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Abstract 

Objective. Clinical assessments of individuals with Cognitive-Motor Dissociation (CMD) following brain 

injury are challenging and prone to errors. This prompts investigation of objective, movement-

independent neurophysiological markers using electroencephalography (EEG)-based Brain-Computer 

Interface (BCI) technology. The current pilot study involving adults with prolonged disorders of 

consciousness (PDoC) investigated the combination of Motor-Imagery BCI (MI-BCI) training and 

auditory evoked Event Related Potentials (ERPs) using an oddball paradigm to produce complementary 

biomarkers to improve evaluation of awareness in PDoC . 

Approach. EEG data (16 channels) were collected from participants with Unresponsive Wakefulness 

Syndrome (UWS, n = 2), Minimally Conscious State (MCS, n = 3), and Locked-In Syndrome (LIS, n = 4). 

The MI-BCI involved assessing sensorimotor rhythm modulation, motor-imagery training with and 

without auditory feedback, and motor-imagery responses to closed questions over 12 sessions each 

lasting ~1hour. The oddball protocol was also deployed in 2-3 of those sessions, with ~10 days between 

first and last, featuring auditory stimuli, comprising two 5-minute sets of standard, deviant beeps plus 

novel sounds, in a structured ratio. We expected those with the lowest levels of awareness would have 

reduced ERP components, with highest latencies to peak, as well as lowest accuracy in the motor 

imagery BCI protocol – and that trends across these metrics would be observed across the three 

patient groups based on their clinical diagnoses.  

Main results. Significant differences in mean N1 component latencies and mean MI Decoding 

Accuracies (DA, for significant runs) occurred between groups – with shorter N1 latencies for the LIS 

and MCS groups than for the UWS group (LIS vs. UWS and MCS vs. UWS, p < 0.001), and higher DA for 

the LIS group compared to MCS and UWS (p < 0.001). Mean DA were found to have a significant 

negative correlation with mean N1 latencies (two-tailed, p = 0.017). 

Significance. The results indicate that neurophysiological markers from the concomitant application of 

an MI-BCI and auditory-oddball paradigm can augment standard clinical assessments by providing 

objective measures that produce robust evidence of awareness in people with PDoC.   

Keywords: Prolonged Disorders of Consciousness (PDoC), Brain injury, Auditory oddball, Brain-

Computer Interface (BCI), motor-imagery (MI), electroencephalography (EEG), Event Related Potential 

(ERP), Unresponsive Wakefulness Syndrome (UWS), Minimally Conscious State (MCS), Locked-In 

Syndrome (LIS). 
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1 Introduction 

In the context of medical practice, Disorders of Consciousness (DoC) describes a continuum of 

alterations of consciousness that occur following acquired brain injury. When a DOC persists beyond 

four-weeks post-injury, the condition is then described as a Prolonged Disorder of Consciousness 

(PDoC) [1]. A DoC  has two components: wakefulness and awareness. Wakefulness is associated with 

the brain’s arousal systems, primarily driven by subcortical structures (broadly the brainstem and 

thalamus) – while, awareness relies on a distributed frontoparietal network for the necessary complex 

processing in higher-cortical areas, related to the perception of, and interaction between, the self and 

the environment [2–4]. The state or quality of wakefulness or awareness of an individual with a DoC 

can range from complete unconsciousness, where both wakefulness and awareness are absent, as in 

coma, which is usually acute and short-term – to a state of wakefulness with absent awareness, as in 

Unresponsive Wakefulness Syndrome (UWS),  or to a state of wakefulness with minimal or fluctuating 

awareness, as in the  Minimally Conscious State (MCS) [1]. Individuals diagnosed with UWS have a loss 

of functional connectivity in the long-range cortico-cortical and cortico-thalamo tracts, while 

individuals diagnosed with MCS have preserved functional connectivity in the frontoparietal network 

(FPN). The emergence from UWS to MCS depends on restored functional connectivity in the FPN [4]. 

The MCS diagnosis extends along a continuum of  cognitive function, where MCS minus (MCS-) and 

MCS plus (MCS+) correspond to the integrity of the FPN [5,6]. Separate to a DoC, Locked-In Syndrome 

(LIS) [7,8], describes a neurological condition that occurs following an acquired brain injury that causes 

severe damage to the brainstem while leaving other brain areas intact, for example a brainstem infarct 

(i.e., brainstem stroke), resulting in quadriplegia and anarthria – leaving the individual with fully 

preserved consciousness but unable to move (apart from eye-movements).  

Despite recent research demonstrating an ability to detect consciousness using non-invasive 

neuroimaging techniques, and protocols that do not require a behavioural response [9], the most 

commonly used approaches to determine states of DoC and LIS are the Coma Recovery Scale – Revised 

(CRS-R) [10], or the Wessex Head Injury Matrix (WHIM) [11], which are standardised assessment tools 

that evaluate the neurobehavioral functioning of patients with DoC. Such  tools aim to differentiate 

between DoC states by assessing various domains of functioning, including auditory, visual, motor, 

oromotor, communication, and arousal levels. The American Academy of Neurology (AAN), the 

European Academy of Neurology (EAN) and the UK Royal College of Physicians (RCP) disagree on the 

use cases of neuroimaging tools to aid in the diagnosis of DOC. While the AAN and EAN express interest 

in the potential additive value of neuroimaging techniques (under varying conditions), concerns 

common to all three authorities include cost-effectiveness, practical implementation, and more robust 

evidence [9]. Owen et al. (2006) [12], pioneered the use of neuroimaging techniques to assess for 

evidence of consciousness in people diagnosed with UWS. This seminal functional magnetic resonance 

imaging (fMRI) case-study demonstrated the ability of a patient diagnosed with UWS to covertly follow 

commands, using an imagined movement protocol involving two tasks; imagining (1) playing tennis 

and (2) walking around their room – providing the first indication that a patient diagnosed with a PDoC 

assessment of UWS could intentionally modulate brain activity. This foundational work was advanced 

by Monti et al. (2010) [13], who employed similar fMRI techniques to investigate communication in 

PDoC patients through yes/no biographical questions, with some patients successfully modulating 

their brain activity to respond. The first evidence to support the efficacy of electroencephalographic 

(EEG) technology to measure the intentional modulation of sensorimotor rhythms (SMR) during 

imagined movement (i.e., motor-imagery), in a cohort of three UWS patients, was provided by Cruse 

et al. (2011) [14]. The application of EEG-based motor-imagery (MI) protocols lowers the cost and 

increases accessibility, as compared to fMRI, of potential technology that might add diagnostic value 
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in an assessment of a patient with a DoC – addressing the concerns of the AAN, EAN, and RCP, relating 

to cost-effectiveness and practical implementation.  

Subsequent studies have reinforced the potential of EEG-based MI protocols to detect awareness in 

patients with disorders of consciousness [15–17]. Relevant to the current pilot, Coyle et al. (2015) [18] 

demonstrated that training patients with a diagnosis of MCS (N = 4) to improve their sensorimotor 

modulation using an EEG-based MI-BCI with auditory feedback is feasible – and could potentially serve 

as a communication tool for this patient cohort. Building on this research, the MI-BCI protocol was 

further developed to include a question and answer (Q&A) task, and research evaluating the efficacy 

of the full protocol is currently being conducted with a large cohort of PDoC and LIS patients, across 

fifteen UK sites [19,20]. The full MI-BCI protocol [20] provides three possible imagined movement 

combinations for a two-class movement classification: left vs. right arm, right arm vs. feet, and left arm 

vs. feet. Each participant uses a specific combination throughout their sessions.  

While recent advances in wearable EEG-based BCIs (eBCIs) stand to further address issues of cost-

effectiveness and accessibility, and therefore, accelerate the adoption of validated BCI protocols in 

healthcare in the near future [21,22] – to allay concerns related to the integrity of the evidence for the 

additive value of neuroimaging protocols to aid a diagnosis of DoC or LIS, further research is required. 

Specifically, to validate and establish the reliability and utility of these protocols will require the 

development of a battery of EEG paradigms and measures to assess different aspects of neural 

function, with demonstrable internal consistency. Kim et al. (2022) [23], has recently progressed this 

approach using a protocol that comprises both passive (auditory oddball) and active (covert command 

following) EEG paradigms, to investigate neurophysiological markers that reflect differences in the 

cognitive state of children with brain injury (aged 8-18 years: brain injured, n = 31; control, n = 13). Key 

EEG markers identified using this protocol were the N1 and the P3 components of the stimulus evoked 

event-related potential (ERP) — the former reflects early sensory stimulus processing and the latter a 

higher-cognitive function that indicates the orientation of attention to a salient stimulus. Both markers 

were found to increase in magnitude as cognitive recovery progressed, with the N1 demonstrating 

greater separation of participant groups, while the P3 magnitude provided a more reliable indicator of 

an individual’s  ability to follow commands. The Kim et al. (2022) [23] study represents the largest 

cognitive ERP research to date focusing on paediatric brain injury and provides objective, movement-

independent EEG markers to aid in the evaluation of cognitive state – offering robust evidence 

supporting the use of neuroimaging tools in the process of diagnosing disorders of consciousness 

(DoC), in a paediatric cohort with brain injury. 

Building on these research advances, the current pilot study, conducted with a cohort of patients (N = 

9) recruited to participate in the ongoing large-scale EEG-based MI-BCI study (Clinical Trials 

Registration number: NCT03827187), employed the passive auditory oddball protocol (demonstrated 

in a paediatric population, by Kim et al. (2022) [23]), alongside the MI-BCI protocol [19,20,24] in the 

same individuals. There were three aims of this study: first, to determine whether the ERP markers 

identified by Kim and colleagues can differentiate between PDoC patients with a diagnosis of either 

UWS or MCS, as well as those with LIS; and second, to establish whether there is a consensus between 

these potential ERP markers and motor-imagery ability, within an adult cohort of PDoC and LIS patients 

and thirdly, to determine whether this combined auditory oddball and MI-BCI protocol can exploit the 

same EEG markers identified by Kim et al. (2022) [23] to distinguish between adult PDoC (UWS, MCS) 

and LIS patients. Demonstrating correlation between these EEG-markers and motor imagery ability by 

evaluating the internal consistency of these neurophysiological markers, within an adult cohort of 

PDoC and LIS patients, will help establish robust evidence for the use-case of neuroimaging tools to 

aid a diagnosis of DoC – addressing key concerns raised by the AAN, EAN and RCP [9]. 
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2 Methods 

2.1 Participants 

There were nine participants in this pilot study (UWS (n = 2), MCS (n = 3), and LIS (n = 4)), recruited to 

participate in an ongoing large-scale study (Clinical Trials Registration number: NCT03827187). 

Participant details are presented in Supplementary Table 2. The study was ethically approved by the 

Health Research Authority (HRA) and Health and Care Research Wales (HCRW) Research Ethics 

Committee (REC), of the National Health Service (NHS), and was conducted in accordance with the 

Declaration of Helsinki. The principal investigators (PIs) at the participating NHS sites are Neurology 

and Neurorehabilitation consultants in charge of PDoC patients’ care. The PIs, or a member of the care 

team, made the initial decision about which patients were recruited for the study. Consent to 

participate was given where possible by the patient, or proxy consent was provided by the family, and 

the PIs informed the research team of the patient’s current PDoC diagnosis, i.e., whether they were in 

a UWS, MCS, or LIS state.  Participants were visited as inpatients at participating NHS hospitals, or in 

care homes or patients’ own homes in the United Kingdom (UK). 

2.2 Experiment protocol and stimuli 

The EEG auditory oddball paradigm involves a passive listening task that presents a rapid randomised 

sequence of auditory stimuli – including both standard and deviant stimuli, with the latter presented 

less frequently than the former. The paradigm is used to trigger auditory evoked ERPs that 

demonstrate robust deviant versus standard ERP differences [23,25]. Here the protocol comprised 2-

3 sessions, with 10 (+/- 3) days between the first and last session. Each session comprised a two-minute 

baseline resting state recording, followed by two 5-minute oddball sets of standard and deviant beeps 

plus novel sounds, delivered in a structured standard-deviant-novel ratio of 27:8:6. The oddball task 

and stimuli employed, are described in Kim et al. (2022) [23]. The protocol contained five different sets 

of 1-minute 22s in duration, each a different sequence of standard-deviant-novel stimuli, and each 

with different novel sounds – but all having the same ratio of standards, deviants and novel stimuli, 

presented with an inter-stimulus interval of 1-second. Sets 1 and 2, 3 and 4, 1 and 5, were selected for 

the first session, second session and third session respectively (not all participants completed the third 

session). The selected set was looped for a 5-minute interval. 

Auditory oddball stimuli: The stimuli were square-wave beeps with a duration of 340ms. The 

fundamental frequency for the standard stimuli was 400Hz and for the deviant stimuli was 575Hz. The 

novel stimuli were sounds like a doorbell, a horn, a cat meowing etc., and were designed with the aim 

to evoke a strong P3a component (reflective of stimulus-driven frontal attention mechanisms during 

task processing [26]). 

Motor-imagery Brain-Computer Interface (MI-BCI) study outline: Two of three potential imagined 

movement combinations were used for a two-class movement classification: left- vs. right-arm, right-

arm vs. feet, and left-arm vs. feet. The study had three phases. Phase I (sessions 1-2) assessed 

participants' ability to modulate brain activity to achieve significant decoding accuracy (DA), requiring 

a peak DA during the task period significantly higher than both the baseline period and randomly 

permutated samples. Phase II (sessions 3-6) involved MI-BCI training with neurofeedback to train 

participants to modulate their brain activity. Phase III (sessions 7-10) evaluated participants' MI-BCI 

responses to closed questions, categorised as biographical, numerical, logical, and situational 

awareness [19,20].  
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2.3 EEG data acquisition 

Using a g.Nautilus Wireless Research EEG headset, EEG was recorded from 16 channels with active 

electrodes [27]. The reference electrode was fixed on the right earlobe and the ground electrode was 

positioned over the AFz electrode location according to the international 10/20 EEG standard. The EEG 

was filtered (Butterworth, 0.5-100Hz, eighth order), and sampled (sampling rate: 250Hz, down-

sampled to 125Hz).  

 

Figure 1. EEG montage. Illustration of the EEG and ground electrodes positions. Nine EEG channels covering motor and 
imagined movement-related cortical areas are indicated in green. 

The BCI 2000 system was used to present the 'oddball' paradigm and to manage EEG data acquisition 

– the graphical user interface (GUI) allowed real-time monitoring of the EEG signals and the 

management of stimulus trigger inputs. The g.TRIGbox [28] generated the trigger pulses for each of 

the auditory input signals. The g.Nautilus base station received the digitised EEG signals via wireless 

communication and connected to the g.TRIGbox via a VGA cable to integrate the EEG and stimulus 

trigger information. A splitter cable sent the synchronised trigger signals to both the BCI 2000 software 

and the headphones (delivering the audio to participants) – to accurately align the recorded EEG 

signals with the stimulus triggers. 

EEG data acquisition and online signal processing, for the motor-imagery protocol, involved 

communication between a MATLAB Simulink [29] module, and the experimental protocol controller 

application presented in the Unity 3D Game Engine [30] – which was managed using a user datagram 

protocol (UDP) based communication. 

2.4 Auditory oddball data analysis  

EEG data preprocessing: Custom software, and EEGLAB [31] in Matlab, were used to analyse the 

auditory oddball recorded EEG data. The EEG signal was first high-pass filtered at 1Hz, secondly the 

50Hz line noise was removed, thirdly anti-alias filtering was applied, and lastly, the cleaned signal was 

downsampled to 200Hz. Further preprocessing involved removing transient high-amplitude artifacts 

from the continuous EEG signal using the artifact subspace reconstruction method (ASR) [32], and 

performing an independent component analysis (ICA) to remove smaller artifacts related to eye-blinks, 

cardiac activity and muscle contractions, using the infomax algorithm [33]. 

Auditory oddball event-related potentials (ERPs): Trials were time-locked to the stimulus onset and 

epoched between 100ms pre-stimulus onset and 1000ms post-stimulus onset. Epoched trials were 
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baseline corrected, i.e., the mean voltage for the 100ms pre-stimulus interval was subtracted, low-

pass filtered at 20Hz, and then averaged. The subsequent trial data derived from the vertex electrode 

(Cz), was used to extract the N1, N2, and P3 ERP component data. For the N1 component analysis, only 

the standard trials were used. The signal-to noise ratio (SNR) was computed by dividing the mean 

voltage signal by its own trial-to-trial standard at each time sample, to correct the effect of noise. Each 

participant’s N1 was thus computed as the largest negative SNR value (normalised using z scores) at 

the Cz electrode location, in the 80 – 180 ms post-stimulus time window. The post-stimulus time 

windows used or the N2 and P3 components analyses, were 180-400 ms and 200-450 ms, respectively. 

For both components, the average response to deviant/novel stimuli minus the average response to 

standard tones provided a measure of the magnitude of the oddball difference waveforms – and was 

calculated as the variance in the largest negative SNR for the N2 and the largest positive SNR for the 

P3, at the Cz electrode location and normalised using the z-scores. The standard error of the difference 

wave was computed as the sum of the trial-to-trial variances of the deviant trial amplitudes and 

standard trial amplitudes, i.e., the variance of differences. For all three ERP components, the latency 

of the peak amplitudes were also derived. The time windows selected for the N1 and N2 components 

differs from those implemented in the Kim et al. (2022) analysis – which were specific to the longer 

latencies of auditory evoked potentials in a paediatric population [23,34]. In relation to the auditory 

evoked N1, N2 and P3 components, the normal adult latencies ranges are approximately 80 – 120 ms, 

160 – 270 ms, and 220 – 360 ms, respectively [34–36]. As the cohort for the current study were adults, 

who had varying levels of conscious awareness, the time windows were started at the approximate 

minimum post-stimulus latency for each component, but extended beyond the normal range, to allow 

for a delayed response due to brain injury – note, the minimum selected for the N2 time window was 

20ms later than the approximate normal minimum, to allow for an extended N1 time window that did 

not overlap with the N2 minimum used.   

2.5 Motor-Imagery Brain-Computer Interface (BCI) data analysis  

A brief overview of the signal processing methods implemented in the MI-BCI framework is provided 

here, and full details are available in Coyle et al. (2022, preprint) [20].  

Offline Signal Processing: EEG signals were processed using a filter-bank common spatial patterns 

(FBCSP) [37] and mutual information (MI) feature selection framework [38]. Signals were band-pass 

filtered into six frequency bands, and epochs were extracted for task intervals. CSP filters were 

calibrated to maximise class discriminability, and features were extracted using log-variance with a 

sliding window. 

The regularised linear discriminant analysis (RLDA, from the RCSP toolbox [39]) classifier was then used 

to classify imagined movement and decoding accuracy (DA) was estimated across trials and runs. The 

peak DA was identified within specified intervals by selecting the highest local maximum within a 

300ms window centred at the smoothed-reference and smoothed-task DA peaks. This approach 

ensured that the peak DA was not a random spike. 

Offline Single-Run Analysis for BCI Calibration: Six-fold cross-validation was used to select the optimal 

channel set, frequency band set, classification window width, and feature number for each participant 

and run. DA was calculated and plotted as time-varying DA. The significance and robustness of DA were 

evaluated using permutation tests – which involved randomising the class labels and repeating the 

cross-validation process 100 times, creating a distribution of DA scores under the null hypothesis. The 

actual DA scores were then compared to this distribution to determine if they were significantly higher 

than what would be expected by chance with a 95% confidence interval. 
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Additionally, to provide further evidence that the peaks accuracy is significantly greater than chance 

(i.e., the DA for the run is significant) we also compare the mean peak DA value during the event-

related task period to the baseline period using a dependent one-tailed t-test. Combining measures to 

determine significant runs ensures a reliable and robust measure of individual classification 

performance and clear evidence of engagement in MI by the participant or lack thereof (in the case of 

runs observed not be significant).  

Online BCI Configuration: The calibrated FBCSP-MI framework's optimised parameters were used in 

online runs to provide real-time auditory feedback. The classifier output, referred to as the time-

varying signed distance (TSD), determined the movement direction and confidence of the audio 

feedback. TSD values were de-biased for stability, providing consistent feedback during the BCI task. 

2.6 Statistical analysis  

Statistical tests were performed using the IBM Statistical Package for the Social Sciences version 27.0 

(SPSS). The dependant variables for each measure were:  

• N1 component amplitude; measured for each participant as the largest negative SNR value 

(normalised using z-scores) at the Cz electrode location, in the 80–180 ms post-stimulus time 

window, averaged across standard stimulus trials in each run. 

• N1 component latency; measured for each participant as the time (in milliseconds) of the 

largest negative value of the SNR at electrode location Cz in the 80–180 ms post-stimulus time 

window, averaged across standard stimulus trials in each run. 

• N2 and P3 component magnitude; measured for each participant as the difference wave 

variance in the largest negative SNR for the N2 in the 180–200 ms post-stimulus time window 

and the largest positive SNR for the P3 in the 200–450 ms post-stimulus time window, at the 

Cz electrode location and normalised using z-scores, for trials in each run. 

• N2 and P3 component latencies; measured for each participant as the time (in milliseconds) 

of the largest negative value of the SNR for the N2 in the 180–200 ms post-stimulus onset 

interval, and the largest positive value of the SNR for the P3 in the 200–450 ms post-stimulus 

onset interval, at electrode location Cz, averaged for each run. 

• MI decoding accuracy (DA); measured for each participant as the percentage (%) of correctly 

classified trials out of the total number of trials in a run. Only DA values obtained from runs 

with a significantly higher mean DA peak (one-tailed t-test, p < 0.05) than maximum DA during 

reference baseline interval as well as DA achieved in randomly permutated trials were included 

in analyses. These data are referred to as significant runs. 

The data were checked to determine whether analysis of variance (ANOVA) assumptions were met. 

For each analysis, the data were split according to group (UWS, MCS, and LIS) and the Shapiro-Wilk 

test was performed to check the normality of the data distributions. When found to be non-normal 

(Shapiro-Wilk (W), p < 0.05) for one or more groups, and/or skewness and kurtosis z-scores were found 

to be outside the accepted range (-1.96 ≥ 0 ≤ 1.96), or when outliers were present, a Kruskal-Wallis H 

nonparametric test was used. A Welch Test was chosen for analysis of data with a normal distribution 

when the variance was not homogenous (Levene’s statistic, p < 0.05), and pairwise comparisons were 

performed using a Games’ Howell test. When all ANOVA assumptions were met, a one-way ANOVA 

was performed, and the Tukey test was used to examine pairwise comparisons. Statistical tests of 

variance were two-tailed. The appropriate effect size calculations were performed for significant 

statistics; eta squared (Ƞ2) for ANOVA F-statistics, epsilon squared (ε²) for Kruskal-Wallis H-statistics 

and Omega Squared (ω2) for the Welch W-statistic. The range for each of these effect size measures is 

very small (> 0.01), small (0.01-0.05), moderate (0.06-0.13), and large (> 0.14) [40]. Using this 
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approach, a one-way ANOVA was used to examine group differences in N1 and P3 latency as well as 

P3 difference wave magnitude, and Welch ANOVA was applied to examine group differences in N1 

amplitude and N2 difference wave magnitude, and a Kruskal-Wallis test was used to examine group 

differences in N2 latency. The latter test was chosen due to outliers – one in the UWS data, and two in 

the MCS data. Given the small sample size, and likelihood of the outlier latencies being meaningful 

values, they were not removed. A two-tailed Spearman’s Rank Correlation test was chosen for bivariate 

correlation analyses, also due to the small sample size, and to mitigate the influence of a non-normal 

data distribution. 

3 Results 

3.1 Individual protocols 

The main results are detailed in Supplementary Table 1 and are visually represented in Figure 2. 

 

Figure 2. Illustration of the significant results: The dependent variable measure is presented on the y-axis, and group is 
labelled on the x-axis. Top left – Decoding Accuracy (DA, %); Significant group differences in MI-BCI decoding accuracies for 
significant runs. Top right – N1 latency (ms); Significant group differences in N1 latencies. Bottom left – N1 amplitude; 
Significant group differences in N1 amplitudes (z-scores). Bottom right – N2 magnitude; Significant group differences in the 
N2 difference wave magnitudes (z-scores). The whiskers extend to 1.5 times the interquartile range (IQR). A single black 
asterisk signifies a p value < 0.05, and a double black asterisk signifies a p value < 0.01, while the single blue asterisk 
indicates the difference approached significance at an alpha threshold of 0.05. 

  

MI-BCI : Analysis of the DA scores, from significant runs within corresponding sessions, revealed a 

significant group difference (W(2, 20.8) = 36.817, p < 0.001, ω2 = 0.743). According to a Games-Howel 

comparison, the significant result was a consequence of the higher MI performance of the LIS group 

compared to both the MCS (MD = 13.99, SE = 2.15, p < 0.001) and UWS (MD = 19.15, SE = 2.25, p < 
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0.001) groups, while the higher MCS performance compared to the UWS performance, approached 

significance (MD = 5.156, SE = 1.99, p = 0.053). 

Oddball Paradigm:  Group differences in the amplitude of the N1 ERP were found to be significant (F(2, 

21.246) = 7.041, p = 0.005, ω2 = 0.324), due to a significantly lower amplitude for the UWS group 

compared to the MCS group (MD = 0.176, SE = 0.052, p = 0.007), and the LIS group (MD = 0.109, SE = 

0.037, p = 0.022). The latency of the N1 was also significantly different across groups (F(2, 43) = 20.42, p 

< 0.001, Ƞ2 = 0.487), with UWS N1 latency found to be significantly longer compared to the MCS (MD 

= 33.07, SE = 8.18, p < 0.001), and LIS (MD = 48, SE = 7.53, p < 0.001) groups. Additionally, the difference 

between the MCS and LIS groups was just above the alpha threshold (p = 0.053, longer for MCS).  

The magnitude of the N2 response was also found to differ significantly across groups. A Welch ANOVA 

revealed the group difference in the magnitude of the N2 ERP (F(2, 15.02)  = 8.304, p = 0.004, ω2 = 0.434) 

was due to a significantly larger mean difference wave magnitude for the MCS group compared to both 

the UWS ( MD = 0.438, SE = 0.11, p = 0.003) and LIS (MD = 0.441, SE = 0.106, p = 0.003) groups. The 

group difference in N2 latency was not found to be significant (H = 3.035, p = 0.219). 

A significant group difference was not found for either the magnitude of the P3 difference wave (F(2, 43) 

= 0.431, p = 0.653) or the latency of the P3 component (F(2, 43) = 1.385, p = 0.261). 

3.2 Relationship between protocol metrics  

To assess whether there was convergence between the findings of the significant ERP component 

group differences and the DA group differences, we conducted a two-tailed Spearman's Rank bivariate 

correlation analysis to examine the relationship between the DA scores for significant runs and each 

of the following variables; N1 amplitude and latency, and N2 difference wave magnitude. The results 

show the DA scores are significantly negatively correlated with N1 latencies only (ρ = -0.802, p = 0.017, 

see Figure 3). 
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Figure 3. Illustration of the significant negative correlation between individual mean N1 latencies and corresponding mean 
DA scores for significant runs, i.e., the peak DA during the task period was significantly higher than the baseline period – 
across the UWS (blue circles), MCS (green squares), and LIS (red triangles) groups. 

The findings from the combined oddball and MI-BCI protocol, implemented over two to three sessions 

with a pilot sample of five PDoC and four LIS patients, highlight significant group differences in the 

latency and strength of the auditory evoked N1 ERP. The results indicate that, similar to its effectiveness 

in distinguishing between cognitive states in brain-injured paediatric groups [23], the amplitude of the 

auditory evoked N1 ERP component can serve as a potential EEG marker to aid in diagnosing UWS in 

adult PDoC patients (p = 0.005). However, the N1 amplitude did not clearly separate MCS and LIS 

groups (LIS v MCS; MD = 0.067, SE = 0.049, p = 0.379), and while the N2 difference wave magnitude 

was found to differentiate between MCS and UWS (p = 0.005), and MCS and LIS (p = 0.003) groups, 

this magnitude measure was remarkably similar for LIS and UWS patients (p = 0.648). Further differing 

from the paediatric group of brain injured patients in the Kim et al. (2022) study  [23], the adult PDoC 

patient groups in the current study did not differ significantly according to the P3 difference wave 

magnitude, or in P3 latency, across groups.  

Underlying the significant N1 ERP latency result for this cohort of PDoC and LIS patients, is an 

observable linear increase in the latency of the N1 ERP responses, time-locked to the stimulus 100.5ms 

(±16.9) post-onset for the LIS group, and increases linearly to 115.43ms (±20.5) for MCS patients and 

148.5ms (±19.4) for UWS patients (see Error! Reference source not found.). Taken as a whole, the e

valuation of group differences that relate to the N2 component indicate a significantly greater N2 

difference wave magnitude for the MCS patient group, with a latency within the normal range (220 – 

270 ms [34]). The reduced N2 magnitude and later latency, found for the UWS group was anticipated.  

 

Figure 4. LIS patients only: Illustration of the relationship between the N2 difference wave magnitude (x-axis; calculated as 
averaged z-scores for each individual), and N2 latency (y-axis; calculated as the average peak latency for ERP’s time-locked 
to stimulus presentation, 180-400ms post-stimulus onset).. 

 

Counterintuitively, the LIS group N2 difference wave magnitude differed only fractionally from that of 

the UWS group, and with increased latency (group mean; 296.17ms). However, it is noted that the 

longer latency was influenced by two of the four LIS group participants (average individual N2 latencies 
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were; 262.67, 370.67, 330, 221.33). When the N2 difference wave magnitude and N2 latency data for 

the LIS group are graphed to illustrate their relationship, the resulting plot demonstrates an almost 

perfect linear correlation (see Error! Reference source not found.). For illustration purposes, the sign o

f the z scores (N2 magnitude values) was changed to positive, to highlight the increase in magnitude 

as the N2 latency is closer to normal (~200ms). While this is an interesting observation and warrants 

further investigation with a larger sample, the current analysis indicates that the N2 ERP component 

does not effectively distinguish between UWS, MCS, and LIS patients. 

Regarding the P3 ERP results, Kim et al. (2022) [23], found, within a paediatric cohort with brain injury, 

that the magnitude of the P3 difference wave was positively correlated with the individual’s Motor 

Command-Following (MCF) ability, as measured by significant power spectral differences between rest 

and movement conditions in the alpha-theta frequency bandwidth. However, the results presented 

here do not find significant group differences in the magnitude of the P3 difference wave, or the 

latency of the component – and a Spearman’s Rank correlation test did not find a significant correlation 

between either P3 component measure and corresponding DA for significant MI trials.   

 

Figure 5. MCS and LIS patients only:  Illustration of the relationship between the magnitude of the P3 difference wave (y-
axis; calculated as averaged z-scores for each individual), and corresponding DA scores (x-axis; calculated as averaged DA for 
significant MI trials). 

However, given the length of the window used to calculate the P3 latency (200 – 450 ms), the UWS 

mean group P3 latency of 260ms may reflect a delayed P2 ERP component of the N1/P2 complex, 

which has a normal latency range of 50-120 ms [41] – a response associated with changes in the 

auditory environment, such as deviations in the frequency or intensity of a sound [41,42]. When 

confined to LIS and MCS patients only, a significant one-tailed positive correlation is found between 

the magnitude of the P3 difference wave and the DA scores for significant runs (ρ = 0.771, p = 0.036, 

note; a one-tailed Spearman’s Rank correlation was justified based on the hypothesis that the 

correlation would be positive, as deduced from the Kim et al., 2022, study results  [23]). This result 

suggests that the magnitude of a P3 difference wave, when the P3 ERP component exhibits a normal 

post-stimulus latency (~300ms), could provide an objective marker of an individual’s capacity to 
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perform motor-imagery – further research with a larger participant cohort is required to test this 

hypothesis.  

Overall, within this cohort, the N1 latency was identified as the EEG-marker that most distinctly 

differed across groups – with significantly longer latencies for UWS compared to MCS (p < 0.001) and 

LIS (p < 0.001) groups, and longer latencies for MCS compared to LIS patients, with a difference that 

approached significance (p = 0.053). Similarly, regarding, differences in the ability to modulate 

sensorimotor rhythms with imagined movements, the DA for significant MI runs was found to 

effectively separate each group, with higher DA for the LIS group compared to the MCS group (p < 

0.001) and the UWS group (p < 0.001), and with greater DA for the MCS group compared to the UWS 

group, with the difference tending towards significance (p = 0.053). 

 

Figure 6. Illustration of the group means for N1 latency (ms) in blue (with circle markers) and group mean scores for 
decoding accuracy (DA) in red (with square markers) on trials that were significant, i.e., the peak DA during the task period 
was significantly higher than the baseline period. 

As can be seen in Error! Reference source not found., the trend between MI-BCI DA and group a

ssignment and the trend between N1 ERP latency and group assignment, are anti-correlated, i.e., lower 

DA is linked to longer N1 latency and higher DA is linked to shorter N1 latency and a significant negative 

correlation between N1 latency and significant DA scores (p = 0.017) is observed. Furthermore, group 

differences in DA and the N1 latency, were found to have large effect sizes (0.743 and 0.487, 

respectively). 

4 Discussion 

Currently, misdiagnosis rates are extremely high for patients with a DoC – reportedly, 43% of MCS 

patients are diagnosed as UWS) [43]. Fins et al. (2020) have noted a discrepancy between the 

advancements in scientific understanding of DoC and actual clinical practice, highlighting the need for 

better diagnostic tools and therapeutic interventions to be more widely implemented in clinical 

settings [44]. Higher cognitive functions depend on the integrity of large-scale intrinsic cortical 

networks (ICNs) [45], and the overall functional status and level of consciousness in patients with 

diffuse brain injuries has been correlated with electrophysiological measures [46]. Thus, advanced 

neuroimaging techniques and electrophysiological biomarkers offer the most promise in addressing 

this discrepancy [45,47,48]. EEG stands out as the most cost effective neuroimaging modality, and 

recent advances in wearable EEG systems allow bedside applications, increasing accessibility – while 
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the range of EEG-based methods demonstrated to provide diagnostic value further promotes the 

utility of EEG-based assessments for this cohort [22,45,49]. However, the importance of combining 

various EEG methods to offer a comprehensive assessment of a patient's brain function to aid in more 

accurate diagnoses and prognoses have recently become more central to research in this area [49,50]. 

Leading methods include evaluation of; ERP components, EEG modulation associated with motor-

imagery tasks, and frontoparietal alpha network connectivity [48,49,51]. A further consideration 

related to the delivery of care within this cohort, is their inability to communicate, which has a 

significant impact on wellbeing and excludes the patient from the decision-making around their care 

– highlighting the importance of BCIs to address this deficit [44,52].  

In line with this research focus, the pilot study presented here has evaluated the potential for the 

combined MI-BCI and passive auditory oddball EEG-based protocols to enhance the diagnostic 

accuracy for PDoC states and LIS. The findings demonstrate high internal consistency between the N1 

latency and MI DA scores (ρ = -0.802), corroborating the reliability and effectiveness of these 

neurophysiological markers – offering robust evidence for their use as objective, movement-

independent measures of consciousness. While establishing internal consistency is an important step 

in the validation process for a neuroimaging toolkit to aid in the diagnosis of PDoC state – this 

validation relies on a group-based variation, which does not account for individual heterogeneity. 

Accurate assessment tools need to have good sensitivity (i.e., a low rate of false negatives) and 

specificity (i.e., a low rate of false positives) [50], and therefore, there is a need to accommodate 

individualised pathology. A recent gap-analysis concludes that the heterogeneity in DoC pathology 

requires domain-specific brain function analyses rather than generalised behavioural checklists, as 

these targeted analyses are more likely to identify subsets of patients with covert consciousness who 

can wilfully modulate brain activity, despite being unable to demonstrate overt expressions of 

awareness – thereby establishing ‘BCI readiness’ [53]. Furthermore, Schiff et al. (2024), emphasise the 

importance of personalised BCI solutions for this subgroup of patients once they are no longer in the 

acute phase, that are tailored to home environments and patient preferences [53]. The current MI-BCI 

protocol includes an assessment phase to evaluate the individual's capacity to wilfully modulate their 

brain activity, determined by achieving a significant DA in at least one of two assessment runs – thus 

establishing the patient engagement and readiness. Importantly, the MI analysis reported here covers 

as little as two or three sessions – an early (third or fourth) session and one or two later sessions 

(following eight to ten training/feedback or Q&A sessions). Although the later sessions followed 

several others, given there are 60 trials in a training or feedback run and 48 in a Q&A run, with four 

runs per session, the findings indicate that three sessions with this structure provides sufficient data 

to achieve separability of PDoC states. While the protocol offers a range of music genres as auditory 

feedback, there is scope to further personalise the feedback for individual users. Furthermore, the 

addition of data on the latency of individual’s N1 ERP component, provided by the passive auditory 

oddball task, improves the reliability of a potential diagnosis. 

Guided by research-informed recommendations, and the results reported here, future research should 

continue to expand the neuroimaging toolkit to provide a comprehensive assessment based on ERP 

signatures and frontoparietal alpha network connectivity that demonstrate strong internal 

consistency. The development of such a toolkit will aid in the diagnosis of DoC states, with a reduced 

likelihood of misdiagnosis due the loss of overt behaviour or to variations in individual pathology that 

do not match the group phenotype – improving sensitivity and specificity. Regarding prognostic 

assessment, given the sample included in this pilot study were all more than 4-weeks post injury and 

were therefore in the prolonged stage of DoC, future longitudinal research, should consider evaluating 

the relationship between MI ability and N1 latency in the early stages of DoC, and at specific timepoints 

through the first year of recovery. This prospective research would establish the potential prognostic 
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value of the N1 latency – which would provide further support for the use case of this neuroimaging 

protocol within this cohort [9]. Further investigation of N2 and P3 ERP component parameters in 

relation to LIS, and LIS plus MCS patients, respectively, is also warranted with a larger patient cohort.  

4.1 Limitations 

The findings of this pilot study were underpowered, with the main results for group differences in DA 

for significant MI trials, N1 latency, and the correlation between these variables, achieving 32%, 16%, 

and 37% power, respectively – based on a post-hoc analysis in G*power [54]. However, based on the 

effect sizes for these results (DA: ω2 = 0.743; N1 latency: Ƞ2 = 0.487; significant DA and N1 latency 

correlation: ρ = -0.802) – a minimum-maximum total sample size to achieve 80% power is 21-45 – 

according to an a priori power analysis in G*power. A further limitation stems from the presentation 

of the auditory oddball protocol. There were five different runs to choose from, each with different 

novel sounds, mixed with deviants and standards in a fixed random order. In a given session, two runs 

were selected, and each run was delivered for a duration of five-minutes, in a loop. This resulted in 

four repetitions of a given run – which could have influenced the magnitude of the later N2 and P3 

auditory ERP components, as the stimuli were not completely randomised, resulting in a pattern that 

could potentially have been learned. The N2-P3 complex is associated with change-detection – the N2 

component is evoked pre-attentively, by changes in the physical features of a stimulus, and is referred 

to as the mismatch negativity (MMN) response, while the P3 (particularly the P3a) ERP component 

that follows MMN, reflects the reorientation of attention to a deviant stimulus [55]. However, the N2 

and P3 stimulus evoked responses have been found to be robustly automatic, and therefore resilient 

to increased frequency and/or regularity of deviant stimuli [56].  

Despite the limitations of this pilot study, the significant results support further investigation within a 

large cohort of PDoC and LIS patients, to determine the diagnostic and prognostic potential for these 

objective, movement-independent EEG-markers, measurable using the MI-BCI and passive auditory 

oddball protocols described here.  

5 Conclusion 

The results of this pilot study provide evidence to support the applicability of the EEG-markers 

identified by Kim et al (2022) [23], within a cohort of adult PDoC patients, as objective 

neurophysiological, and movement independent measures that can aid the assessment of conscious 

state within a cohort of adult PDoC and LIS patients. While a reduced N1 amplitude has been indicated 

as a potential EEG-marker for UWS, the N1 latency emerges as a more robust metric for adult PDoC 

patients – exhibiting a longer mean latency for UWS compared to both MCS and LIS groups, that is 

significant at an alpha level of 0.001, and has a large effect size (Ƞ2 = 0.487). Furthermore, the 

difference between the MCS and LIS groups mean N1 latency approached significance (p = 0.053). 

Furthermore, the mean DA for significant MI trials was demonstrated to similarly separate groups, 

again reinforced by a large effect size (ω2 = 0.743). 

Importantly, the N1 latency was found to have a strong negative correlation with DA scores (ρ = -0.802, 

p = 0.017), with shorter latencies (closer to normal) linked to better DA – indicating high internal 

consistency between the N1 latency and the MI DA scores, which corroborates the potential 

effectiveness of these combined protocols in providing robust and objective measures of awareness in 

PDoC. Thus, the findings presented here strongly support the combined use of these MI-BCI and 

passive auditory oddball protocols, as a tool to aid in diagnosing PDoC states and LIS.  
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Supplementary Material 

Supplementary Table 1. Oddball; Peak amplitude of the N1 ERP, and  magnitude of the N2 and P3, and Latency of all three ERP components—Mean (SD) and statistics, across groups. The 
reported statistics are the F statistic for one-way ANOVA and Welch ANOVA analyses, and the H statistic for the Kruskal-Wallis analyses. Effect sizes are reported as Eta Squared (Ƞ2) for ANOVA 
statistics, Omega Squared for Welch statistics (ω2), and epsilon squared (ε²) for H statistics. 

 UWS MCS LIS Statistics 

n = 2 n = 3 n = 4 

EEG  Measure 
M SD M SD M SD 

(stat) 
val p val Ƞ2/ ε²/ ω2 

 

N1 
 

Amplitude 
(1zB) 

-0.039 0.079 -0.215 0.162 -0.147 0.117 (F) 
7.041 

0.005 0.324 

Latency 
(ms) 

148.5 19.413 115.43 20.508 100.5 16.86 (F) 
20.42 

<0.001 0.487 

 

N2 Magnitude 
(2-1zB)  

-0.0642 0.0969 0.3733 0.3926 -0.0678 0.0728 (F) 
8.304 
 

0.004 
 

0.434 
 

Latency 
(ms) 

327.5 79.468 258.29 74.449 296.17 89.384 (H) 
3.035 
 

0.219 
 

        – 
 

 

P3 Magnitude 
(2-1zB) 

0.064 0.0941 0.062 0.07 0.086 0.094 (F) 
0.431 
 

0.653 
 

        – 
 

Latency 
(ms) 

260 74.466 327.14 95.861 314 97.972 (F) 
1.385 
 

0.261 
 

        – 
 

 

MI DA 
66.625 4.183 71.781 3.772 85.778 10.42 

(F) 
36.82 <0.001 0.743 

 

1zB; the z scores for the amplitude of the standard stimuli, baseline corrected 
2-1zB; the z score for the difference wave, baseline corrected 

DA;  Decoding Accuracies 
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Supplementary Table 2. Participant and session details. 

Diagnosis Age range at 
testing (5 yr) 

Time since injury 
(months) 

Sex Aetiology No. of oddball 
sessions  

Corresponding 
MI session no.  

       

UWS 60-64 8 male Non-Traumatic 2 [3], [10] 

UWS 50-54 6 male Non-Traumatic 2 [3], [10] 

       

MCS 35-39 68 male Traumatic 2 [4], [10] 

MCS 20-24 32 male Non-Traumatic 3 [3], [11], [12] 

MCS 70-74 34 female Non-Traumatic 3 [3], [9], [11] 

       

LIS 65-69 10 male Non-Traumatic 3 [3], [11], [12] 

LIS 60-64 251 male Non-Traumatic 3 [3], [11], [12] 

LIS 25-29 107 female Non-Traumatic 3 [3], [11], [12] 

LIS 55-59 142 male Non-Traumatic 3 [3], [11], [12] 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 11, 2024. ; https://doi.org/10.1101/2024.10.09.24315104doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.09.24315104

