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1 Statistical Derivations

1.1 Derivation under the Assumption of No Indirect Effects of Parental PGS

Let PGSiC denote the PGS value for the child/offspring, PGSiM the PGS for mother, and PGSiF the
PGS for father in family i, i = 1, · · · , N . Let DiC denote the disease status for the offspring. For each
family i, the prospective risk model for DiC follows a log-linear model in the form of pr(DiC |PGSiC , EiC) =
exp(αi + βGPGSiC + βT

EEiC + βT
GEEiCPGSiC). Under rare disease assumptions, the parameters of the

log-linear model can be interpreted as odds ratios, but more generally they correspond to relative risks.
Assume that the probability of (PGSiC , PGSiM , PGSiF )

T followsPGSiC

PGSiM

PGSiF

 ∼ N

µi13, σ
2
i

1 1
2

1
2

1
2 1 0
1
2 0 1

 , (1)

where µi and σi are the mean and standard deviation for each family/strata i.
We will show that

PGSiM/iF |DiC = 1,EiC ∼ N
(
(µi +

σ2
i

2
(βG + βT

GEEiC)), σ2
i

)
. (2)

To derive (2), we consider a risk model of the form

pr(D = 1|U,E) = exp(α+ βGU + βT
GEEU + βT

EE),

where U is the PGS value for offspring and we assume U ∼ N (µ, σ2). Let Ri and Rj index pair of relatives
and dij denote degree of relatedness. For parent-offspring, dij = 1. We have cov(URi

, URj
) = ρσ2 = 0.5dijσ2.

We want to show that

URi
|DRj

= 1,ERj ∼ N (µ+ 0.5dijσ2(βG + βT
GEERj ), σ

2). (3)

We can write the probability as

pr(URi |DRj = 1,ERj ) =

∫
R

pr(URi , URj |DRj = 1,ERj )dURj

=

∫
R

pr(DRj
= 1|URi

, URj
,ERj )pr(URi

, URj
|ERj )

pr(DRj
= 1|ERj )

dURj

=

∫
R

pr(DRj = 1|URj ,ERj )pr(URi , URj )∫
R
pr(DRj = 1, URj |ERj )dURj

dURj

=

∫
R

pr(DRj
= 1|URj

,ERj )pr(URi
, URj

)∫
R
pr(DRj

= 1|URj
,ERj )f(URj

)dURj

dURj

=

∫
R

exp(α+ βGURj + βT
GEERjURj + βT

EERj )pr(URi , URj )∫
R
exp(α+ βGURj

+ βT
GEERjURj

+ βT
EERj )

1√
2πσ2

exp(− (URj
−µ)2

2σ2 )dURj

dURj

=

∫
R

exp(βGURj
+ βT

GEERjURj
)pr(URi

, URj
)

exp
(
1
2σ

2(βG + βT
GEERj )

2 + µ(βG + βT
GEERj )

)dURj , (4)

we know that pr(URi , URj ) follows a bivariate normal distribution with cov(URi , URj ) = ρσ2:

pr(URi
, URj

) =
1

2πσ2
√
1− ρ2

exp

{
− 1

2(1− ρ2)

[
(URi

− µ)2

σ2
− 2ρ

(URi
− µ)(URj

− µ)

σ2
+

(URj
− µ)2

σ2

]}
.

For ease of notation, let x = URj
and y = URi

. To calculate
∫
R
exp(βGx + βGEEx)pr(x, y)dx, we use

conditional distribution of pr(X|Y = y), i.e.,∫
R

exp(βGx+ βGEEx)pr(x, y)dx =

∫
R

exp(βGx+ βGEEx)pr(x|Y = y)pr(y)dx

= E(e(βG+βGEE)x|Y = y)pr(y)
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We can derive X|Y = y ∼ N ((1 − ρ)µ + ρy, (1 − ρ2)σ2), then we use the moment generating function
for normal distribution and we have∫
R

exp(βGx+ βGEEx)pr(x, y)dx = exp

{
1

2
(1− ρ2)σ2(βG + βGEE)2 + [(1− ρ)µ+ ρy] (βG + βGEE)

}
1

√
2πσ2

exp{−
(y − µ)2

2σ2
}

=
1

√
2πσ2

exp

{
−
{
y −

[
µ+ ρσ2(βG + βGEE)

]}2

2σ2

}
exp

(
µ(βG + βGEE) +

σ2(βG + βGEE)2

2

)
.

Plug into (4) and we have proved (3).
From (1), we can derive the conditional probability of PGSiC as

PGSiC |PGSiM , PGSiF ∼ N
(
1

2
(PGSiM + PGSiF ),

σ2
i

2

)
, (5)

denote µiC = 1
2 (PGSiM + PGSiF ) and σ2

iC =
σ2
i

2 .

1.1.1 Likelihood Derivation

The conditional likelihood for each family i is:

Li = pr(PGSiC , PGSiM , PGSiF |EiC , DiC = 1)

= LiC × LiP

= pr(PGSiC |PGSiM , PGSiF ,EiC , DiC = 1)× pr(PGSiM , PGSiF |EiC , DiC = 1)

Here,

LiC = pr(PGSiC |PGSiM , PGSiF ,EiC , DiC = 1)

=
pr(DiC = 1|PGSiC ,EiC)pr(PGSiC |PGSiM , PGSiF )

pr(DiC = 1|PGSiM , PGSiF ,EiC)

=
exp(αi + βGPGSiC + βT

GEEiCPGSiC + βT
EEiC)pr(PGSiC |PGSiM , PGSiF )∫ +∞

−∞ exp(αi + βGx+ βT
GEEiCx+ βT

EEiC)fPGSC
(x|PGSiM , PGSiF )dx

=
exp(βGPGSiC + βT

GEEiCPGSiC)pr(PGSiC |PGSiM , PGSiF )

exp
{
µiC(βG + βT

GEEiC) + 1
2σ

2
iC(βG + βT

GEEiC)2
}

From (2), we have

LiP =
1

2πσ2
i

exp

−

{
PGSiM − [µi +

σ2
i

2 (βG + βT
GEEiC)]

}2

+
{
PGSiF − [µi +

σ2
i

2 (βG + βT
GEEiC)]

}2

2σ2
i

 .

(6)

1.1.2 Parameter Estimation

We observe that for fixed values of βG, βGE and σ2
i , i = 1, · · · , N , an unbiased estimator of µi is given by

µ̂i =
1
2 (PGSiM + PGSiF )− 1

2σ
2
i (βG + βGEEiC), i = 1, · · · , N .

Now by plugging in µ̂i to LiP , we obtain the profile-likelihood:

L∗
iP =

1

2πσ2
i

exp

{
−

1
2 (PGSiM − PGSiF )

2

2σ2
i

}
.

Therefore the profile-likelihood of each family i is of the form below

L∗
i = pr(PGSiC , PGSiM , PGSiF |EiC , DiC = 1)

= LiC × L∗
iP

=
1√

2πσ2
iC

exp

{
−
[PGSiC − µiC − σ2

iC(βG + βT
GEEiC)]2

2σ2
iC

}
×

1

2πσ2
i

exp

{
−

1
2
(PGSiM − PGSiF )2

2σ2
i

}
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The score functions for βG and βGE are given by

∂ logL∗

∂βG
=

N∑
i=1

(
PGSiC − µiC − 1

2
σ2
i (βG + βT

GEEiC)

)
∂ logL∗

∂βGE
=

N∑
i=1

(
PGSiCEiC − µiCEiC − 1

2
σ2
i (βG + βT

GEEiC)EiC

)
,

with µiC = 1
2 (PGSiM + PGSiF ).

We can write the solution in closed form by letting the score functions equal to 0:

N∑
i=1

σ2
iEiE

T
i β = 2

N∑
i=1

(PGSiC − µiC)Ei,

where Ei = (1,ET
iC)T and β = (βG,β

T
GE)T . Since EiE

T
i is positive definite (assuming that there is no

collinearity between the environmental variables), it is invertible. Therefore, the solution is

β̂ = 2(

N∑
i=1

σ2
iEiE

T
i )

−1
N∑
i=1

(PGSiC − µiC)Ei.

In matrix form, this is

β̂ = (ETWE)−1ETZ,

where EN×K = (ET
1 , · · · ,ET

N )T ,W = diag(σ2
1 , · · · , σ2

N ), and Z = (2(PGS1C − µ1C), · · · , 2(PGSNC −
µNC))

T .
Finally, we note that in the absence of parental indirect genetic effect, from LiP we can easily show that

E{ 1
2 (PGSiM − PGSiF )

2} = σ2
i and thus throughout we plug in σ̂2

i = 1
2 (PGSiM − PGSiF )

2 for the final
estimation.

1.1.3 Asymptotic Variance Estimation when Only Considering Direct PGS Effect

When we only consider the direct PGS effect βG, the MLE for βG can be easily derived in closed form by
plugging in the method of moments estimator for σ2

i :

β̂G =
2
∑N

i=1

(
PGSiC − 1

2 (PGSiM + PGSiF )
)
/N∑N

i=1 σ̂
2
i /N

.

Since we assume that the within family variance σ2
i is finite for i = 1, · · · , N , then it satisfies that

max
i=1,··· ,N

σ2
i∑N

i=1 σ
2
i

→ 0 as N → ∞.

Therefore by the Lindeberg-Feller central limit theorem, the numerator of the above expression converges
in distribution to normal distribution, allowing for the fact that the families are independent but not iden-
tically distributed. This holds the same to the denominator since we assume σ4

i is finite. We denote

X := 2
∑N

i=1

(
PGSiC − 1

2 (PGSiM + PGSiF )
)
/N and Y :=

∑N
i=1

1
2 (PGSiM − PGSiF )

2/N . By definition,

the variance of f(X,Y ) = X
Y is

var(f(X,Y )) = E{[f(X,Y )− E(f(X,Y ))]2}.

The first-order Taylor approximations for f(X,Y ) = X
Y around µ = (µx, µy) = (E(X),E(Y )) give

E(f(X,Y )) ≈ f(µ),
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we then have

var(f(X,Y )) ≈ E

{
[f(X,Y )− f(µ)]

2
}

≈ E

{[
f(µ) +

∂f(µ)

∂x
(X − µx) +

∂f(µ)

∂y
(Y − µy)− f(µ)

]2}

=
1

µ2
y

var(X) +
µ2
x

µ4
y

var(Y )− 2µx

µ3
y

cov(X,Y )

Since we have µx = βG

∑N
i=1 σ

2
i /N and µy =

∑N
i=1 σ

2
i /N , cov(X,Y ) = 0 since X is derived from children’s

probability conditional on parents, and Y is derived from parents’ likelihood term. We can further derive

var(X) = 2
∑N

i=1 σ
2
i /N

2 and var(Y ) = 2
∑N

i=1 σ
4
i /N

2. Therefore, we have var(β̂G) =
2∑N

i=1 σ2
i

+
2β2

G

∑N
i=1 σ4

i

(
∑N

i=1 σ2
i )

2 .

For implementations, we plug-in the estimated σ̂2
i and β̂G and the unbiased estimator for σ̂4

i = 1
12 (PGSiM −

PGSiF )
4 into var(β̂G).

1.1.4 Asymptotic Variance Estimation in the General Form

The variance var(β̂) is obtained using Taylor approximations. Let X := 2
∑N

i=1(PGSiC − µiC)Ei/N and

Y :=
∑N

i=1 σ̂
2
iEiE

T
i /N . Then we have f(X,Y ) = Y −1X. Similarly to section 1.1.3, we have

E(f(X,Y )) ≈ f(µ),

with µ = (µx, µy11
, · · · , µyKK

) = (E(X),E( 1
N

∑N
i=1 σ̂

2
i e

2
i1),E(

1
N

∑N
i=1 σ̂

2
i ei1ei2), · · · ,E( 1

N

∑N
i=1 σ̂

2
i e

2
iK)), with

eij being the j-th (j = 1, · · · ,K) environmental variable for children in family i (i = 1, · · · , N). Here, each
yhl, h ≤ l = 1, · · · ,K is an element in the symmetric matrix Y , so there are finite number of parameters in
Y , i.e., K(1 +K)/2, K < ∞.

By definition,

cov(f(X,Y )) = E

{
[f(X,Y )− E(f(X,Y ))] [f(X,Y )− E(f(X,Y ))]

T
}

≈ E

{
[f(X,Y )− f(µ)] [f(X,Y )− f(µ)]

T
}

≈ E

{[
∂f(µ)

∂X
(X − µx) +

∂f(µ)

∂y11
(y11 − µy11

) + · · ·+ ∂f(µ)

∂yKK
(yKK − µyKK

)

]
·[

∂f(µ)

∂X
(X − µx) +

∂f(µ)

∂y11
(y11 − µy11

) + · · ·+ ∂f(µ)

∂yKK
(yKK − µyKK

)

]T}

=
∂f(µ)

∂X
cov(X)(

∂f(µ)

∂X
)T +

∂f(µ)

∂y11
var(y11)(

∂f(µ)

∂y11
)T + · · ·+ ∂f(µ)

∂yKK
var(yKK)(

∂f(µ)

∂yKK
)T

+
∂f(µ)

∂y11
cov(y11, y12)(

∂f(µ)

∂y12
)T +

∂f(µ)

∂y12
cov(y11, y12)(

∂f(µ)

∂y11
)T + · · ·

+
∂f(µ)

∂yK−1,K
cov(yK−1,K , yKK)(

∂f(µ)

∂yKK
)T +

∂f(µ)

∂yKK
cov(yK−1,K , yKK)(

∂f(µ)

∂yK−1,K
)T

= µ−1
y cov(X)(µ−1

y )T +

N∑
i=1

µ−1
y EiE

T
i µ

−1
y µxvar(σ̂

2
i )(µ

−1
y EiE

T
i µ

−1
y µx)

T

5



Since X and Y are independent, cov(X, yhl) = 0. We also have

µx =

N∑
i=1

σ2
i (β

TEi)Ei/N =

N∑
i=1

σ2
iEiE

T
i β/N

µy =

N∑
i=1

σ2
iEiE

T
i /N

cov(X) = 4

N∑
i=1

Eivar(PGSiC − µiC)E
T
i /N

2 = 2

N∑
i=1

EiE
T
i σ

2
i /N

2

var(σ̂2
i ) = 2σ4

i

σ̂4
i =

1

3
(σ̂2

i )
2 =

1

12
(PGSiM − PGSiF )

4

1.2 Derivation Incorporating Indirect Effects of Parental PGS

Suppose that the disease outcome of the offspring is also affected by indirect parental PGS effects (IDE),
the disease risk model takes the form

pr(DiC = 1|PGSiC , PGSiM , PGSiF ,EiC)

= exp(αi + βGPGSiC + βMPGSiM + βFPGSiF + βT
EEiC + βT

GEEiCPGSiC).

Now the likelihood for each family i becomes

Li = pr(PGSiC , PGSiM , PGSiF |EiC , DiC = 1)

= LiC × LiP

= pr(PGSiC |PGSiM , PGSiF ,EiC , DiC = 1)× pr(PGSiM , PGSiF |EiC , DiC = 1)

=
pr(DiC = 1|PGSiC , PGSiM , PGSiF ,EiC)pr(PGSiC |PGSiM , PGSiF )

pr(DiC = 1|PGSiM , PGSiF ,EiC)
× LiP

=
exp(βGPGSiC + βT

GEEiCPGSiC)pr(PGSiC |PGSiM , PGSiF )

exp
{
µiC(βG + βT

GEEiC) + 1
2σ

2
iC(βG + βT

GEEiC)2
} × LiP ,

with LiC unchanged given that the parental effects are canceled out.
We show the below formula

PGSiM |EiC , DiC = 1 ∼ N

(
µi + σ2

i

(
βM +

1

2
(βG + βT

GEEiC)
)
, σ2

i

)
, (7)

PGSiF |EiC , DiC = 1 ∼ N

(
µi + σ2

i

(
βF +

1

2
(βG + βT

GEEiC)
)
, σ2

i

)
. (8)

We derive formula (7) here: for ease of notation, let’s denote x = PGSiC , y = PGSiM , z = PGSiF ,
E = EiC , D = DiC . Note that y is independent of z and f(y, z) = f(y)f(z).

pr(y, z|E,D = 1) =

∫
R

pr(x′, y, z|E,D = 1)dx′

=

∫
R

pr(D = 1|x′, y, z, E)pr(x′, y, z|E)

pr(D = 1|E)
dx′

=

∫
R
pr(D = 1|x′, y, z, E)pr(x′, y, z|E)dx′∫ ∫ ∫

R
pr(D = 1|x′′, y′, z′, E)f(x′′, y′, z′)dx′′dy′dz′

=

∫
R
exp(βGx

′ + βGEEx′ + βMy + βF z)f(x
′, y, z)dx′∫ ∫ ∫

R
exp(βGx′′ + βGEEx′′ + βMy′ + βF z′)f(x′′, y′, z′)dx′′dy′dz′

6



Here,

numerator =

∫
exp(βGx

′ + βGEEx′ + βMy + βF z)f(x
′|y, z)dx′f(y)f(z)

= exp{1
4
σ2
i (βG + βGEE)2 +

1

2
(y + z)(βG + βGEE)} exp(βMy + βF z)f(y)f(z)

and

denominator = exp

{
1

2
σ2
i

(
βM +

1

2
(βG + βGEE)

)2
+ µi

(
βM +

1

2
(βG + βGEE)

)}
× exp

{
1

2
σ2
i

(
βF +

1

2
(βG + βGEE)

)2
+ µi

(
βF +

1

2
(βG + βGEE)

)}
× exp{1

4
σ2
i (βG + βGEE)2},

Then we have

pr(y, z|E,D = 1) =
exp{[ 12 (βG + βGEE) + βM ]y}f(y)

exp

{
1
2σ

2
i

(
βM + 1

2 (βG + βGEE)
)2

+ µi

(
βM + 1

2 (βG + βGEE)
)}

×
exp{[ 12 (βG + βGEE) + βF ]z}f(z)

exp

{
1
2σ

2
i

(
βF + 1

2 (βG + βGEE)
)2

+ µi

(
βF + 1

2 (βG + βGEE)
)} ,

by plugging in f(y) and f(z) (y, z ∼ N(µi, σ
2
i )), we can easily show formula (7).

Therefore we have

LiP =
1

2πσ2
i

exp

{
−
{
PGSiM − [µi + σ2

i

(
βM + 1

2
(βG + βT

GEEiC)
)
]
}2

+
{
PGSiF − [µi + σ2

i

(
βF + 1

2
(βG + βT

GEEiC)
)
]
}2

2σ2
i

}
.

1.2.1 Derivation of Estimates of Parental Indirect Genetic Effects

To estimate βM and βF , we try to estimate them using the information in LiP alone. We construct a new
random variable

Xi = PGSiM − PGSiF

Denote δMF = βM − βF , we have Xi ∼ N(δMFσ
2
i , 2σ

2
i ) and

∑N
i=1 Xi ∼ N(δMF

∑N
i=1 σ

2
i , 2

∑N
i=1 σ

2
i ), and

thus we have

E(X) =
δMF

∑N
i=1 σ

2
i

N
.

Therefore we have the estimator

δ̂MF =

∑N
i=1 Xi/N∑N
i=1 σ

2
i /N

=
X∑N

i=1 σ
2
i /N

.

1.2.2 Approximate Estimator of the Required Scale Factor

We can further derive the expectation of sample variance of X̃ = (X1, X2, · · · , XN ) using information in LiP

alone:

E

(
1

N − 1

N∑
i=1

(Xi −X)2

)
=

1

N − 1
E

(
N∑
i=1

X2
i −

(
∑N

i=1 Xi)
2

N

)
(9)

=
1

N

N∑
i=1

2σ2
i +

δ2MF

N − 1

(
N∑
i=1

σ4
i −

1

N
(

N∑
i=1

σ2
i )

2

)
, (10)

7



we observe the second term in the above formula will be close to zero if either δMF is small or the variability
of σ2

i across families is small, or both. Therefore, we can use
∑N

i=1(Xi−X)2/[2(N −1)] as an approximately

unbiased estimator of σ2
sum =

∑N
i=1 σ

2
i /N , and thus we estimate δMF as

δ̂MF =
X∑N

i=1(Xi −X)2/[2(N − 1)]
.

We observe that in the presence of indirect effects, the maximum likelihood estimate of β = (βG,β
T
GE)T

obtained from LiC remain unchanged and takes the form β̂ = (ETWE)−1ETZ, whereW = diag(σ2
1 , · · · , σ2

N ).
As W is unknown, we need to consider estimation of the elements of ETWE, which are of the form∑N

i=1 σ
2
i eikeik′ , for k = 1, · · · ,K; k′ = 1, · · · ,K. We observe that for any set of vi, i = 1, · · · , N , where

vi = eikeik′ for some k and k′, the expectation of the weighted sample variance is

E

(
1

N − 1

N∑
i=1

(Xi −X)2vi

)
=

1

N − 1

N∑
i=1

E

(
X2

i vi +X
2
vi − 2XiXvi

)
=

1

N − 1
(

N∑
i=1

2σ2
i vi −

4

N

N∑
i=1

σ2
i vi +

2

N2

N∑
i=1

σ2
i

N∑
i=1

vi) +
δ2MF

N − 1

N∑
i=1

(σ2
i −

1

N

N∑
i=1

σ2
i )

2vi

Note that when vi = 1, the above equation is the same as (9). Under the condition
∑N

i=1 vi = O(N),

E

(
1

N − 1

N∑
i=1

(Xi −X)2vi

)
≈ 1

N

N∑
i=1

2σ2
i vi +

δ2MF

N − 1

N∑
i=1

(σ2
i −

1

N

N∑
i=1

σ2
i )

2vi.

Above, we again note that if δMF is small or σ2
i across families are relatively constant, or both, the last

term is expected to be negligible. Thus, we propose using
∑N

i=1(Xi −X)2vi/[2(N − 1)] as an approximate

unbiased estimator for
∑N

i=1 σ
2
i vi/N .

1.2.3 Asymptotic Variance Estimation

Let A = X =
∑N

i=1(PGSiM −PGSiF )/N and B =
∑N

i=1(Xi−X)2/[2(N − 1)]. The variance of δ̂MF can be

approximated using first-order Taylor expansion for δMF = f(A,B) = A/B around (δMF

∑N
i=1 σ

2
i /N,

∑N
i=1 σ

2
i /N):

var(δ̂MF ) =
2

σ2
sum

+
2δ2MF

∑N
i=1 σ

4
i

(
∑N

i=1 σ
2
i )

2
.

Note that the numerator A and the denominator B in δ̂MF are independent to each other (mean and sample
variance of normal distribution). For small δMF , we can further approximate the variance formula as

var(δ̂MF ) =
2

σ2
sum

.

Based on the above formula, we can obtain variance estimators by plugging in values for σ̂2
sum, δ̂MF , and∑N

i=1 σ̂
4
i = N2

12(N−1)2

∑N
i=1(Xi −X)4.

2 Details of Simulation Studies

2.1 Simulate PGS Values Based on the Assumed Model

We directly simulated PGS values for 1,300,000 parent-child trios in the population using a multivariate
normal distribution as shown in (1) and prospectively simulated disease status in the children based on a
logistic risk model with disease prevalence of 1%. We allow each family i to have specific mean µi and
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variance σ2
i . We let σ2

i follow a mixture of 3-component gamma distributions, reflecting fluctuated variances
of PGS values in different families, with the parameters

σ2
i ∼ 0.6Γ(6, 15) + 0.3Γ(15, 30) + 0.1Γ(60, 150),

so that the mean of σ2
i is approximately 0.4 (this value is close to the population variance of 313-SNP PGS

related to breast cancer in UK biobank). Furthermore, we simulated family-specific disease-risk parameters
by using a model of the form αi ∼ N(α+ ρGµi, 1). We varied ρG = cor(αi, µi) to create different scenarios
of population-stratification bias, with a value of 0 indicating no relationship between variation in disease
risk and PGS distribution across underlying substructure, a scenario where one would not expect any effect
of underlying population substructure in creating spurious associations between disease risk and PGS at
the population level. We selected different numbers of case-parent trios (N=200, 500, 1000, 2000) from a
random sample of families by restricting to those families where the children were cases (DiC = 1) in the
population. The number of trios in the simulation study corresponded to the various sample sizes of different
populations in the GENEVA study and the SPARK consortium. We compared PGS-TRI with the pTDT
test for the performance of the PGS main effect. We also compared the family-based methods with the
performance of population-based case-control studies by randomly sampling unrelated disease-free children
from the same simulated family-based population. For the parental indirect effect difference, we included
different magnitudes of maternal effects and no paternal effect in the underlying disease risk model and
evaluated our model’s performance.

For the investigation of the performance of the proposed method for the estimation of gene-environment
interaction parameters, for each family, we simulated a binary variable E1 and a continuous variable E2

independent of the underlying PGS values for all three family members. We assume a latent continuous
variable S1 for binary E1, and allow S1 and E2 to have family-specific mean values γi1, γi2 ∼ N(0, 1).
The mean distribution of family-specific random effect term αi ∼ N(α + ρGµi + ρGEµiγi1 + ρGEµiγi2, 1)
indicates the effect of E and PGS differ by population substructures, with an underlying disease risk model
incorporating PGS-environment interaction terms. We compared PGS-TRI with the population-based case-
only method to assess the performance of the PGS-E interaction terms. We further letγi1 and γi2 to co-vary
systematically with µi following cor(µi, γij) ∼ uniform(0, 0.5), j = 1, 2 to allow for potential population-level
correlations between PGS and E due to the effect of population stratification and assortative mating.

2.2 Simulation using the UK Biobank Data

To create realistic population substructures, we simulated offspring genotypes conditional on pairs of in-
dependent individuals’ genotypes of British white ancestry using the UK Biobank (UKB) genotype data.
Each pair was matched within the same assessment centre (UKB Field ID: 54), based on the individual’s
propensity score generated from the place of birth north and east co-ordinates (UKB Field ID: 129 and 130).
Specifically, we used the nearest available Mahalanobis metric matching within 0.1 calipers defined by the
propensity score. To further assess the model performances under assortative mating of a single trait, we per-
formed a separate set of matching based on educational attainment (EA) (UKB Field ID: 6138) in addition
to the geographical regions. It has been previously reported that EA is a common trait in assortative mating
and the EA-PGS are heavily confounded by geographical regions. We built EA-PGS using independent
SNPs (R2 < 0.01 within 1000kb) and weights reported in previous work (PGS Catalog ID: PGS002012).
We prospectively simulated disease status in the 150 253 unrelated children based on a logistic risk model
with a disease prevalence of 2%. We let the intercept term αi ∼ N(α + ρGBMI, 1), where BMI values are
the baseline values of the mothers in each independent simulated family in UKB (Field ID: 21001). We
then compared PGS-TRI with the pTDT test, logistic regression of unrelated individuals, logistic regression
adjusting for top 10 genetic principal components (PCs), and additionally adjusting for birth locations and
assessment centres for the performance of the PGS main effect by selecting different numbers of case-parent
trios (N = 1000, 2000) from a random sample of families and the same number of unrelated random controls
for the comparisons with logistic regression.

We further grouped the parents into 100 clusters based on their east and north co-ordinates of birthplaces
using the K-means clustering. We observed significant correlations (cor = −0.48) between BMI and EA-
PGS between clusters but not within clusters (cor = −0.018). This demonstrated population structure
and BMI as the hidden confounding variable which affected the random intercept term in disease risk. We

9



reached the same observations as our first simulation results for PGS main effects. We found that the
adjustments of PCs and geographical regions in unrelated individuals showed an improvement compared
with logistic regression alone. However, there are still residual biases in unrelated logistic regressions after
population substructure adjustments, due to assortative mating, non-linear effects from population structures
and geographical regions. Further, PGS-TRI had similar efficiency as logistic regression model adjusted for
multiple covariates. We demonstrated that PGS-TRI remained the most unbiased method and produced
correct type I error rates.

3 Details of the Data Applications

3.1 Data Analyses of Autism Spectrum Disorder (ASD) in the SPARK Study

3.1.1 Genotype Data Preprocessing and PGS Construction

We analyzed case-parent trio data from the Simons Foundation Powering Autism Research for Knowledge
(SPARK) study1. The genotype phasing and imputation followed previous research2. Specifically, the
imputation was performed on the Michigan imputation server using the Trans-Omics for Precision Medicine
(TOPMed) Freeze 5b reference panel, which consisted of 125,568 haplotypes from multi-ancestry population.
The SNPs with imputation quality R2 < 0.8, missing call rates > 1%, minor allele frequencies (MAF) < 1%
were excluded.

The study population comprises 5 genetic ancestral groups determined using the HapMap3 reference
panel: African (AFR), Americas (AMR), East Asian (EAS), European (EUR), and South Asian (SAS). After
eliminating trios with missing parent or shared parent(s), a total of 1,250 EUR, 63 AFR, 153 AMR, 23 SAS,
and 28 EAS independent case-parent trios with available imputed genotype data were used for subsequent
analysis. The PGS scores were constructed using 28 017 SNPs, with ambiguous SNPs removed, and their
associated weights provided by recent external GWAS, as reported in the PGS catalog. To enable fair
comparisons of estimated effect sizes across diverse ancestral populations, we further standardized the PGS
values within each ancestry group using 1000 Genomes (1000G) Phase 3 healthy individuals by constructing
ASD PGS scores following the same procedures. In particular, these included 503 EAS, 498 EUR, 487 SAS,
659 AFR, and 347 AMR independent individuals from the 1000 Genomes (1000G) Phase 3 Project3.

Variables we considered for the PGS-E interaction effects included maternal variables before pregnancy,
including asthma, depression and other severe mental illness (defined as requiring medication or hospitaliza-
tion), vitamin intake 3 months before pregnancy; variables during pregnancy including whether the mother
experienced fever, eclampsia and preeclampsia, gestational diabetes, hyperemesis, pre-term or early labor;
variables both before and during pregnancy including alcohol consumption and frequency, and smoking sta-
tus; mother’s age at birth, mother’s educational attainment levels, and whether the child had low birth
weight (defined as < 2.5kg). Mother’s pregnancy period was defined as from 3 months before pregnancy to
the end of breastfeeding.

We further used our model and the individual-level genotype data of ASD case-parent trios to estimate
the ASD risk associated with several common polygenic predictors of cognitive-related traits and diseases,
including education attainment4, schizophrenia5, strictly defined lifetime major depressive disorder6, bipolar
disorder7, neuroticism4, sleeplessness/insomnia4, and attention-deficit/hyperactivity disorder (ADHD)8. As
a negative control, we used body mass index (BMI)4. We constructed PGS using reported GWAS summary
statistics of these traits, following the same procedures as described above. In particular, for ADHD, we
used PRScs9 and GWAS summary statistics following the steps reported previously8 to construct PGS in
our study. We normalized the PGS scores within each ancestral group for fair comparisons.

3.2 Data Analyses of Non-Syndromic Orofacial Clefts (OFCs) in the GENEVA
Study

3.2.1 Genotype Data Preprocessing and PGS Construction

We investigated OFCs using case-parent trio data from the Gene Environment Association Studies initiative
(GENEVA)10. GENEVA is a multi-ethnic study with data collected from Europe (Norway), the United
States, and Asia (China, South Korea, Singapore, and the Philippines). Detailed genotype data imputation
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and quality control steps are described in previous work11. We additionally excluded SNPs with MAF < 1%
and missing call rates > 1%. After eliminating ambiguous SNPs, PGS values associated with cleft lip with
or without cleft palate (CL/P) were computed using 24 SNPs and their respective weights sourced from
the PGS catalog. These weights were based on summary statistics derived from multiple preceding GWAS
studies. Note that due to the restricted data resources available in previous GWAS efforts, certain SNPs
uncovered in specific studies either conducted meta-analyses or used data that partially intersected with
samples in the GENEVA study. Nonetheless, these SNPs underwent subsequent validation using separate
and independent data sources. We standardized the PGS values within each specific ancestry group using
503 EAS and 498 EUR independent individuals from the 1000G project.

For PGSxE interaction analysis, the maternal environmental exposures were collected through maternal
interviews focused on the period from 3 months before pregnancy through the first trimester, which includes
the first 8-9 weeks of gestation when palatal development is completed. The difference between maternal
and paternal indirect PGS effects was also analyzed using our model. In the end, our analysis incorporated
independent and complete 575 self-reported EUR and 891 Asian ancestry CL/P case-parent trios, and 203
EUR and 235 Asian CP case-parent trios.

3.3 Association Studies of Genetically Predicted Multi-Omics Data on ASD
and OFCs

We first built genetic scores for 12 539 whole blood gene expression levels and 140 serum metabolomic traits
using summary statistics reported in OMICSPRED. We then excluded biomolecular traits with variance
explained R2 < 0.1 by the genetic score in the internal validation or traits that contain fewer than 5 SNPs
in the genetic score reported by OMICSPRED. So in the end we analyzed 27 metabolomics traits and 4 991
genes using PGS-TRI. All omics summary statistics were trained based on the INTERVAL EUR healthy
blood cohort, and validated using multiple independent studies consisting of multi-ancestry populations.
Specifically, the RNAseq summary statistics were trained based on the Illumina RNAseq platform using
4 136 individuals, and metabolomics summary statistics were based on the Nightingale platform trained
using 37 359 individuals. Subsequently, we used PGS-TRI to conduct transcriptome-wide association studies
and metabolome-wide association studies respectively to understand the potential molecular causal effects
on ASD and OFCs risks using data from case-parent trios in SPARK and GENEVA studies. For each omics
data type in each disease association study, we used the Benjamini-Hochberg false discovery rate (FDR) of
5% for multiple hypotheses testing adjustments.
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