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1. Structured Abstract:

Importance: Cigarette smoking remains the leading preventable cause of death worldwide, leading to

development of new therapeutics, such as repetitive transcranial magnetic stimulation (rTMS).

Objective: We compared three TMS targets to evaluate the effects on cigarette craving and withdrawal, and

on within- and between-network connectivity of the default mode, salience, and executive control networks.

Design: Data were collected using a repeated-measures, crossover trial. Investigators were not blinded, nor

were participants, who were aware of the location of the stimulating magnet but not which locations were

designated as control and experimental sites.

Setting: Data were collected in a neuromodulation clinic within an academic medical center.

Participants: Participants were men and women (44%) aged 21-45 (M = 33.3 years), who met DSM-5 criteria

for tobacco use disorder and endorsed daily smoking for at least one year.

Interventions: TMS was delivered to the dorsolateral prefrontal cortex (dlPFC), superior frontal gyrus (SFG),

and posterior parietal cortex (PPC). Area v5 of the visual cortex served as an active control site. Participants

were scanned with resting-state fMRI and completed behavioral assessments before and after TMS.

Main Outcomes and Measures: Self-reports of craving, withdrawal, and negative affect were obtained, and

resting-state functional connectivity of three canonical networks (executive control, default mode, and salience

networks) was measured.

Results: Seventy-two participants completed at least one data collection session, and 57 completed all 4,

yielding 61, 60, 62, and 66 complete stimulation sessions to the dlPFC, SFG, PPC, and v5, respectively.

Stimulation to the SFG significantly reduced craving (95% CI, 0.0476-7.9559) and withdrawal (95% CI,

0.9225-8.1063) more than control stimulation. Effect sizes were larger in men (up D = 0.59) than in women (up

to D =0.30). Neither PPC nor control site stimulation produced significant effects on craving, withdrawal, or

negative affect. Functional connectivity analyses revealed that SFG stimulation did not produce significant

changes to the networks examined, whereas dlPFC stimulation led to increased connectivity between

somatomotor, default mode, and dorsal attention networks.
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Conclusions and Relevance: The SFG appears to be a viable target for smoking-cessation treatment,

especially for men, with possible advantages over dlPFC.

Trial Registration: Clinicaltrials.gov identifier: NCT03827265

Question: What is the most promising cortical target for TMS treatment of tobacco use disorder for men and

women?

Findings: In a randomized crossover trial, stimulation to the superior frontal gyrus relieved craving and

withdrawal the most.

Meaning: The superior frontal gyrus is a promising neuromodulation target for smoking cessation. Men and

women may respond differently to this intervention.
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I. Introduction:

Cigarette smoking is the leading preventable cause of death worldwide, despite substantial decreases

in the prevalence of smoking, and novel therapeutics. The FDA recently cleared deep transcranial magnetic

stimulation (TMS) for short-term smoking cessation, recognizing TMS as a safe and effective treatment for

Tobacco Use Disorder1. However, evidence suggests that conventional figure-8 TMS coils may also be

effective, and FDA approval of such a protocol would increase patient access by using TMS devices already

available in clinics.

At least ten independent studies have demonstrated that figure-8 TMS reduces cigarette craving2–11, a

predictor of substance use and relapse12. Conventional TMS has also led to reductions in heaviness of

smoking,2,3,8,11,13,14 and improved smoking cessation outcomes8,15–17. Most studies have applied 10-20Hz

stimulation to the left dorsolateral prefrontal cortex (dlPFC), but novel targets revealed by neuroimaging may

optimize protocols. Increasingly, such targets appear to be multidimensional network targets rather than unitary

locations18, and even adjacent unitary targets can be stimulated by TMS to influence unique networks19.

One model proposed that the salience network may act as an attentional “switch” during acute craving,

allocating neural resources between the default mode and executive control networks20,21. Network coupling

shifts after cigarette smoking, and the magnitude of these shifts corresponds to the magnitude of craving

relief22.

Therefore, we sought to relieve craving by stimulating strategic nodes of these networks. We identified

surface-level targets in each network accessible with conventional TMS, and hypothesized that stimulating

each target would influence (1) craving and withdrawal symptoms, (2) connectivity within the targeted network,

and, (3) connectivity between the targeted network and other canonical networks. Our primary objective was to

identify the most effective protocol for reducing cigarette craving and withdrawal, and our secondary objective

was to investigate the network perturbations produced by stimulating each target. We selected the dlPFC as an

executive control network node, the superior frontal gyrus (SFG) as a salience network node, and the posterior

parietal cortex (PPC) as a default mode network node.

Considering sex differences in nicotine withdrawal23 and neural correlates of craving,24–26 we also
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planned to determine whether the most effective stimulation target for men and women differed.

II. Methods:

The study protocol was approved by the UCLA Institutional Review Board UCLA (Medical IRB 3;

#18-000509; initial approval: 07/27/2018). All participants provided informed consent in accordance with the

Declaration of Helsinki. The clinical trial protocol is registered on clinicaltrials.gov, NCT03827265.

All analysis code is available at https://github.com/HumanBrainZappingatUCLA/TMS4TUD/.

II.A. Study Design

Data were collected in a repeated measures, crossover design. Participants were asked to arrive on

each testing day abstinent from smoking for >12 hours. Neuroimaging and behavioral measurements were

collected before and after TMS to the three experimental sites (dlPFC, SFG, PPC) and the control site (area

v5). The order of stimulation sites was randomized using a random number generator.

Investigators were not blinded at any stage. Participants could not be blinded to the location of the

stimulating magnet, but were not informed which locations were control vs. experimental sites.

The trial’s planned stopping point was N = 60 based on an a priori power analysis (effect size estimate

derived from unpublished data); 171 individuals were enrolled into the trial, and the total number of sessions

for each target were:

dlPFC, N = 61

SFG, N = 60

PPC, N = 62

v5, N = 66

II.B. Participants:

Participant demographics are in Supplemental Table S1. Participants were recruited from the greater

Los Angeles community via Craigslist and fliers. All data were collected in the Semel Institute for Neuroscience

and Human Behavior at UCLA. A CONSORT diagram is shown in Figure 1.
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Figure 1: CONSORT Diagram. After initial telephone screening, 171 participants were consented for additional in-person
screening. Slightly over half (55%) met eligibility criteria. Of these, 10% were lost to ordinary attrition, 3% were not

scheduled due to COVID research shutdowns, and 1% withdrew after consenting, leading to 72 participants completing at
least 1 TMS session. Of these, 80% would go on to complete all four TMS sessions.

Initial eligibility screening was conducted by phone, followed by an in-person session (if qualified).

Smoking status was verified through expired carbon monoxide (Micro+ Smokerlyzer®breath CO monitor,

Bedfont Scientific Ltd., Maidstone, Kent, UK) and urinary cotinine tests (Abbott™ NicQuick™ Nicotine/Cotinine

Test or Accutest, Jant Pharmacal Corp., Encino, CA, USA), and abstinence from other substances was

confirmed via urinalysis (Alere Toxicology Services, Portsmouth, VA, USA or Abbott™ iCup™ Zero Exposure

Urine Drug Screen) and breathalyzer (Alco-Sensor FST breathalyzer; Intoximeters, Inc.). Comorbid psychiatric

disorders were assessed using the Mini International Neuropsychiatric Interview27. Participants completed

safety questionnaires to ensure eligibility for neuroimaging and neuromodulation. Inclusion criteria required
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meeting DSM-5 criteria for tobacco use disorder, >1 year of smoking history, daily use >4 cigarettes, and a

positive urinary cotinine test. The age range was limited to 18-45 to control for potential age-related

interactions with sex differences (e.g., menopause28–30).

Participants were excluded if they had a recent (past six months) or current substance use disorder

(except mild cannabis use), ongoing psychiatric conditions, major medical conditions, or were

pregnant/breastfeeding. Exclusionary psychiatric diagnoses included major depressive disorder, bipolar I/II,

anxiety disorders, PTSD, psychotic disorders, eating disorders, and antisocial personality disorder. Exclusion

criteria also included medical conditions affecting major organ systems, positive tests for illicit substances

(except THC), no biochemical verification of smoking (expired CO < 1 or negative cotinine), MRI/TMS safety

risks (e.g., metal implants, seizures), active smoking cessation treatment, or left-hand dominance.

II.C. Procedures:

II.C.1. Behavioral measurements. Participants completed the Positive and Negative Affect Schedule

(PANAS), Shiffman-Jarvik Withdrawal Questionnaire31 (SJWS; primary withdrawal measurement), and the

Urge to Smoke scale32 (UTS; primary craving measurement); the latter assessments reliably capture

symptoms of craving and withdrawal. All sessions took place in a quiet, controlled, private environment before

and after TMS.

II.C.2. Brain imaging. Brain imaging data were collected on a 3-Tesla Siemens Prisma Fit MRI scanner

with a 32-channel head coil before and immediately after TMS on each test day. A structural T1-weighted scan

(TE=2.24 ms; TR=2400ms; isotropic voxels= 0.8mm3) and then functional T2*-weighted multi-band sequence

(TE=37ms; TR=800ms; isotropic voxels=2mm3, volumes = 588) were collected.

FSL tools were used to apply motion correction, slice-timing correction, and normalization (FEAT, FMRI

Expert Analysis Tool). ICA-FIX reduced noise and artifacts. Data were parcellated as in33, integrating the

Schaefer 400-region cortical parcellation34 with 16 subcortical and 3 cerebellar regions, yielding 419 nodes.

Time series were extracted from these parcels, which were assigned to the default mode network, salience

network, and executive control network via the Yeo 7-network solution35,36.

III.C.3. TMS. TMS was administered by a licensed physician at the UCLA Neuromodulation Division.
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Two devices were used: A Magstim Super Rapid2 Plus1 system equipped with visor2 neuronavigation system

(ANT Neuro), and a Magventure Magpro X100 with a Cool-B65 coil with Rogue Research Brainsight

neuronavigation. Each stimulation dose was identical: 3,000 pulses of 10Hz stimulation were in 50 pulse trains

of 5 seconds on, 10 seconds off (total = 15 minutes). Stimulation intensity was titrated to 100% of motor

threshold (MT), with MT determined at the first treatment session as previously described30,37,38.

III.C.4. TMS Targeting: To personalize TMS targets based on resting-state functional connectivity, we

developed a pipeline to identify the voxel within each target region (dlPFC, SFG, PPC, and v5) with maximum

connectivity to key brain networks (executive control, salience, default mode, and visual). Preprocessed

resting-state data were decomposed into 20 independent components using FSL’s MELODIC. Network hubs

(posterior cingulate for default mode, inferior frontal gyrus for executive control, insula for salience, and area v5

for visual) were used to assign each component to a specific network. The TMS target was the voxel within

each ROI with peak connectivity to the respective network.

II.D. Outcome measures and statistical analysis: Self-reported cigarette craving, withdrawal, and

negative affect during abstinence were measured using the Urge to Smoke (UTS) scale, Shiffman-Jarvik

Withdrawal scale (SJWS), and the negative affect subscale of the Positive and Negative Affect Schedule

(PANAS-), each administered before and after each TMS session. Linear mixed models (LMMs) were used to

estimate the effect of TMS on each behavioral outcome using the smf.mixedlm function from the statsmodels

library in Python, with the Restricted Maximum Likelihood (REML) method for model fitting. For each measure

(UTS, SJWS, PANAS-), a separate LMM was fit to compare behavioral responses after stimulation at each

experimental site (dlPFC, SFG, PPC) versus the control site (the v5 region of visual cortex). Each model

included fixed effects for the time point (Pre/Post) and target group (Experimental/Control), as well as their

interaction, and random intercepts for participants to account for within-subject correlations. The effect of sex

on each primary outcome measurement was tested using a LMM, with participants entered as a random effect

and sex entered as a fixed effect. All baseline (pre-TMS) data were included in the model.

II.E. Brain imaging analysis: To analyze the effects of stimulating each neural target on functional

connectivity, we calculated within- and between-network connectivity, initially focusing on the default mode
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network, salience network, and executive control network35,36. Connectivity values for network pairs were

computed and averaged, then entered into difference scores. All statistics were carried out in Python (version

3.9.6) with the libraries numpy, pandas, scipy, and statsmodels implemented as needed. Paired t-tests

compared pre- and post-session connectivity for each network pair, grouped by target. Next, LMMs were fitted

in to model average connectivity as a function of time (pre/post, fixed effect) and target (fixed effect) while

accounting for variability between participants (random effects). This was applied to the networks named

above, for which we had a priori hypotheses, and also the remaining networks in the parcellation (limbic, dorsal

attention, subcortical, visual, and somatomotor networks). Because all possible network pairs were included in

the analysis, a familywise error correction was applied (false discovery rate using the Benjamini-Hochberg

procedure).

III. Results:

A.1. Establishing a stable baseline and adequacy of control:

Baseline (pre-TMS) measurements of craving (UTS), withdrawal (SJWS), and negative affect (PANAS-)

were stable across the four days of testing sessions (ps = 0.8477, 0.8887, and 0.7924, respectively), adding

confidence that the washout period was adequate, and randomization successful.

Withdrawal (β = -0.039, SE = 1.193, z = -0.033, p = 0.974) and craving (β = 0.841, SE = 1.156, z =0.727, p

= 0.467) did not change significantly or marginally from TMS delivered to v5 (control target). Negative affect also did

not change significantly from TMS to this target (β = 1.246, SE = 0.649, z =1.919, p = 0.055), a strong trend was

observed. Post hoc testing of individual PANAS- items showed that this effect was primarily driven by reduction in

ratings of the “nervous” item (p = 0.0014) after stimulation.

Network connectivity was also similar at baseline between sessions. Within-network connectivity of limbic,

dorsal attention, executive control, subcortical, visual, salience, somatomotor, and default mode networks was

calculated and compared between test days. Comparing the connectivity of each baseline network-network pair

by ANOVA did not yield any significant differences, ps ranging from 0.346534 (salience-salience connectivity)

to 0.995908 (dorsal attention network-limbic network connectivity. Baseline network connectivity is shown in

Supplemental Figure S2.
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A.2. Effect of sex on craving, withdrawal, affect, and network connectivity at baseline:

Men and women did not differ significantly in craving (p = 0.4858), withdrawal (p = 0.1510), or negative

affect (p = 0.3182). Baseline functional connectivity differed between men and women (Supplemental Table 1

and Supplemental Figure S3).

A.3. Stimulation targets

The stimulation coordinates were clustered throughout each stimulation target. The distribution of these

stimulation targets is shown in Supplemental Figure S2.

B. Primary efficacy outcomes: All results are visualized in raincloud plots (Figure 2).

B.1. Craving: A significant time-by-site interaction was found for stimulation to the SFG (β = 4.0018, SE =

2.0175, t = 1.9835, p = 0.0473) but not for dlPFC vs. control (β = 3.5579, SE = 2.2419, t = 1.5870, p = 0.1125)

or PPC vs. control (β = 0.9769, SE = 2.2378, t = 0.4365, p = 0.6624) (Figure 2A).

B.2. Withdrawal: A significant time-by-site interaction was found for stimulation to the SFG (β = 4.5144, SE =

1.8326, t = 2.4633, p = 0.0138), but not for dlPFC vs. control (β = 3.4161, SE = 1.8632, t = 1.8335, p = 0.0667)

or PPC vs. control (β = 1.4730, SE = 1.9197, t = 0.7673, p = 0.4429) (Figure 2B).

B.3. Negative Affect: No significant main effects on negative affect or time-by-target interactions on negative

affect were found as a result of stimulation delivered to any target (Figure 2C) (dlPFC vs. control: β = 0.5643,

SE = 0.9950, t = 0.5671, p = 0.5706; SFG vs. control: β = 0.6511, SE = 1.1722, t = 0.5555, p = 0.5786; PPC vs.

control: β = -0.2524, SE = 0.9485, t = -0.2661, p = 0.7902).
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Figure 2: Raincloud plots depict the change in Urge to Smoke scale (UTS_TOT) scores (top panel), Shiffman-Jarvik
Withdrawal scale scores (middle panel), and Negative Affect scores (bottom panel) from pre- to post-stimulation for
the four stimulation targets. Each plot combines a density curve (left) indicating the distribution of scores, individual data

points (middle) showing individual scores for pre- and post-stimulation conditions, and boxplots (right) summarizing the
median and spread of the data.

C. Potential confounds

Fagerström Test for Nicotine Dependence (FTND) scores were related to craving (p = 0.00033035), withdrawal

(p = 0.000031969), and negative affect (p = 0.018471), but did not interact significantly with the effect of time

on any variable (all interaction ps > 0.24). Age was unrelated to dependent variables variables (ps > 0.10).
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Years of education was related to baseline psychological withdrawal, puncorrected = 0.04. Therefore, these

variables were excluded from subsequent models.

D. Sex differences:

Three-way interactions between sex, target, and time on craving, withdrawal, and negative affect were not

significant (ps > 0.05). However, the time-by-sex interaction on overall withdrawal was significant for SFG

stimulation only (p = 0.0395).

E. Post hoc data exploration:

Change scores showing the effect of each stimulation type on unused subscales of primary analysis

instruments (Shiffman-Jarvik Withdrawal Scale: Craving, Psychological Withdrawal, Physiological Withdrawal,

Stimulation/Sedation, and Appetite; PANAS: positive affect) are shown in Figure 3. The largest effects were

craving reductions from SFG and dlPFC stimulation, followed by reductions in withdrawal as a result of SFG

stimulation.

Figure 3: Effect sizes showing TMS’ effect on each inventory’s subscales, separated by stimulation target.
Stimulation to SFG and dlPFC produced some medium-sized effects, whereas stimulation to PPC and v5 led to no or
small effects. SJW_SUM_C = Shiffman-Jarvik craving subscale; PANAS_NEG_TOT = Positive and Negative Affect

Schedule, negative affect subscale; UTS_TOT = Urge to Smoke Total; SJW_SUM_OVERALL = Shiffman-Jarvik
Withdrawal Scale total score; SJW_SUM_PSY = Shiffman-Jarvik Withdrawal scale, psychological withdrawal subscale;
PANAS_POS_TOT = Positive and Negative Affect Schedule, positive affect subscale; SJW_SUM_SS = Shiffman-Jarvik

Withdrawal Scale stimulation/sedation subscale; SJW_SUM_PHY = Shiffman-Jarvik Withdrawal Scale, physiological
withdrawal subscale
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Disaggregating by sex, SFG stimulation had larger effects in men than women (Figure 4). The largest

effect in the dataset for men was approximately twice as large as the largest effect size for women, suggesting

that men drive the effects of SFG stimulation on craving and withdrawal in the overall model.

Figure 4: Effect sizes of each stimulation type separated by sex. The pattern of effect sizes appears different for men and women.

Men show a small-medium change (reduction) in craving and withdrawal as a response to TMS to the SFG and dlPFC. The largest

effect in the trial is a reduction in psychological withdrawal resulting from SFG stimulation in men only. Women show smaller effects

overall, especially with respect to reductions in psychological withdrawal.

Exploratory tests for main effects of stimulation indicated that TMS to dlPFC reduced craving (11.64%

decrease, p = 0.0053), as did SFG TMS (10.69% decrease, p = 0.0013), but not v5 (1.97% decreas, p = 0.47)

nor PPC (4.10% reduction, p = 0.186).

G. Safety outcomes: Safety outcomes are detailed in Supplemental Table S2. Two participants withdrew from

the study due to discomfort from the stimulation procedures, both on days randomized to dlPFC stimulation.

There were no study-related severe or unexpected adverse events.

H. Brain imaging findings: Planned imaging analyses focused on the default mode, executive, and salience

networks (Figure 5). Connectivity within and between these networks was not significantly different after TMS

to any target, nor did the time-by-target interaction, all ps > 0.05.
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Exploratory analysis of all networks revealed that dlPFC stimulation only changed network connectivity.

After dlPFC TMS, connectivity was significantly higher:

1. Between the somatomotor network and default mode network (pFDR = 0.030)

2. Between the somatomotor network and dorsal attention network (pFDR = 0.022)

After dlPFC TMS, connectivity was significantly lower:

1. Within the visual network (pFDR = 0.022)

2. Between the somatomotor network and executive network (pFDR = 0.011)

Figure 5: Effects of TMS on canonical network connectivity. Only TMS to dlPFC produced changes in network connectivity that
survived familywise error correction. These changes included both increases in connectivity (between the somatomotor network and

the default mode network, and between the somatomotor network and dorsal attention network), and decreases in connectivity (within
the visual network, and between the somatomotor network and executive control network).
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Discussion:

In this randomized crossover trial evaluating the acute effects of single-session TMS delivered to three

experimental sites (dlPFC, SFG, PPC) and a control site, stimulation to the SFG significantly reduced both

craving and withdrawal in individuals with Tobacco Use Disorder compared to the control target, replicating

earlier findings9. Negative affect was not significantly impacted by stimulation to any target as compared to the

control target. Our findings are also consistent with previous evidence that stimulation to the dlPFC reduces

craving2–4,6,8,10,11. The effect sizes for men were larger than the effect sizes for women. SFG is a promising

target for smoking cessation trials and can be implemented using standard TMS equipment.

We selected stimulation targets that are hubs of resting-state networks (dlPFC for executive control, SFG for

salience, PPC for default mode, and v5 for visual), expecting network-specific effects. However, dlPFC was

globally influential, while SFG and v5 produced no significant network-level changes. Nonetheless, SFG

stimulation effectively reduced craving and withdrawal, suggesting alternative neural mechanisms. Future

research could search for circuits that underlie the craving reductions observed, and incorporate them into

network-guided studies, similar to success in network-guided TMS for depression treatment39–43.

Symptom-specific targeting is also emerging for depression treatment44, and our finding that craving and

withdrawal may respond to different targets suggests that this is a potential avenue for addiction treatment as

well.

This trial was impacted by the COVID-19 pandemic, with data collection spanning from March 2019 to

August 2024. During this time, changes such as increased use of electronic nicotine delivery systems and

cannabis may have influenced results. Additionally, our exclusion of participants with comorbid psychiatric and

substance use disorders limits generalizability, as TMS may be effective in treating such patients45. The trial

was also underpowered to detect sex differences, likely due to the higher demands of detecting ordinal

interactions46. Finally, the relatively low dose of neuromodulation may have limited the separation between

experimental and control conditions, as higher doses are typically used in treatment protocols.

Phase 2 and 3 trials are needed to confirm the efficacy of SFG stimulation for smoking cessation, followed by
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optimization trials examining factors such as stimulation frequency, dosing, spacing, and neural context.

Additionally, future studies should compare the tolerability of different TMS protocols. Tailoring addiction

treatment based on individual symptom profiles could also be explored, with different neural targets emerging

for individuals whose relapse risk is driven by craving, withdrawal, or negative affect. Investigating

symptom-specific neural targets may help overcome observed sex differences and other individual-level factors

that influence brain circuits related to craving and withdrawal relief.
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