

particularly beneficial in preventing liver fat accumulation and WMH development. 

In the current sample, males had higher cardiometabolic risk, liver fat, and WMH volume on 

average than females. Regression analyses revealed steeper increases in liver fat and WMH per 

increase in BMI in males, aligning with epidemiological findings in steatotic liver disease 

(98,99) and CSVD (53). In SEM mediation analyses, the cardiometabolic PC2, with loadings 

from BMI and waist circumference, was only significantly associated with WMH in males, and 

the direct effect sizes of BMI and waist circumference were larger in males than females, while 

indirect effects via liver fat were similar. We might speculate that males store less fat in the 

subcutis than females (100–102), leading to a harmful body fat distribution that could contribute 

to CSVD and possibly other brain outcomes, as similar patterns have been shown for brain age 

(103,104).  

We show that WMH mediates the associations between lower general cognitive performance 

and liver fat and probable steatotic liver disease, expanding on previous observations on 

associations between MASLD and WMH (20–23) and cognitive performance (40–48). In 

follow-up analyses, we found that WMH mediates the associations between liver fat and lower 

performance on numeric memory, symbol digit substitution, and paired associate learning tests. 

These tests all contributed to the cognitive PC1 (i.e., general cognitive performance) and cover 

working memory, processing speed, and verbal declarative memory (67), cognitive domains 
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often affected by vascular cognitive impairment (11). Our findings might suggest a role of liver 

fat in the development of CSVD-driven cognitive decline. Improving cardiometabolic health is 

one of the strategies outlined to prevent dementia cases (105), and our findings suggest that 

lowering liver fat might also be relevant, as previously shown for thigh muscle-fat-infiltration 

(106). Importantly, our study demonstrates the close links between general cardiometabolic risk 

and liver fat. Weight loss interventions can be effective in lowering liver fat (107). However, 

weight loss does not always lead to MASLD improvement, especially in severe cases (108,109). 

Therefore, interventions for preventing liver fat accumulation in the general population are 

needed. 

Our study has strengths and limitations. It is significantly larger than previous studies and 

assesses liver fat (57) and WMH (59) with accurate, quantitative methods. We used a well-

characterized sample, individual and composite cardiometabolic factors, liver fat percentage 

and steatotic liver disease diagnoses, general cognitive performance and individual cognitive 

tests, and tested for sex differences. However, we only assessed WMH as it was beyond the 

scope of this paper to investigate other CSVD markers. UK Biobank participants are healthier, 

wealthier, and less ethnically diverse than the general UK population (110,111), which might 

limit the generalizability of our findings. Although brain MRI and cognitive testing were 

performed years after cardiometabolic assessment, we did not use imaging data from multiple 

time points. Therefore, we cannot fully exclude different directions of effects, and differently 

designed studies are needed to make causal claims.  

 

Conclusion 
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Our findings suggest that liver fat might play a role in CSVD both directly and by mediating 

the associations between cardiometabolic risk factors and higher WMH volume. Higher BMI 

and waist circumference might be more strongly associated with liver fat and WMH in males 

than in females, while the link between liver fat and WMH appears to be similar in both sexes. 

Our results indicate links between liver fat and cognitive performance, both for general 

cognitive performance, working memory, processing speed, and verbal declarative memory. 

The associations with cognitive performance were mediated by higher WMH volume, 

suggesting that liver fat could contribute to the development of vascular cognitive impairment. 

Our findings warrant experimental studies on the underlying mechanisms and on liver fat as a 

potential target for preventing or delaying cognitive decline.  
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