Supplementary Tables

Supplementary Table 1. Mean and standard deviation of selected traits. 47,549 individuals with CMR imaging, and 40,186 Caucasian individuals remained after genotyping quality check. 40,058 individuals with no reported cardiomyopathy were selected for genetic analysis.

	CMR imaging cohort	Genetic study cohort
Quantitative trait	Mean (SD)	
Age at MRI (year)	64.3 (7.8)	64.5 (7.7)
Weight (kg)	75.3 (15.0)	75.4 (15.0)
Height (m)	169.7 (9.2)	169.9 (9.1)
BMI (kg m-2)	26.0 (4.3)	26.0 (4.3)
Body surface area (m2)	18.8 (2.2)	18.8 (2.2)
Systolic blood pressure (mmHg)	139.5 (18.9)	139.8 (18.9)
Diastolic blood pressure (mmHg)	78.8 (10.1)	78.8 (10.1)
Mean arterial pressure (mmHg)	99.0 (11.7)	99.2 (11.7)
LVEDV (mL)	147.2 (33.9)	147.7 (33.9)
LVESV (mL)	60.1 (19.5)	60.4 (19.5)
LVSV (mL)	87.0 (19.3)	87.3 (19.2)
LVEF (%)	59.6 (6.2)	59.5 (6.2)
LVCO (L/min)	5.4 (1.3)	5.4 (1.3)
LVM (g)	85.9 (22.3)	86.2 (22.3)
RVEDV (mL)	155.9 (37.1)	156.5 (37.1)
RVESV (mL)	67.3 (21.2)	67.5 (21.3)
RVSV (mL)	88.6 (20.4)	89.0 (20.4)
RVEF (%)	57.3 (6.3)	57.3 (6.3)
Mean WT (mm)	5.7 (0.8)	5.7 (0.8)
Maximum WT (mm)	9.5 (1.7)	9.4 (1.6)
Mean radial strain (%)	45.2 (8.5)	45.2 (8.5)
Mean circumferential strain (%)	-22.3 (3.5)	-22.3 (3.5)
Binary trait	n (%)	
Male	22912 (48.2)	19509 (48.5)
Has ICD10 record	40146 (84.4)	33967 (84.5)
DCM	55 (0.1)	42 (0.1)
HCM	42 (0.1)	37 (0.1)
CM	156 (0.3)	128 (0.3)

Supplementary Table 2. Genome-based restricted maximum likelihood (GREML) analysis of LV spatial traits. Table shows in the first three columns the GREML common SNPs heritability for each spatial LV trait. The next three columns shows for each spatial trait, the proportion of variance accounted by both the known confounders, including sex, age, body surface area, SBP and DBP, and the common genetic factors (through the genome relationship matrix, GRM).

	Herita	ability (h2)		Varia	nce explained	
AHA	WT	Circ Strain	Radial Strain	WT	Circ Strain	Radial Strain
1	19%	17%	14%	46%	21%	18%
2	14%	16%	7%	27%	32%	16%
3	16%	16%	15%	32%	18%	27%
4	22%	7%	16%	51%	8%	28%
5	29%	11%	15%	58%	18%	21%
6	27%	14%	18%	58%	16%	20%
7	25%	14%	16%	64%	24%	24%
8	27%	11%	13%	62%	18%	22%
9	27%	24%	17%	67%	28%	26%
10	27%	6%	16%	68%	7%	22%
11	30%	11%	16%	67%	16%	23%
12	28%	8%	18%	66%	14%	25%
13	16%	17%	14%	53%	24%	21%
14	20%	19%	12%	58%	24%	21%
15	15%	21%	18%	53%	23%	24%
16	15%	19%	18%	53%	21%	22%

Supplementary Table 3. Spatial LV GWAS loci and prioritised genes. The 42 spatial LV loci were shown by if the locus overlap with global LV loci under conventional GWS threshold, and shows which ones were reached indicated thresholds in HCM and DCM GWAS. In HCM GWAS and DCM GWAS columns, ** indicated Pval < 5e-8, * indicated FDR < 0.05. In WT, strain^{circ}, and strain^{rad} columns, * indicates Pval < 3.125e-9 in the one of the spatial LV GWAS. Prioritised genes were mapped by positional SNPs except for the ones indicated with brackets, including those mapped by eQTL, and by chromatin interaction (CI). Full gene prioritisation table is provided in Supplementary Data Tables.

Locus ID	CHR	Start pos (GRCh37)	Locus size (kb)	min Pval	HCM GWAS	DCM GWAS	Prioritised Gene	WT	strain ^{circ}	strain ^{rad}
					Spatial only					
1	1	3197080	65	1.79E-09	*	*	PRDM16			*
11	3	73544836	35	7.59E-10	*		PDZRN3			*
33	14	71697556	498	2.49E-15	*		SIPA1L1	aje	4	
36	16	88507538	45	4.81E-11	*		ZFPM1			*
6	2	37059462	218	2.10E-12	**	aje	STRN;HEATR5B		4	
17	6	118614518	413	1.55E-11	**		CEP85L;PLN	aje		*
26	10	114449904	67	1.16E-09	**		VTI1A			*
29	12	115344085	38	1.71E-11	**		RNFT2,HRK(CI), TBX3		ale .	*
31	13	114073950	5	1.48E-09	ale ale		ADPRHL1	*		
15	5	132349654	118	1.90E-10		*	HSPA4	*		
13	4	114380213	144	5.69E-12		ale ale	CAMK2D	*		
2	1	11827796	78	9.42E-10			CLCN6	*		
7	2	54725824	240	2.07E-11			SPTBN1;EML6			*
14	5	64273448	57	2.06E-09			CWC27			*
19	7	116879607	34	3.27E-10			WNT2		*	
32	14	23861811	12	7.01E-12			MYH6;MYH7			*
38	17	37741879	142	9.39E-10			ERBB2	*		
40	21	34144545	39	1.94E-09			C21orf49;C21orf62			*
	1	1	1	1	Also in glob	1				1
22	8	124545147	7	7.98E-10	*	*	FBXO32		*	
4	1	116272483	60	6.55E-11	ale.		CASQ2	*		*
12	4	16028096	9	1.13E-10	ale.		PROM1		*	
20	8	8088230	296	1.91E-09	ale.		MFHAS1;ERI1 (CI)			*
37	17	1231593	78	1.46E-10	As.		YWHAE	*		
8	2	179381323	473	1.63E-11	ale ale	*	PLEKHA3;TTN	*	*	*
34	15	84488529	944	7.47E-19	ale ale	*	NMB;ALPK3	*	*	
3	1	16131112	235	5.14E-12	ale ale	10 AC	HSPB7;CLCNKA		*	*
16	6	36618821	41	2.60E-17	ale ale	\$6.46	CDKN1A	*	*	*
23	8	125849614	52	2.90E-10	ale ale	\$6.46	MTSS1;SQLE (eQTL)		*	
27	10	121414236	34	3.64E-15	**	ale ale	BAG3		ale .	
39	17	43463493	1402	1.32E-15	ale ale	**	MAPT;KANSL1;WNT3	*		
41	22	24111044	71	9.78E-14	ale ale	ale ale	SMARCB1;DERL3	*	*	
24	10	75404300	181	5.05E-11	ale ale		MYOZ1;SYNPO2L	*		
28	11	47365014	632	9.73E-10	ale ale		MYBPC3;SPI1	*		
5	1	236841577	13	1.11E-12		\$6.46	ACTN2		*	
9	2	218251702	62	8.29E-10			DIRC3	*		
10	3	69796492	113	2.54E-12			MITF			*
18	7	46609344	59	7.95E-10			IGFBP1;IGFBP3(CI)	*		
21	8	11776904	60	9.92E-13			DEFB136;DEFB135		*	*
25	10	112544125	0	5.27E-10			RBM20		*	
30	12	120646830	52	1.41E-09			PXN	44		
35	15	99249029	47	2.72E-15			IGF1R	2/4		
42	22	26155484	9	8.34E-19			MYO18B	*		*
-			i							

Supplementary Table 4. Cross check Spatial GWAS genes with Cardiac G2P database. Cardiac G2P mapped genes were listed by disease grouping¹⁸.

Cardiac Disease grouping	Cardiac G2P mapped genes	Found in Spatial LV
		GWAS
Classic CPVT phenotype	RYR2,CASQ2	CASQ2
Familial dilated cardiomyopathy	BAG3,DES,DSP,FLNC,LMNA, MYH7,PLN,RBM20,SCN5A,	BAG3,MYH7,
	TNNC1,TNNT2, TTN	PLN,RBM20, TTN
Familial hypertrophic	ACTC1,MYBPC3,MYH7,MYL2, MYL3,PLN,TNNI3,TNNT2,	MYBPC3,MYH7, PLN
cardiomyopathy	TPM1	
Rare syndromic disorder with	ALPK3,CACNA1C,DES,FHL1, FLNC,GLA,LAMP2,	ALPK3
hypertrophic cardiomyopathy -	PRKAG2,PTPN11, PTPN11,RAF1,RIT1,TTR	
isolated LVH		
Syndrome with hypertrophic	ABCC9,BAG3,CRYAB, FXN,GAA,MYO6,SLC25A4	BAG3
cardiomyopathy - no isolated LVH		

Supplementary Table 5. The Exome variants significantly associated (min P < 3.125e-9) with spatial LV traits, but were not included in the impute data on which GWAS were performed. The list shows 19 Exome variants, and for each variant its location in GRCh38, the effect allele (EA), the effect allele frequency (EAF), the most severe Ensembl consequence (VEP), and the gene symbols.

GWAS locus ID	CHR	POS	EA	NEA	EAF	VEP	Gene(s)
6	2	36883902	A	Т	0.560971	intron	STRN
6	2	37007376	С	Т	0.581296	intron	HEATR5B
8	2	178612605	A	AT	0.212555	intron	AC010680.4, TTN, TTN-AS1
16	6	36678991	CTA	С	0.195241	intron	CDKN1A, DINOL, LAP3P2, PANDAR
16	6	36679011	G	A	0.326233	intron	CDKN1A, DINOL, LAP3P2, PANDAR
-	10	43616994	G	A	7.80E-05	synonymous	ZNF485
24	10	73650119	Т	С	0.149312	intron	AC073389.2, SYNPO2L
24	10	73682785	Т	С	0.136494	missense	AGAP5, BMS1P4-AGAP5
-	11	19192439	G	A	0.00497613	missense	CSRP3, CSRP3-AS1
39	17	45816403	G	GC	0.222562	intron	CRHR1, LINC02210-CRHR1, MAPT-AS1
39	17	45816406	Т	TGCCTG	0.222557	intron	CRHR1, LINC02210-CRHR1, MAPT-AS1
39	17	46171448	A	G	0.223671	synonymous	KANSL1
39	17	46171471	С	Т	0.186527	missense	KANSL1
39	17	46171730	С	A	0.1757	synonymous	KANSL1
39	17	46171833	G	Т	0.172555	missense	KANSL1
39	17	46548981	С	Т	0.198277	missense	ARL17A, LRRC37A2
39	17	46704913	G	С	0.179936	intron	NSF
-	17	64897294	G	A	0.195414	5 prime UTR	AC103810.2, AC103810.5, AC103810.7, LRRC37A3
42	22	25768112	Т	С	0.433029	splice region	MYO18B

Supplementary Table 6. List of Exome loss-of-function or splice variants observed in the GWAS loci. Genes and consequence came from running VEP, 'genes' column included all gene symbols that the variant might influence, and 'consequence' column shows the most severe consequence. Beta (max) and MLOG1OP (max) were respectively the largest absolute beta values and the largest -log10 of P values from testing the 16 segments of LV on WT, radial and circumferential strain, the LVEF, LVM and global max and mean WT, global mean radial and circumferential strain.

GenomicLocus	Gene(s)	Variant (GRCh38:NEA:EA)	MAF	Consequence	BETA (max)	MLOG10P (max)
2	Clorf167	chr1:11768081:C:T	0.00017152	stop gained	0.773755	2.03526
2	Clorf167	chr1:11768102:C:T	7.80E-05	stop gained	-0.487175	0.858324
2	Clorf167	chr1:11775536:G:A	7.80E-05	stop gained	0.993422	1.70652
2	Clorf167	chr1:11784298:C:T	0.00062369	stop gained	0.432227	2.33912
2	Clorf167	cbr1:11784463:C-T	0.0288459	ston gained	-0.0583737	2 00594
2	Clorf167	cbr1:11785177-TCC-T	7.805-05	framochift variant	0.639419	0.97999
2	Clorf167	chr1-11780479-C-T	0.00012474	eton mined	0.037418	1 95579
-	CLONIKA	chi1.11/0700.07	0.00012474	stop gameu	0.751707	1.73378
3	CLUNKA	chr1:16052247:C:1	0.00046777	stop gained	-0.401888	1.71205
3	CLUNKA	CNF11160267651TCCC1TCAGCGGTGAGACCCCCCTCATGCCCCGCC1	0.00065691	splice donor variant	-0.409451	2.56107
3	CLCNKA	chr1:16028061:C:T	0.00038981	stop gained	0.388967	2.44515
3	ZBTB17	chr1:15946317:C:G	7.80E-05	splice acceptor variant	-1.01736	1.80327
8	TTN	chr2:178579702:G:A	7.80E-05	stop gained	-1.43759	3.1917
8	TTN-AS1	chr2:178615321:A:G	0.00029626	splice acceptor variant	0.414412	2.12027
8	CCDC141	chr2:178837693:G:A	0.0004054	stop gained	-0.318306	1.17162
8	CCDC141	chr2:178978618:TC:T	0.00054573	frameshift variant	-0.371958	1.86696
8	CCDC141	chr2:178834173:T:A	0.00035862	stop lost	-0.341691	1.3302
8	TTN	chr2:178528273:C:T	7.80E-05	splice donor variant	-0.842612	1.46746
8	TTN	chr2:178653473:CT:C	0.0002027	frameshift variant	-0.446397	1.06941
8	TTN	chr2:178662420:T-4	9.36E-05	splice accentor variant	0.627603	1 38918
8	TTN	chr2:178663903:C·T	7.80E=05	splice acceptor variant	=1.0964	2 76886
8	TTN	ehr2:178664447;CACACTTAACAATCTACCTTTCACACCTACA;C	0.00072007	splice deperturiant	0.407717	1.76414
0	TTN	chi2.178004445.0ACAOTTAA0AATOTACCTTTGACAOGTACA.0	0.00032907	splice dollor variant	0.407317	1.30414
0	TIN	CIII 2.178005777.G.A	0.00014034	stop gameu	-0.746017	1.75502
8	TIN	chr2:178677634:TG:T	0.00015592	frameshift variant	-0.732263	2.67767
8	TTN	cnr2:178689289:C:A	0.00010915	splice donor variant	-0.770963	1.45558
8	TTN	chr2:178689897:C:T	0.00059257	splice acceptor variant	-0.238994	0.938127
8	TTN	chr2:178745884:C:A	0.00014033	stop gained	0.913398	2.35187
8	TTN	chr2:178746047:G:C	9.36E-05	stop gained	0.730598	1.23884
8	TTN	chr2:178749346:CCCTG:C	0.00012474	frameshift variant	0.808616	1.71903
8	TTN	chr2:178749351:ATG:A	0.00012474	frameshift variant	0.808616	1.71903
8	TTN	chr2:178749358:TGC:T	0.00012474	frameshift variant	0.808616	1.71903
8	TTN	chr2:178751617:AT:A	0.00010915	frameshift variant	0.814172	1.60621
8	TTN	chr2:178756292:T:TC	0.00049897	frameshift variant	0.35086	2.07556
8	TTN	chr2:178758982:A-G	7.80F=05	splice dopor variant	-1 1297	2 27518
9	TTN-AS1	cbr2:178778004:G:A	7.805-05	enlice donor variant	-1.46500	5.08606
17	CED951	chr6-118465307-ACACTTCAT-A	9.36E-05	spice utility variant	1.04590	2 10610
17	CEDESI	child:118652521.cTC AT.C	0.00077445	from on hift variant	0.406472	1.46057
17	CEPOSL	dil6.118652/21.CTGALC	0.00037443	iramestini variant	-0.406472	1.40033
20	PRAGI	chr8:8378000:G:A	0.00023389	stop gained	0.655165	2.19556
20	PRAGI	chr8:8378066:G:A	0.00010915	stop gained	-0.813455	2.41299
24	NDST2	chr10:73808145:G:A	7.80E-05	stop gained	1.05322	2.18563
24	FUT11	chr10:73772572:G:A	9.36E-05	stop gained	-1.14761	2.39067
24	FUT11	chr10:73773484:G:T	0.00018711	stop gained	-0.882416	2.75779
24	AGAP5	chr10:73674703:G:A	0.00018711	stop gained	0.639122	1.63075
24	AGAP5	chr10:73675604:A:T	9.36E-05	stop gained	-0.773698	1.8186
24	SYNPO2L	chr10:73653643:C:A	0.00014033	stop gained	0.84727	2.02775
24	AGAP5	chr10:73682707:T:TTG	9.36E-05	frameshift variant	-0.745795	1.86109
24	SYNPO2L	chr10:73647531:A:AG	0.00086754	frameshift variant	0.378353	2.39022
28	AGBL2	chr11:47667666:TC:T	0.00014034	frameshift variant	0.792264	2.15626
28	C10TNF4	chr11:47590761:AGGGCCCAGCAGGCCGCT:A	0.00042143	frameshift variant	-0.434965	1.75612
28	C10TNE4	cbr11-47590762-G-GGGCCCAGCAGGCCGCTGGGCCCAGCA	0.00015608	frameshift variant	-0.727352	1 91261
28	CIOTNEA	cbr11-47590762-CCCCCACCACCCCCCCCCCCCCACCA-C	0.00012497	framochift variant	0.609676	1 76725
20	EAM180B	chr11:47599126:0:00	0.00012407	frameshift variant	-0.356931	1 35924
29	EAM100D	chr11-47599212-C-A	0.00072035	eton minod	0.577700	1 5162
20	FAMILOUD	chi 11.47577770/J.C.	7.805.05	stop gameu	0.377362	1.3162
20	VDTDD4	chi11.47570011.0.0	0.76E-05	and an estime variant	1.0400	2 11127
20	KB1BD4	CH11.4/5/6711CCG	7.36E-U5	spice donor variant	-1.0408	4.11145
28	NDUFS3	cnr11:4/5/9534:CGTGA:C	0.00023389	splice donor variant	-0.4/6536	1.35272
28	NDUFS3	cnr11:4/580/13:TA:T	7.80E-05	trameshift variant	-0.810483	1.83795
28	PTPMT1	chr11:47571628:G:C	0.00394487	stop lost	-0.0934814	0.929256
28	SLC39A13	chr11:47415038:G:A	9.36E-05	splice acceptor variant	0.694338	1.10392
28	RAPSN	chr11:47438712:AC:A	9.39E-05	frameshift variant	1.25403	2.85113
30	PXN	chr12:120216728:AC:A	0.00032744	frameshift variant	0.339037	0.95313
31	ADPRHL1	chr13:113424310:G:A	7.80E-05	stop gained	1.05364	1.80184
34	ALPK3	chr15:84856391:G:A	9.36E-05	splice acceptor variant	1.2655	3.51923
34	ADAMTSL3	chr15:83838216:G:A	0.00014034	splice donor variant	-0.55498	1.31167
34	ALPK3	chr15:84817508:CG:C	0.00021758	frameshift variant	-0.709746	2.06313
34	ALPK3	chr15:84863641:G:GT	0.00010915	splice donor variant	1.04933	2.77413
34	ALPK3	chr15:84868257:C:CT	0.00014033	frameshift variant	-0.757259	1.78261
34	WDR73	chr15:84643474:CG:C	0.00098235	frameshift variant	0.237993	1.29681
34	WDP73	chr15-94643670-C-A	0.265-05	eton minod	-0.75919	1 67010
34	WDP73	chi 15:01075077.0.0	0.00012474	enlice donor variant	0.755469	1.6/125
74	FLC28A1	chi 15.0.1037203.C.U	0.000124/4	spince using variant	0.414566	1.01123
34	DCADZ	CIII 13.04007702[C]1	0.00028066	stop gained	0.414500	1.3440
38	PGAP3	CHT17:59672852:T:C	0.00017152	stop lost	0.591775	1.42737
38	PNMT	chr17:39670186:GC:G	0.00020271	trameshift variant	0.585403	1.61095
38	STARD3	chr17:39660527:G:A	9.36E-05	splice donor variant	0.890304	1.56795
39	LRRC37A2	chr17:46548749:A:T	0.00012474	stop gained	0.844679	1.88409
39	LRRC37A2	chr17:46548914:TC:T	7.80E-05	frameshift variant	-0.907647	1.49185
39	KANSL1	chr17:46094507:C:T	0.0003119	splice donor variant	-0.524346	1.82778
39	MAPT	chr17:45983226:G:GC	0.00014033	frameshift variant	-0.599284	1.32848
39	MAPT	chr17:45985745:G:A	0.00010915	splice donor variant	-0.758089	1.45605
40	C21orf62	chr21:32794101:G:T	0.00023389	stop gained	-0.421833	1.06357
41	DERL3	chr22:23838364:GC:G	0.00163725	frameshift variant	-0.241464	1.99186
41	MMD11	cbr22-2772080-T-C	7 905-05	enlice donor variant	0.906691	1 50627

Supplementary Figures

а	АНА	. 1	2	3	4	5	6	7	Wall Th 8	icknes 9	s 10	11	12	13	14	15	16
	Sex	0.47	0.31	0.36	0.54	0.55	0.54	0.60	0.58	0.60	0.62	0.60	0.61	0.55	0.58	0.56	0.55
	BSA	0.48	0.32	0.34	0.50	0.55	0.54	0.60	0.57	0.63	0.65	0.64	0.62	0.59	0.61	0.60	0.59
	SBP	0.32	0,21	0.23	0.29	0.28	0.32	0.35	0.34	0.36	0.34	0.31	0.33	0,25	0.26	0.24	0.25
	DBP	0.26	0.16	0.17	0.25	0.27	0.27	0.32	0.32	0.34	0.32	0.29	0.29	0.25	0.27	0.25	0.24
b	АНА	. 1	2	3	4	5	6	Circ 7	cumfere 8	ential S 9	train 10	11	12	13	14	15	16
	Sex	-0.16	-0.38	-0.12	-0.01	-0.25	-0.10	-0.29	-0.22	-0.14	-0.02	-0.20	-0.23	-0.26	-0.21	0.03	-0.11
	BSA	-0.11	-0.37	-0.12	0.00	-0.21	-0.05	-0.22	-0.19	-0.07	-0.09	-0.15	-0.20	-0.16	-0.13	0.07	-0.05
	SBP	0.04	-0.11	-0.03	0.04	-0.01	0.01	0.05	0.03	0.09	0.03	0.02	-0.00	0.07	0.04	0.07	0.03
	DBP	-0.05	-0.16	-0.07	-0.01	-0.11	-0.06	-0.08	-0.08	-0.01	-0.04	-0.07	-0.09	-0.04	-0.06	0.01	-0.04
с		1	2	2	4	5	6	7	Radial	Strain	10	11	12	12	14	15	16
	Sex	-0.15	-0.25	-0.30	-0.31	-0.24	-0.07	-0.21	-0.16	-0.22	-0.21	-0.26	-0.26	-0.10	-0.10	-0.16	-0.13
	BSA	-0.14	-0.27	-0.33	-0.26	-0.15	-0.00	-0.11	-0.06	-0.13	-0.18	-0.22	-0.19	0.04	0.04	-0.10	-0.06
	SBP	0.04	-0.10	- 0.12	-0.07	0.03	0.07	0.14	0.21	0.15	0.08	0.04	0.07	0.19	0.22	0.16	0.14
	DBP	-0.05	-0.13	-0.17	-0.14	-0.07	-0.02	0.01	0.05	0.00	-0.03	-0.07	-0.05	0.08	0.10	0.02	0.02

Supplementary Figure 1. LV spatial traits correlations to known confounding factors. Association of the spatial wall thickness (a), strain^{circ} (b) and strain^{rad} (c) with Sex, body surface area (BSA), systolic (SBP) and diastolic (DBP) blood pressure. Pearson correlation values are shown for each indicated regional trait and the indicated known predictor on the left. Values were calculated with DataFrame.corr function in pandas v2.1.3.

Supplementary Figure 2. Association of LV spatial strain^{*rad*} with systolic (SBP) and diastolic (DBP) blood pressure. Each graph displays a kernel density plot of mean strain^{*rad*} on an AHA segment against automatic SBP (red cloud) and DBP (blue cloud) readings taken at MRI. n = 40,058 participants were included in the analysis. Plot produced with kdeplot and regplot functions in seaborn v0.12.2.

Supplementary Figure 3. Phenome-wide association study of spatial left ventricular traits on cardiovascular phenotypes. After adjustment for known confounders (sex, age, body surface area, SBP, DBP), each spatial trait was assessed for association with cardiovascular phenotypes. Phenotypes as phecodes are described on the y-axis with the phecode category separating the groups and the imaging traits are on the x-axis. Each point denotes a significant PheWAS association with a Bonferroni correction for 1,840 analyzed phecodes. The shape and colour denote the direction of effect. See the Supplementary Data for the full PheWAS results.

Phenotypes

Supplementary Figure 4. Phenome-wide association study of spatial left ventricular traits on non-cardiovascular phenotypes. After adjustment of known confounders (sex, age, body surface area, SBP, DBP), each spatial trait was assessed for association with non-cardiovascular phenotypes. Phenotypes as phecodes are described on the y-axis with the phecode category separating the groups and the imaging traits are on the x-axis. Each point denotes a significant PheWAS association with a Bonferroni correction for 1,840 analyzed phecodes. The shape and colour denote the direction of effect. See the Supplementary Data for the full PheWAS results.

Supplementary Figure 5. Phenome-wide association study of spatial left ventricular traits on additional non-cardiovascular phenotypes. After adjustment of known confounders (sex, age, body surface area, SBP, DBP), each spatial trait was assessed for association with non-cardiovascular phenotypes. Phenotypes as phecodes are described on the y-axis with the phecode category separating the groups and the imaging traits are on the x-axis. Each point denotes a significant PheWAS association with a Bonferroni correction for 1,840 analyzed phecodes. The shape and colour denote the direction of effect. See the Supplementary Data for the full PheWAS results.

Supplementary Figure 6. Spatial GWAS gene types by FUMA. (a) Distribution of gene products identified in the 42 loci by gene types, prioritised by: (1) if significant SNPs were found in the gene product (blue), (2) if the gene product contains no such positional SNPs, gene products that were mapped by cis-eQTL variants in the heart left ventricle (GTEx8) (green), (3) if none above were found, if they were mapped by chromatin interaction (CI) overlap in left ventricle (pink), and lastly, if they are mapped by eQTL and CI in other 4 tissues (Heart Aorta Appendage, Arteria, Artery A, and Atery Tibial). Total number of gene products was 482, and 455 (94%) were mapped by positional genes, or eQTL or CI in heart left ventricle. (b) Distribution of maximum CADD scores for gene products where positional SNPs were found. The gene products and CADD scores were annotated using FUMA. Legends. miRNA: small RNA (22bp) that silences the expression of target mRNA; snRNA: Small RNA in the cell nucleus involved in the processing of pre messenger RNAs; snoRNA: Small RNA in the cell nucleolus involved in the post-transcriptional modification of other RNAs, antisense: transcripts on the opposite strand, sense intronic: long non-coding transcript in introns of a coding gene, pseudogene: a gene that has homology to known protein-coding genes but contain a frameshift and/or stop codon(s) which disrupts the open reading frame (ORF). Thought to have arisen through duplication followed by loss of function, lincRNA: long intergenic ncRNA, misc RNA: miscellaneous RNA that cannot be classified, processed transcript: transcript that doesn't contain an ORF.

Supplementary Figure 7. Manhattan plots for the wall thickness spatially resolved by the AHA-16 model. (a) The wall thicknesses is adjusted by Sex, age at MRI, age squared, BMI, BSA and the top 10 PCs. Minimum P value found by GWAS on 16 segments were shown in the manhattan plot. Highlights in red show the loci identified in fully adjusted GWAS (panel b), highlights in purple show additional loci that were no longer significant after adjustment with BP. These loci (purple) were annotated by the nearest gene. (b) The wall thicknesses are additionally adjusted by SBP and DBP measured at MRI. (c) Heatmap showing the beta values of lead SNPs in each locus (by fully adjusted GWAS) with the AHA segments on LV.

Circumferential Strain (-Ecc) GWAS

Supplementary Figure 8. Manhattan plots for the circumferential strain spatially resolved by the AHA-16 model. (a) The circumferential strain is adjusted by Sex, age at MRI, age squared, BMI, BSA and the top 10 PCs. Minimum P value found by GWAS on 16 segments were shown in the manhattan plot. Highlights in red show the loci identified in fully adjusted GWAS (panel b), highlights in purple show additional loci that were no longer significant after adjustment with BP. These loci (purple) were annotated by the nearest gene. (b) The circumferential strain are additionally adjusted by SBP and DBP measured at MRI. (c) Heatmap showing the beta values of lead SNPs in each locus (by fully adjusted GWAS) with the AHA segments on LV.

Supplementary Figure 9. Manhattan plots for the radial strain spatially resolved by the AHA-16 model. (a) The radial strain is adjusted by Sex, age at MRI, age squared, BMI, BSA and the top 10 PCs. Minimum P value found by GWAS on 16 segments were shown in the manhattan plot. Highlights in red show the loci identified in fully adjusted GWAS (panel b), highlights in purple show additional loci that were no longer significant after adjustment with BP. These loci (purple) were annotated by the nearest gene. (b) The radial strain are additionally adjusted by SBP and DBP measured at MRI. (c) Heatmap showing the beta values of lead SNPs in each locus (by fully adjusted GWAS) with the AHA segments on LV.

Supplementary Figure 10. Predicted regulatory effects of GWAS variants on expression. Regulatory effects were calculated using GWAS summary statistics and GTEx v8 eQTL MASH-R model for the heart left ventricle. 10,498 genes were tested. Manhattan plot shows the minimum P-value on the 16 regional traits of strain^{circ} and strain^{rad}. Related to Figure 5.

Supplementary Figure 11. Variant effect annotations of whole Exome data in the UKBB CMR imaging cohort. (a) Number of variants tested in ExWAS by the most severe consequence (MSC) annotated with Ensembl Variant Effect Predictor (VEP). 1,006,431 Exome variants that appeared at least five times in the UKBB CMR cohort were tested. (b) Distribution of the variants tested by minor allele frequency (MAF).

Supplementary Figure 12. Exome-wide gene-based tests on spatial LV traits. (a) Genes habouring more than five predicted loss-of-function (pLoF) variants in the cohort were tested for association with 48 spatial LV traits including wall thickness (blue), circumferential (red) and radial strain (green). Tests were performed using regular burden tests (ADD) and the variance component test (SKAT). ADD tests on pLoF variants were conducted for 10,768 genes, and SKAT for 3,666 genes. Alternating colors represent different AHA segments. Each dots represent the log-scaled P value of the gene association significance, and less genes were tested in SKAT. (b) Genes harbouring more than five predicted deleterious variants were tested. Similarly, 48 spatial LV traits were tested and alternating colors represent different AHA segments. ADD tests on pLoF variants were conducted for 15,924 genes, and SKAT for 9,732 genes. AHA: American Heart Association segment model. WT: wall thickness. SKAT: sequencing kernel association test.

LoF variants on ALPK3 exons and protein domains.

Supplementary Figure 13. Combined GWAS lead and rare leave-one-variant-out analysis of ALPK3. (a) Sentinel SNP in the GWAS locus and association values (beta) to global and spatial LV wall thickness, maximum wall thickness and LV mass. The minor allele is associated with decreased WT. (b) Bullseye plot that shows the P values of GWAS variant and SKAT burden tests. (c) The beta values of the ADD burdent tests, the pLoFs together were associated with increased WT. (d) Leave one variant out test on ALPK3, demonstraing different direction of effect from these variants. (e) the location of the variants on the ALPK3 domain structure. The gene scheme was duplicated from Almomani et.al., Figure 3⁵⁹. The top four variants annotated in (d,e) from top to bottom are: splice donor rs753084997 (15:84863641), splice acceptor rs761330284 (15:84856391), stop gain (ClinVar pathogenic) rs749465164 (15:84857913), and stop gain rs541612157 (15:84867361).

Supplementary Figure 14. Single nucleotide polymorphism (SNP) effects of blood pressure on global LV traits. Mendelian randomisation (MR) analysis of systolic (SBP) and diastolic (DBP) blood pressure as exposure (by row), global LV traits including the mean wall thickness, mean strain^{circ} and mean strain^{rad} as outcome (by column). Genetic instruments for SBP and DBP were selected from published GWAS¹⁴. The effects (β) of the exposure variable-increasing allele at independent SNPs ($r^2 < 0.001$) reaching P < 5e-8 are plotted as data points and associated standard errors are represented as lines extending from data points. The plots were produced using the R package TwoSampleMR. See Supplementary Data File 'Mendelian Randomisation.xlsx' for full MR results.

Supplementary Figure 15. Single nucleotide polymorphism (SNP) effects of global LV traits on HCM and DCM. Mendelian randomisation (MR) analysis of global LV mean wall thickness, mean strain^{circ} and mean strain^{rad} as exposure (by column), HCM and DCM as outcome (by row). The effects (β) of the exposure variable-increasing allele at independent SNPs (r² < 0.001) reaching *P* < 5e-8 are plotted as data points and associated standard errors are represented as lines extending from data points. Outcome were assessed with HCM¹⁵ and DCM¹⁶ GWAS. The plots were produced using the R package TwoSampleMR. See Supplementary Data File 'Mendelian Randomisation.xlsx' for full MR results.

Supplementary Figure 16. STRING analysis for protein coding genes in the spatial-only loci. Protein coding genes from 18 spatial only GWAS loci were analysed using STRING database, k-means clustering identified seven clusters of interaction networks.

Supplementary Data Files

List of the Supplementary Data Files provided in the zip file.

- Supplementary Data File 1. LDSC Genetic Correlation full results.
- Supplementary Data File 2. GREML heritability and fixed effect variance full results.
- Supplementary Data File 3. PheWAS full results.
- Supplementary Data File 4. Spatial LV GWAS loci and gene prioritisation table.
- Supplementary Data File 5. Exome wide gene based burden tests significant associations.
- Supplementary Data File 6. Bidirectional Two-Sample Mendelian Randomisation full results.
- Supplementary Data File 7. Gene lists used in STRING-DB analysis and the list of enriched pathways.