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Abstract 

Background 

Polygenic risk scores (PRS) have ushered in a new era in genetic epidemiology, offering 

insights into individual predispositions to a wide range of diseases. However, despite recent 

marked enhancements in their predictive power, there are still challenges that need to be 

overcome before PRS-based models can be broadly applied in the clinic, including sufficient 

accuracy, easy interpretability and portability across diverse populations.  

Methods 

Leveraging trans-ancestry genome-wide association study (GWAS) meta-analysis, we 

generated novel, diverse summary statistics for 30 medically-related traits which were used to 

benchmark the performance of six existing PRS algorithms using UK biobank. Observing that 

SBayesRC had the best overall performance but recognizing strengths in each method, we 

developed an ensemble PRS model using logistic regression to combine outputs from top-

performing algorithms. This ensemble model was validated on the diverse eMERGE and PAGE 

MEC cohorts, and the performance was compared against current state-of-the-art PRS models. 

To enhance predictive accuracy for clinical application, we incorporated easily-accessible 

clinical characteristics such as age, gender, ancestry and risk factors, creating disease 

prediction models intended as prospective diagnostic tests, with easily interpretable positive or 

negative outcomes.  
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Results 

Predictive performance of PRS models improved with trans-ancestry GWAS meta-analysis and 

was further enhanced by the ensemble model, which surpassed state-of-art PRS models. When 

applied to external cohorts, performance drops were minimal, indicating good calibration. After 

adding clinical characteristics, 12 out of 30 models surpassed 80% AUC. Further, 25 traits 

exceeded the diagnostic odds ratio (DOR) of 5 and 19 traits exceeded DOR of 10 for all 

ancestry groups, indicating high predictive value. The highest DOR in a population with a 

sufficient number of cases was 66.2 for Alzheimer's disease in Europeans. Our PRS model for 

coronary artery disease identified 55-80 times more true coronary events than rare pathogenic 

variant models, reinforcing its clinical potential. The polygenic component modulated the effect 

of high-risk rare variants, stressing the need to consider all genetic components in clinical 

settings. 

Conclusions 

Newly developed PRS-based disease prediction models have sufficient accuracy and portability 

to warrant consideration of being used in the clinic.   
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Background 

Polygenic risk scores (PRSs) have emerged as a transformative tool in genetic epidemiology, 

harnessing the wealth of data generated by genome-wide association studies (GWAS) to 

predict an individual's predisposition to complex diseases [1]. By aggregating numerous genetic 

variants, each contributing small to modest effects, PRS offers an understanding of genetic 

susceptibility across a spectrum of human diseases, including cardiovascular conditions, 

psychiatric disorders, and cancers [2-6]. The utility of PRSs extends beyond mere risk 

prediction; they hold promise for personalized medicine, where interventions can be tailored 

based on an individual's genetic risk profile. Moreover, PRSs can enhance disease screening 

strategies, inform clinical decision-making, and potentially guide lifestyle and therapeutic 

interventions aimed at mitigating disease risk [1,3,7-9]. Despite this potential, the application of 

PRSs in clinical settings is in its nascent stages, grappling with challenges such as improving 

the accuracy and interpretability of scores, ensuring equitable performance across diverse 

populations, and integrating genetic risk information with environmental and lifestyle factors for 

a comprehensive approach to disease prediction and prevention [1,10,11]. 

Recent advancements in computational methods, alongside the exponential growth in GWAS 

sample sizes, have markedly enhanced the predictive power of PRSs [8,12]. However, 

developing and validating PRS models that are generalizable across different ancestries 

remains imperative, as current models often exhibit reduced efficacy in non-European 

populations [1,8]. Additionally, any PRS used in a clinical setting must demonstrate clinical utility 

and easy interpretability that will alter patient care decisions based on the results [13]. 

With those aims in mind, we set about to create and validate multi-ancestry PRSs that 

incorporate diverse clinical characteristics. We treated this task as a binary classification 

problem and systematically tested different combinations of inputs to make disease predictions 

that are easily interpretable and would alter physician intervention decisions. We build and 

evaluate different PRS models for 30 different medically-related traits starting from assessing 

the benefit of GWAS meta-analysis, to adding demographic and clinical risk factors to our 

models to maximize their predictive power. 
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Methods 

Cohorts and other PRS models 

UK Biobank Cohort: The UK Biobank used a custom Axiom genotyping array, which assayed 

825,927 genetic variants for around 500,000 participants aged 40-69 years [14]. This was 

followed by comprehensive genome-wide imputation utilizing the Haplotype Reference 

Consortium (HRC) haplotype resource and the UK10K + 1KG reference panel, culminating in 96 

million variants. From the imputed dataset, we isolated 13.7 million variants, selecting those with 

a minor allele frequency greater than 0.001 and a Hardy-Weinberg equilibrium P value 

exceeding 10-10. This carefully curated subset of high-quality variants served as the foundation 

for our PRS model development. 

We first restrict individuals to the ones used for computing the principal components in the UK 

Biobank (Field 22020) and defined as the ‘White British ancestry’ group (UKB Data Field 

22006). These individuals, called the White British Unrelated (WBU) subgroup, are a high 

quality set of unrelated individuals that underwent stringent quality controls including the 

exclusion of samples with an autosomal missing rate greater than 0.02, mismatches between 

inferred and self-reported sex, and outliers based on heterozygosity, as detailed in Bycroft et al. 

(2018) [14]. This subgroup was used by Thompson et al. (2024) [8] to generate GWAS 

summary statistics. We used the same subgroup (available at zenodo.org/records/6631952) as 

the UKB fraction that was then meta-analyzed with other GWAS datasets. 

After excluding the previously identified WBU subset, we retrieved 104,604 remaining UKB 

samples for downstream analysis. We adopted this approach, which was proposed by 

Thompson et al (2024) [8], to increase the representation of non-European ancestries within this 

cohort for PRS training, testing and validation. We divided this cohort into a training set of 

30,000 individuals and a testing set of 74,604 individuals for benchmarking the performance of 

each PRS algorithm. Subsequently, we split the testing set into two sub-cohorts: one consisting 

of 30,000 participants for retraining our novel ensemble PRS method and developing new risk 

models that integrate various PRSs and additional demographic factors, and another comprising 

44,604 participants for testing these models. This structured approach enabled direct 

comparisons of our PRS results with those developed by Thompson et al., using the same 

subsets, thereby ensuring the comparability and robustness of our findings. All experiments and 
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the cohorts and subsets used in this study are detailed in Fig. 1, which presents a schematic of 

the study design. 

We also adopted the methodology outlined by Thompson et al (2024) [8] to infer genetic 

ancestry, ensuring our results were comparable. In this regard, data was standardized by 

initially grouping participants according to their self-reported ethnicity. In cases where multiple 

ethnicity entries were available, the primary entry was used unless it was missing, in which case 

secondary or tertiary entries were considered. Ethnicities were categorized as follows: African 

into "African"; Bangladeshi, Indian, and Pakistani into "South Asian"; Chinese into "East Asian"; 

other Asian backgrounds into "Asian"; various mixed and Caribbean backgrounds into "Mixed"; 

and British, Irish, and other white backgrounds into "European". Categories such as "Prefer not 

to answer" were kept as "Unknown". Centroid coordinates for "European", "East Asian", "South 

Asian", and "African" ancestry groups were defined in the principal component (PC) space from 

the first four PC axes (see below for variant pruning used to derive principal components for risk 

models). We calculated cosine similarity between each individual's PC score vector and each 

population centroid using the cosineSim function. Ancestry proportions were then estimated by 

applying a softmax transformation (base=exp(3)) to these cosine similarities, yielding a 

dataframe with one column per population centroid. Individuals were assigned a 

superpopulation category based on the highest ancestry proportion, ensuring no individual was 

labeled as admixed. Our results closely matched those reported by Thompson et al., with 9,501 

individuals categorized as "African", 2,931 as "East Asian", 82,318 as "European", and 9,854 as 

"South Asian". 

All UKB participants provided informed consent. Our research project (Project Application 

Number 84038) received approval from the UK Biobank. 

eMERGE Network Cohort: Access to the eMERGE cohort was granted via dbGaP 

(phs001584.v2.p2), focusing on subsets c1, c4, c5, c6, c7, c8, and c10, which did not require 

Institutional Review Board approval [15]. This yielded data from 84,215 participants, featuring 

both genetic and phenotypic information, across diverse U.S. populations, including Blacks (or 

Africans; N = 10,126), Asians (N = 920), Whites (N = 67,316), Latinos (N = 3,303), Native 

Americans (N = 101) and Pacific Islanders (N = 6). Individuals with unknown self-reported 

ethnicity were excluded. Due to relatively small numbers, Native Americans were grouped with 

Latinos, and Pacific Islanders with Asians. Despite the genetic dataset containing over 39 

million variants, it lacked certain SNPs from our models and those developed by Lennon et al. 
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(2024) [16] (see below). To address this issue, we phased the newly released whole genome 

sequencing data from the UKB (UKB Dragen WGS), available on the UK Biobank Research 

Analysis platform, with ShapeIt5 [17] and used it as our reference panel. This enabled us to 

impute missing SNPs, ensuring minimal SNP loss when applying various PRS models. The 

eMERGE cohort was lifted over to GRCh38 with Picard tools [18] and then normalized with 

BCFtools [19]. Imputation was performed using Beagle5.4 [20] with default parameters. 

PAGE MEC Cohort: Access to the PAGE MEC [21] cohort was granted via dbGaP 

(phs000220.v2.p2). We prioritized individuals genotyped using the MEGA Consortium array 

over the Metabochip due to its significantly larger number of variants (1,705,969 vs. 196,725 

variants). This choice was made to guarantee more effective imputation and enhance the 

reliability of our analyses. In total, this yielded data from 9,098 participants, featuring both 

genetic and phenotypic information, across diverse U.S. populations, including Blacks (or 

Africans; N = 3,520), Hawaiians (N = 2,104), Japanese (N = 3,451) and Latinos (N = 23). 

Individuals with unspecified self-reported ethnicity were excluded from the study, along with 

Latinos, who were omitted due to their relatively small numbers. Similar to the eMERGE cohort, 

we imputed the PAGE MEC cohort to reduce SNP loss, ensuring the effective application of 

various PRS models. Finally, Hawaiian and Japanese individuals were combined into an Asian 

group when necessary to facilitate performance comparisons with groups from other cohorts. 

Other PRS models: We compared the PRS models we developed to those of Thompson et al 

(2024) [8], who conducted a systematic evaluation of their scores against numerous previously 

published models. Additionally, we compared our models to those of Lennon et al. (2024) [16], 

who endeavored to validate high-quality models for 10 diseases. These comparisons are 

particularly pertinent in the field of PRS due to the demonstrated enhanced power of these 

models, which suggests their medical actionability and potential clinical utility. Thompson et al.’s 

PRS profiles in UKB were retrieved from the UK Biobank Research Analysis platform, while 

Lennon et al.’s PRS models can be accessed from here: github.com/broadinstitute/eMERGE-

implemented-PRS-models-Lennon-et-al. Thompson et al. provided PRSs exclusively for UKB 

samples without accompanying models, limiting our comparative analysis to the UKB dataset. In 

contrast, Lennon et al. provided PRS models for 10 diseases, eight of which overlapped with 

ours, applicable to cohorts other than the UKB, which was used for model training. 

Consequently, we applied these models to the eMERGE cohort, where they were initially tested. 

The use of the UKB whole genome sequencing reference panel for eMERGE imputation 
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ensured minimal SNP loss (< 1%) when implementing both our and Lennon et al.'s PRS 

models, even when liftover was necessary. 

Selection of Phenotypes and Definitions 

For our study, we adopted the 28 diseases listed in Thompson et al (2024) [8], leveraging the 

extensive and richly phenotyped cohorts available for these conditions. We excluded multiple 

sclerosis due to a lack of additional summary statistics that showed improvement over random 

predictions (AUC not significantly above 50%), resulting in a final list of 27 diseases. 

Additionally, we incorporated three quantitative health-related traits —body mass index, total 

cholesterol and triglyceride levels—which were transformed into binary traits for consistent 

analysis. We defined hypercholesterolemia and hypertriglyceridemia as values above 200 

mg/dL, and obesity as a body mass index above 27.5 for Asian individuals and above 30 for all 

other ethnicities. This adjustment expanded our focus to 30 clinical traits. 

Trait definitions were aligned with those presented in Thompson et al. (2024) [8], where 

phenotype variables for each trait in the UK Biobank were derived from a combination of self-

reported responses and ICD-10 records, detailed in Table S1. For type 1 and 2 diabetes, we 

employed a more detailed case definition process. Initially, we designated type 1 diabetes cases 

using the UK Biobank code 1222 in field 20002 and the ICD-10 code E10, and type 2 diabetes 

using UKB code 1223 and ICD-10 code E11, as per Privé et al. (2019) [22]. We excluded other 

diabetes forms, setting them as missing using codes 1220-1223 and ICD-10 codes E10-E14. 

Subsequently, we implemented the decision tree methodology outlined in Thompson et al. 

(2024) to refine these classifications: (i) Individuals without any diabetes-related labels, self-

reports, ICD-10 codes, or diabetes medications (including insulin product, metformin, 

rosiglitazone and metformin, troglitazone, pioglitazone, rosiglitazone, glimepiride, glibenclamide, 

glibornuride, gliclazide, glipizide product, glipizide, gliquidone, chlorpropamide, acetohexamide, 

tolazamide, tolbutamide, diabinese, minodiab, diabetamide, repaglinide or nateglinide) were 

categorized as controls; (ii) Female participants who reported only gestational diabetes, without 

other diabetes types or medications, were excluded from the analysis; (iii) Participants reporting 

diabetes and on non-insulin, non-metformin diabetes medications, or diagnosed after age 36, 

were classified as having type 2 diabetes; (iv) Those reporting a type 1 diabetes diagnosis or 

using insulin were assigned a type 1 diabetes status; (v) All other individuals with a diabetes 

label but not fitting the above categories were assigned type 2 diabetes status. Next, we 

reassessed the initial definitions from the UK Biobank code in 2002 and ICD-10 codes, and the 
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status obtained with the decision tree approach, adjusting for discrepancies: (i) Where control 

and diabetic case classifications conflicted, individuals were designated as missing due to 

reliability concerns; (ii) Type 1 diabetes classification were recovered from previously missing 

values only if there was an ICD-10 code for individuals diagnosed before 25 years of age and 

who were on insulin only; for type 2 diabetes, recovery of cases from missing data occurred for 

those with an unspecified type but diagnosed after age 50, or if the date of type 1 diabetes 

diagnosis was at least a year later to the type 2 diagnosis, or they were taking non-metformin 

oral diabetes medications. Finally, in PRS analyses for diabetes, we excluded individuals 

diagnosed with the alternate diabetes type to ensure a clear and accurate set of cases and 

controls without confounding factors. 

We utilized both ICD-9 and ICD-10 codes in the eMERGE dataset to define cases and controls. 

The presence of these codes categorized participants as cases for specific diseases. 

Additionally, the cohort data already included identified cases for conditions like glaucoma, 

asthma, age-related macular degeneration, venous thromboembolism, and type 2 diabetes, 

which facilitated the identification of further cases. Individuals on statins following a Major 

Adverse Cardiovascular Event were excluded from the hypercholesterolemia and 

hypertriglyceridemia analyses, and those diagnosed with type 2 diabetes were removed from 

type 1 diabetes analyses, and vice versa. Following the methodology of Lennon et al. (2024) 

[16], we restricted case definitions to certain age ranges that reflect typical disease onset. 

Specifically, diagnoses of type 1 diabetes, asthma and Crohn's disease were considered 

positive if made between ages 3 and 17; obesity, type 2 diabetes, celiac disease, psoriasis, 

schizophrenia and bipolar disorder were diagnosed across ages 3 to 75; other diseases were 

categorized as late-onset (over 17 years old). Individuals outside the age range of 3 to 75 were 

excluded. 

In the PAGE MEC cohort, baseline reports of diabetes, high blood pressure, heart attack, 

stroke, body mass index, total triglycerides, and total cholesterol were respectively categorized 

as type 2 diabetes (DIABET variable), hypertension (HIBP), coronary artery disease 

(HATTACK), ischemic stroke (STROKE), obesity (BMI), hypertriglyceridemia (_triglyc) and 

hypercholesterolemia (_tot_chol). We refined our identification of additional type 2 diabetes 

cases by using the "med_diab" variable, which reported type 2 diabetes medications taken at 

the time of blood draw. Cardiovascular disease was also defined by the presence of both heart 

attack and stroke. The analysis excluded total triglycerides due to a low sample size. 
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Analyses involving epithelial ovarian cancer and breast cancer were conducted exclusively with 

female participants, while studies on prostate cancer were restricted to male individuals. 

GWAS Meta-Analysis 

We generated new genome-wide summary statistics for the 30 health-related conditions 

covered in this article, utilizing a trans-ancestry GWAS meta-analysis approach that 

incorporated data from various cohorts, including the UK Biobank, the Finngen and the BioBank 

Japan, among others. Detailed information about all the studies collected is provided in Table 

S2 [14,23-73]. 

We utilized the METAL[74] software to conduct GWAS meta-analyses employing two specific 

schemes. For effect size estimates (beta coefficients) and standard errors, we adopted the 

SCHEME STDERR, which processes effect size estimates and standard errors from each study 

to compute aggregate effects of each variant. Ensuring uniform units for effect sizes across all 

included summary statistics was essential for consistency. For P value computation, we 

implemented the default SCHEME SAMPLESIZE, which adjusts P values and directional effects 

based on sample size. In this context, we calculated the effective GWAS sample size for binary 

traits using the formula 4 / (1 / Ncases + 1 / Ncontrols) where Ncases and Ncontrols represent 

the number of cases and controls in the GWAS, respectively. For quantitative traits, we directly 

used the total number of samples. This dual-mode approach provided flexibility in our analysis, 

as the SAMPLESIZE model is capable of estimating corrections for sample overlap, thereby 

accommodating such corrections in meta-analyses where overlaps are inevitable. 

Consequently, we sourced our P values from 'SAMPLESIZE metaanalysis' and beta coefficients 

from 'STDERR metaanalysis', effectively addressing the complexities of our data. 

We sourced summary statistics from publicly available GWAS data, with the GWAS Catalog [75] 

serving as a predominant source. Additionally, we accessed data from specific project platforms 

such as the Finngen, BioBank Japan, Global Lipids Genetics Consortium and others designed 

for specific studies. Access was also requested from dbGaP to obtain a dataset of summary 

statistics for melanoma (phs001868.v1.p1 [48]), as well as data from the Million Veterans 

Program (phs001672.v11.p1 [66]). To minimize overfitting, we excluded studies incorporating 

the UKB or used versions of summary statistics that deliberately excluded UKB samples, even if 

the broader study included them in the corresponding article. From the several genetic models 

presented by Guindo-Martínez et al. (2021) [27], we selected the additive model for our 

analyses. 
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The earliest dataset used was from Lambert et al. (2013) [29] for Alzheimer's disease, with 

subsequent datasets being more recent, from 2015 onward. We excluded studies if they 

presented fewer than 100,000 variants or were confined to a single chromosome or region. 

Moreover, older studies were removed if they were included in more recent published releases 

or meta-analyses, used in our study. We also conducted correlation analyses between studies 

on nominally significant variants to ensure reliable comparison of effects to verify beta direction 

consistency. Instances of complete inverse or totally non-correlative beta directions between 

UKB and other studies indicated potential labeling errors for effect alleles or allele assignments. 

We noticed that significantly associated SNPs with allele frequencies close to 50% often 

displayed such inconsistent beta directions in studies that did not correlate with others, implying 

potential mislabeling of minor alleles as effect alleles in the GWAS data. We harmonized the 

summary statistics by annotating SNP IDs from dbSNP version 155 and calculated betas from 

logarithms of odds ratios where this was the sole metric reported. Standard errors were derived 

by dividing the absolute beta coefficients by their corresponding z-scores, which were computed 

from P values using the inverse of the standard normal cumulative distribution. If a P value was 

below the threshold of 10-308, we set it to this value as it represents the lower limit that METAL 

can process as input. Additionally, we performed liftover processes from GRCh38 to GRCh37 

genome build and implemented other necessary harmonization steps to ensure consistency 

across our datasets. 

PRS Model Benchmarking 

To benchmark predictive performance and elucidate each method’s strengths and weaknesses, 

we compared the following PRS algorithms: PRS-CS [76], SbayesRC [77], PolyPred [78], NPS 

(partitioning-based non-parametric shrinkage) [79], lassosum2 [80], LDpred2 [81], maxCT and 

Stacked C+T (SCT) [22]. The training set was used to determine the optimal hyper-parameters 

for PRS-CS, NPS, PolyPred, lassosum2, LDpred2, and maxCT, in addition to the stacking 

weights for SCT. SBayesRC was trained using only summary statistics, eliminating the need for 

individual-level data. 

To implement PolyPred, we integrated two complementary predictors—PolyFun-pred and 

SBayesRC outputs—and applied this model to five traits: asthma, age-related macular 

degeneration, ulcerative colitis, venous thromboembolism, and cardiovascular disease. 

However, the performance gains from PolyPred were minimal, improving by only about 0.1% 
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over the results obtained from SBayesRC alone. Additionally, PolyPred was computationally 

demanding, being roughly 75 times more resource-intensive than SBayesRC. This increase in 

computational load is likely due to its extensive linkage disequilibrium (LD) reference data 

requirements, where SBayesRC utilizes a 50 GB LD panel, in contrast to PolyPred's 2.9 TB LD 

matrices. We also evaluated the NPS software for the same set of traits and encountered 

similar challenges, including the need for over 3 TB of local storage for dosage matrices, 

prolonged processing times, and comparatively lower accuracy among the PRS methods we 

reviewed. The artificially high AUC observed during training is typically indicative of model 

overfitting. Given these findings, coupled with faster and more accurate performance from other 

methods, we decided against including PolyPred and NPS in our final benchmarking analysis. 

For maxCT, tuning parameters included a squared correlation (r²) threshold for clumping and a 

base size for the clumping window, with default settings specified in Privé et al. (2019) [22]. 

Additionally, a series of 50 thresholds on P values were applied, ranging from the least to the 

most significant in the final meta-analyzed summary statistics, and evenly distributed on a log-

log scale. LDpred2’s tuning involved selecting the proportion of causal SNPs from a sequence 

of 21 logarithmically spaced values ranging from 10-5 to 1, and inferring the per-SNP heritability 

chosen from {0.3, 0.7, 1, 1.4} times the total heritability, as estimated by LD score regression. 

We enabled the 'sparse' option to truncate minor effects to zero, which effectively doubled the 

number of models considered for training by incorporating both sparse and non-sparse models. 

lassosum2’s tuning parameters included the lasso penalty lambda (L1-regularization), selected 

from 30 values logarithmically spaced between lambda0 -the maximum value where all 

coefficients are zero, derived from the maximum absolute standardized beta coefficient- and 1% 

of lambda0, along with a delta (L2-regularization) parameter for the LD matrix chosen from 

{0.001,0.01,0.1,1}. We developed the PRS-CS PRS model using default settings for the 

gamma-gamma prior parameters (a = 1 and b = 0.5) calculated on a per-chromosome basis. 

We did not specify the global shrinkage parameter phi, allowing PRS-CS to learn phi from the 

data through a fully Bayesian approach, which is advisable in the context of large GWAS 

sample sizes such as ours [75]. SBayesRC was executed using its default settings, enabling the 

software to determine the optimal estimates for heritability and the count of non-zero effect 

variants. Additionally, we adjusted the eigen variance cutoffs for model tuning in response to 

software-generated warnings. The original threshold set of (0.995, 0.99, 0.95, 0.9) was 

expanded to (0.995, 0.9, 0.8, 0.7, 0.6) to accommodate findings that suggested the optimal 

tuning parameter was near the minimum threshold, thus necessitating lower cutoff values. 
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Both LDpred2 and lassosum2 were implemented using the functions snp_ldpred2_grid and 

snp_lassosum2 from the R package bigsnpr, respectively. We adopted an LD radius of 3 cM to 

approximate local LD patterns, which assumes that variants further away than this distance are 

not correlated. Moreover, genetic markers were further restricted to the HapMap3 panel, 

following recommendations by Privé et al. (2021) [81]. Conversely, maxCT and SCT were 

executed using corresponding functions from the same R package (snp_grid_clumping and 

snp_grid_PRS, and snp_grid_stacking, respectively). However, for these analyses, we limited 

the set of genetic variants to those achieving a significance level of P < 0.1 in the meta-analysis. 

PRS-CS scores were also based on HapMap3 sites, as precomputed by the PRS-CS authors. 

In this case, we opted for data from the UKB as our reference panel for LD after it showed 

improved results in preliminary testing across several traits compared to those using the 1000 

Genomes Project. PRS-CS is a Python based command line tool (available here: 

github.com/getian107/PRScs) and final PRSs were computed from the SNP weights output 

using the PLINK --score command. We utilized SBayesRC (available at 

github.com/zhilizheng/SBayesRC), applying the LD reference supplied by the authors from the 

UKB. For our analysis, we employed two different sets of SNPs: the HapMap3 set and a larger 

set consisting of 7 million SNPs, both incorporating functional genomic annotations to enhance 

polygenic prediction. During an initial testing phase across various traits, the 7 million SNP 

panel demonstrated superior performance compared to the HapMap3 set. Thus, we selected 

the 7 million SNP set for benchmarking and further analyses. 

The models with the highest prediction accuracy on the training set were selected based on the 

Area under the ROC curve (AUC). The predictive performance of these final models was then 

evaluated on the independent testing set. Unlike diseases encoded as binary outcomes 

(case/control), optimal values for the quantitative traits – body mass index, total cholesterol, and 

triglyceride levels – were initially determined by training models to maximize the predictive R² 

between observed and predicted traits. Subsequently, these traits were converted to binary 

outcomes to facilitate AUC calculation and comparison with the testing samples. We sample 

10,000 bootstrap replicates of the individuals in the testing set and compute the AUC for each of 

these. We then report the mean of these 10,000 values, along with their quantile at 2.5% and at 

97.5% to act as the 95% confidence interval (CI) for the AUC. This is implemented in the 

function AUCBoot of R package bigstatsr. Additional metrics we employed include odds ratios 

that compare the top percentage of a population against the remainder, and odds ratios per 

standard deviation of the PRS distribution. For the latter, given that logistic regression aims to 
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distinguish between cases and controls by outputting a probability rather than a risk distribution, 

we applied a rank-based inverse normal transformation to our ensemble PRS model. This 

approach was taken to ensure that the PRS distribution adheres to a normal distribution while 

maintaining the rank order of the data points. 

Multi-algorithm ensemble PRS method 

We developed new PRS models for each disease by integrating scores previously obtained 

from SBayesRC, PRS-CS, SCT, LDpred2, and lassosum2. These models were retrained using 

logistic regression, employing the second training set to optimize the integration of these scores. 

This approach allowed us to harness the strengths of each individual scoring method to 

enhance overall predictive accuracy. Furthermore, this strategy proved to be an effective 

method of leveraging a larger cohort for training without the need to directly retrain the more 

computationally intensive and time-consuming PRS algorithms described above, which had 

been previously calibrated within a smaller, yet adequate cohort, thereby streamlining the 

overall process. 

We optimized the logistic regression models using the glmnet method for binary classification, 

configured with 5-fold cross-validation to enhance reliability. The models were implemented in R 

using the caret package. Model training was controlled through the trainControl function, set to 

compute class probabilities and evaluate model performance based on the AUC metric. 

Hyperparameters were finely tuned using a grid search across a range of values for alpha (0 to 

1, in 11 steps) and lambda (10−4 to 101, in 50 logarithmic steps), which regulate the balance 

between L1 and L2 regularization. This approach allowed us to systematically explore the 

parameter space to maximize the AUC metric, ensuring optimal discrimination of binary 

(case/control) outcomes. 

The Addition of Ancestry Information and Clinical Characteristics to PRS-
Based Disease Risk Models 

To improve the predictive accuracy of our PRS models, we incorporated ancestry information 

through an iterative process. We began by incorporating the first four principal components 

(PCs) identified from a principal component analysis (PCA) on variants that were pruned to 

ensure linkage equilibrium. First, we removed strand-ambiguous SNPs A/T and G/C, then 

filtered the SNP dataset to exclude those with a minor allele frequency (MAF) below 2%, those 

failing the Hardy-Weinberg equilibrium test with a P value below 1×10−6 and those with over 5% 
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missing data. After these quality control steps, we applied genotype pruning using a window 

size of 1000 kb, a step size of 50 SNPs, and an r2 threshold of 0.2, which allowed us to capture 

broad ancestry patterns through PCA. We then enhanced these models by integrating ancestry 

estimates from Orchestra [82], a method for local ancestry deconvolution. We aggregated the 

results from all genomics regions into vectors that quantify the percentage of each ancestry 

assessed for every individual. Consequently, each individual's genetic makeup was represented 

by a vector of values, with each vector element indicating the proportion of a specific ancestry. 

This approach allowed us to incorporate a series of columns into our model – each 

corresponding to a different ancestry – showing the percentage composition of that ancestry for 

each participant and enabling precise genetic profiling per individual. Orchestra's results were 

provided at level 2, which offers a regional granularity intermediate between population-specific 

and continental scales of ancestry detail. Both measures were incorporated into a logistic 

regression model and trained in the second training set.  

We also incorporated age, sex, and other clinical characteristics, easily gatherable in a clinical 

setting (Table S3). Age was calculated as the age at the earliest recorded diagnosis, using the 

earliest diagnosis date from the various sources outlined in Table S1, in conjunction with the 

date of recruitment and the age at recruitment. We chose characteristics that are known risk 

factors for each medically-related trait. We added this information to PRS and ancestry to make 

a final logistic regression model that would serve as a prospective diagnostic test, with an easily 

interpretable positive or negative value, typical of other diagnostic tests used in a clinical 

setting.  

We employed the same approach as described previously for the logistic regression model, 

using grid-search techniques to fine-tune the regularization parameters, thereby ensuring the 

model's generalizability. 

PRS profiles in clinical settings 

We utilized whole exome sequencing data from the UK Biobank to analyze genetic risks for 

breast cancer, bowel cancer and coronary artery disease by identifying significant mutations in 

genes associated with these conditions. To identify carriers, we aggregated mutations across all 

pertinent genes for each disease type. Specifically, we used a list from Fahed et al. (2020) to 

pinpoint mutations in genes associated with familial hypercholesterolemia (APOB, LDLR, 

PCSK9), breast cancer (BRCA1, BRCA2), and colorectal cancer (Lynch syndrome genes: 
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MSH2, MSH6, MLH1, PMS2) [2]. We expanded the list of genetic variants by including 

additional mutations identified as likely pathogenic or pathogenic in the ClinVar database. For 

familial hypercholesterolemia (FH) genes, we incorporated variants from Chora et al. (2018) 

[83], which adhered to diagnostic guidelines set by the American College of Medical Genetics 

and Genomics and the Association for Molecular Pathology [84]. We also added more variants 

for the APOB gene from ClinVar that are associated with hypercholesterolemia (search: 

apob[gene] and Hypercholesterolemia). For breast cancer, our list was enriched with mutations 

from the ATM and PALB2 genes, classified as likely pathogenic and pathogenic in ClinVar 

under the category of familial breast cancer (X[gene] and familial cancer of breast). Additionally, 

we included the CHEK2 1100delC mutation, known for its significant association with breast 

cancer risk. 

To evaluate the risk levels of individuals at the highest percentiles of their PRS profiles 

compared to carriers of pathogenic mutations, we focused our analysis on European individuals. 

This approach allowed us to use cumulative incidence plots for carriers within the full UKB 

cohort, maximizing sample size and statistical power due to the low frequency of these 

mutations, and minimizing confounding factors related to ancestry differences between the 

overall cohort and our UKB testing group, where PRS distribution percentiles were calculated. 

We determined the PRS percentile that matched the risk associated with having a pathogenic 

mutation, indicating that individuals with a PRS above this threshold have a comparable overall 

risk level to mutation carriers. To ascertain the accuracy of our findings, we calculated 

confidence intervals using a binomial test. 

Results 

Trans-ethnic GWAS Meta-analysis and PRS Algorithm Benchmarking 

We generated novel genome-wide summary statistics for 30 medically-related traits, leveraging 

trans-ancestry genome-wide association study (GWAS) meta-analyses of diverse cohort data, 

including the UK Biobank (Fig. 1A). The following traits were selected: age-related macular 

degeneration, Alzheimer's disease, asthma, atrial fibrillation, bipolar disorder, body mass index 

(BMI), bowel cancer, breast cancer, cardiovascular disease, celiac disease, coronary artery 

disease, Crohn's disease, epithelial ovarian cancer, hypertension, ischemic stroke, melanoma, 

osteoporosis, Parkinson's disease, primary open angle glaucoma, prostate cancer, psoriasis, 

rheumatoid arthritis, schizophrenia, systemic lupus erythematosus, total cholesterol, 
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triglycerides, type 1 diabetes, type 2 diabetes, ulcerative colitis, venous thromboembolic 

disease. For the purpose of PRS evaluation analogous to diseases, the continuous traits – BMI, 

total cholesterol and triglycerides – were converted into binary outcomes: obesity, 

hypercholesterolemia, and hypertriglyceridemia, respectively. 

 

 

Fig. 1. Study design schematics. A) Benchmarking study. Comparison of six PRS prediction algorithms 
applied to 30 medically-related traits. B) PRS evaluation study. Combination of 5 PRS models into an 
ensemble PRS model. maxCT was excluded since SCT is already a stacked model derived from maxCT 
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PRS models. C) Final risk model assessment. We added additional information to enhance model risk 
prediction. See main text for details. 

 
The sample sizes and contributions of different studies to our meta-analyses are summarized in 

Fig. S1 and Table S2. For binary traits, the median number of cases and controls across all 

studies is 42,768 and 821,539, respectively. For quantitative traits, the median sample size is 

1,205,118 individuals. In the meta-analyses, the number of cases for binary traits is 6.4 times 

greater than that of the UK Biobank (UKB) alone, while the number of controls is 3.1 times 

greater. For quantitative traits, the meta-analyses sample size is 7 times larger compared to 

using only the UKB summary statistics. Key contributors to the meta-analyses include the UKB, 

which accounts for 15.73% of cases and 32.1% of controls for binary traits, and 14.4% of 

samples for quantitative traits; the FinnGen project, which provides 26.5% of cases and 30.2% 

of controls for binary traits, and 11.8% of samples for quantitative traits; and studies involving 

the BioBank Japan, which contribute 4.9% of cases, 8.9% of controls for binary traits, and 4.7% 

of samples for quantitative traits. Notably, the Global Lipids Genetics Consortium is a major 

contributor for quantitative traits, accounting for 67.8% of the samples, due to the inclusion of 

total cholesterol and triglycerides levels in the analysis. 

GWAS meta-analyses were conducted using METAL [74], incorporating publicly available 

external GWAS sources, predominantly sourced from the GWAS Catalog [75]. We kept out a 

set of 104,604 individuals from the UKB to serve as a training and testing cohort for PRS 

prediction and downstream validations (see Fig. 1A). The cohort was composed of 30,000 in the 

training and 74,604 in the testing set. We adopted the approach described by Thompson et al 

(2024) [8], which aimed to maximize the representation of non-European ancestries in this UKB 

subset of samples. The remainder of the samples, classified as the White British Unrelated 

(WBU) subset in the UKB project [14], were utilized for the GWAS component of the meta-

analyses. This strategy facilitated direct comparisons of our results against the PRSs developed 

by Thompson et al. using the same testing set (see Methods section for more details). 

To benchmark predictive performance and elucidate each method’s strengths and weaknesses, 

we trained six PRS algorithms: lassosum2 [80], LDpred2 [81], PRS-CS [76], SbayesRC [77], 

maxCT and Stacked C+T (SCT) [22]. Although we initially also trained PolyPred [78] and NPS 

(partitioning-based non-parametric shrinkage) [79], these were excluded from the final 

benchmarking because their performance did not enhance the results compared to the other 

methods, in addition to having longer computational training times (data not shown). SBayesRC 
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was evaluated using both a subset of SNPs from the HapMap3 panel and an expanded set of 

over 7 million common SNPs. The latter yielded superior results and was selected for the 

benchmarking. PRS performance was evaluated using the area under the receiver operating 

characteristic curve (AUC), with the best results for each trait ranging from 83.4% (type 1 

diabetes) to 55.9% (epithelial ovarian cancer), and a median of 68.1% (Fig. 2A). SBayesRC 

outperformed the other models for 21 out of 30 medical traits, 11 of which were statistically 

significant. In contrast, SCT and LDpred2 were superior in three traits each, with two of the SCT 

traits reaching statistical significance. Lassosum2 and PRS-CS each excelled in two and one 

trait, respectively (Fig. 2A and B). Moreover, when we relaxed our criterion to identify 

phenotypes where two models significantly outperformed the other four PRS methods (rather 

than just one model surpassing all others), we identified seven additional traits. In six of these 

cases, SBayesRC was one of the two top-performing models. 

Pairwise correlations of PRS generated by each algorithm across all traits revealed high 

correlations between lassosum2 and LDpred2, as well as between LDpred2 and the other two 

Bayesian regression-based PRS algorithms (PRS-CS and SBayesRC), whereas correlations 

with SCT were less pronounced (Fig. 2C). We hypothesized that integrating insights from 

different models would lead to enhanced predictive accuracy.  

Predictive Performance of PRS in UK Biobank, eMERGE and PAGE MEC 
Cohorts 

Building on the idea of integrating outputs from multiple PRS algorithms, we retrained a PRS 

model using logistic regression incorporating the scores previously obtained from SBayesRC, 

SCT, LDpred2, PRS-CS and lassosum2. We did not include maxCT since SCT is already a 

stacked version derived from different clumping plus thresholding models. To accomplish this, 

we partitioned the previously used UKB testing cohort into two subsets, creating an additional 

set of 30,000 participants for retraining the combination of PRS while retaining a separate group 

for testing the newly constructed models (44,604 participants) (see Fig. 1B). We assessed the 

performance of the newly constructed PRS models by comparing them to SBayesRC, which 

was identified as the top-performing individual PRS algorithm in our prior evaluations. 

Additionally, we contrasted these results derived from meta-analyzed summary statistics with 

those obtained solely using the UKB WBU GWAS component for PRS training with SBayesRC. 

These findings were benchmarked against the PRS reported by Thompson et al (2024) [8], who 

demonstrated that their PRS release surpassed a comprehensive array of previously published 
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PRS models, and Lennon et al. (2024) [16], where the authors focused on optimizing and 

validating disease PRS models for clinical use. 

 

Fig. 2. Benchmarking of six PRS prediction algorithms applied to 30 medically-related traits. A) 
Prediction accuracy using area under the curve (AUC) as a performance metric in the testing set of UKB. 
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Conditions marked with an asterisk indicate those where SBayesRC or SCT significantly outperformed 
the other PRS algorithms. Conditions identified with a dagger represent a relaxed criterion where two 
algorithms significantly exceed the performance of the others. Error bars present the mean and 95% 
confidence interval of 10,000 non-parametric bootstrap replicates. DeLong’s test was used to compare 
the significant difference between AUC results across methods. Performance for breast and prostate 
cancer was calculated using only female and male individuals, respectively. B) Prediction results 
summarized per algorithm (with each dot representing one trait). The numbers at the top of the plot 
denote the count of traits where each PRS method demonstrated optimal performance, as indicated by 
highlighted dots. C) Mean pearson correlation coefficient (r) for PRS across the 30 traits between pairs of 
algorithms, along with a dendrogram depicting hierarchical clustering. 

 

Our ensemble model, which combined the outcomes from five PRS algorithms, significantly 

outperformed SBayesRC in our UKB testing cohort, leveraging both UKB-only and meta-

analysis summary statistics (Fig. 3A and C). This combined method exceeded the SBayesRC 

algorithm for 23 out of 30 traits (P = 0.005, sign test). Moreover, our results proved superior to 

those reported by Thompson et al. [8] for 26 traits (P = 6 x 10-5, sign test), demonstrating 

significant improvements in AUC for 22 of these traits (DeLong’s test for AUC, P < 0.05), where 

our median AUC was 5.07% higher. The only exception was Parkinson’s disease, where 

Thompson et al. achieved significantly better results, albeit with a minor difference (P = 0.03, 

DeLong’s test). PRS analyzes utilizing only summary statistics from the UKB WBU set yielded 

the poorest performance relative to other strategies (median AUC 62.9% with UKB-only vs 

66.9% with meta-analysis and 68.8% with ensemble method). However, results exclusively 

based on the UKB data showed marginally better outcomes for celiac disease. These negligible 

improvements may be attributable to random variation within the analysis. 

To validate the performance of our newly released PRS models, we applied them to the diverse 

cohorts of eMERGE and PAGE MEC, comprising 84,215 and 9,098 participants respectively. 

We extracted phenotypic data related to 30 clinical conditions from eMERGE and seven from 

PAGE MEC. Furthermore, we incorporated eight PRS models from Lennon et al. (2024) [16], 

that corresponded to the conditions investigated in this study and were specifically tailored for 

clinical implementation in diverse populations. We avoided using Lennon et al. models on the 

UKB testing cohort to prevent overfitting, as these models were trained with data that included 

the UKB dataset. Instead, we applied these models to the eMERGE cohort, replicating the same 

testing approach used in their original study. Our ensemble models significantly outperformed 

those by Lennon et al. for six out of eight traits (DeLong’s test for AUC, P < 0.05), achieving a 

median improvement in AUC of 1.97% (Fig. 3B).The UKB WBU summary statistics exhibited the 

poorest outcomes compared to other approaches for both eMERGE for the 30 traits and PAGE 
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MEC for the seven traits, followed by better performances achieved through meta-analysis with 

SBayesRC and our ensemble models (Figs. 3C and S2). 

To further evaluate PRS performance, we employed two additional metrics: odds ratios (OR) 

per standard deviation (SD) of PRS and a comparison between individuals in the top 20% of the 

PRS distribution, identified as high-risk, versus the remaining population. Consistent results with 

our primary findings were observed, as evidenced by a strong correlation between the AUC and 

these measures (Figs. S3 and S4). Specifically, our approach outperformed Thompson et al. [8] 

for 26 out of 30 traits using OR per SD as a metric and for 25 out of 30 traits using OR at the top 

20%, and surpassed Lennon et al. [16] for seven out of eight traits using OR per SD as a 

performance metric and for eight out of eight using OR at the top 20%. 

Subsequently, we analyzed the performance across different ancestries in UKB individuals, who 

were stratified by their genetically predominant ancestry using principal component analysis. In 

these analyses, we concentrate on populations that exhibit more than 50 cases of the trait being 

studied to ensure precise estimations. For eMERGE and PAGE MEC cohorts, we utilized the 

reported ethnicity labels for classification. Our findings were comparable to those of Thompson 

et al. [8] and Lennon et al. [16] (Fig. S5). As expected, we observed a decline in PRS accuracy 

for non-European ancestries. For instance, Latinos in eMERGE had a median decrease in AUC 

of 2.5%, while Africans experienced the largest reductions of 4.7% and 7.6% in eMERGE and 

UKB, respectively, compared to their European counterparts (Fig. 3D). An outlier were the East 

Asians in the UK Biobank, who exhibited only a minimal decrease in AUC of 1.3%, potentially 

reflecting the significant representation of Japanese samples from the BioBank Japan in our 

meta-analysis. Furthermore, we evaluated the impact of applying our ensemble PRS models, 

developed on UK Biobank data, to other cohorts. Comparing performance by ancestry for each 

trait within the UK Biobank to results in eMERGE or PAGE MEC, we found expected 

performance drops, but with none exceeding a 4% median reduction—specifically 3.6% and 

3.2% for Asians and Europeans, respectively, while no drop for Africans was reported (Fig. 3E). 

In evaluating the contributions of each PRS algorithm within our ensemble framework, 

SBayesRC emerged as the most influential component, accounting for 43.7% of the ensemble 

weight on average. This was followed by SCT and LDpred2, which were assigned weights of 

17.3% and 15.7%, respectively. Algorithms such as PRS-CS and lassosum2 had comparatively 

lower weights of 12.5% and 10.8%, respectively. Notably, the allocation of weights to the 
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algorithms closely aligned with their performance rankings observed in our preliminary 

benchmarking assessments. 

 

Fig. 3. Predictive performance of PRS models built upon UKB-only and meta-analysis GWAS in 
the UK Biobank testing set, eMERGE and PAGE MEC cohorts. A) Prediction accuracy was measured 
using area under the curve (AUC) as a performance metric. Error bars indicate 95% confidence intervals 
of 10,000 non-parametric bootstrap replicates. Results were compared against AUC obtained with PRSs 
from Thompson et al. (2024) (pink line and shaded area as 95% CI). Conditions marked with an asterisk 
in green indicate those where our ensemble method performed significantly better at risk prediction. The 
condition marked with an asterisk in pink indicates a significantly better result for Thompson et al. 
DeLong’s test was used to compare the significant difference between AUC results. Performance for 
breast and prostate cancer was calculated using only female and male individuals, respectively. B) 
Similar to A), our PRS models were compared to Lennon et al. (2024) models in the eMERGE cohort. C) 
Prediction results summarized per PRS study and cohort. Relative percentage change in performance 
(AUC) in non-European groups compared to accuracy obtained in Europeans. D) Relative percentage 
change in performance (AUC) in eMERGE and PAGE MEC compared to accuracy obtained in the UK 
Biobank per ancestry group. 

Addition of Ancestry and Clinical Characteristics to PRS Models 

We proceeded to enhance our ensemble PRS models by incorporating additional information, 

initially integrating ancestry details. We applied an iterative approach, settling on the use of a 

combination of ancestry information as deduced by Orchestra [82], a local ancestry inference 

(LAI) software, in addition to the traditional first four genotyping principal components (PCs). We 

trained a model that combines PRSs with ancestry information using logistic regression for each 
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trait, utilizing the same 30,000 participants previously employed for retraining our ensemble 

model. This approach led to a marginal improvement in overall accuracy (Fig. 4A and B). 

Specifically, adding only the PC components to the baseline (PRS-alone) model enhanced 

performance for 24 out of 30 traits analyzed, with a median AUC improvement of 0.3%. 

Moreover, the addition of detailed ancestry information from Orchestra resulted in accuracy 

gains for 22 traits, providing an additional median AUC enhancement of 0.1% beyond the 

addition of PCs alone. Collectively, ancestry information improved accuracy estimates for 26 

traits, a significant albeit subtle enhancement (P = 0.00006, sign test). 

While creating predictive risk models solely based on genetic information is a good way to test 

and benchmark various PRS models against each other, in a real world clinical setting, the 

addition of non-genetic information to the final model is needed in order to increase 

performance. With this in mind, we incorporated other easily obtained clinical characteristics. 

We added this information to PRS and ancestry to make a final logistic regression model that 

would serve as a prospective diagnostic test, with an easily interpretable positive or negative 

value, typical of other diagnostic tests used in a clinical setting. Table S3 contains the various 

inputs for each trait model which includes additional variables: sex, age and risk factors. In this 

regard, there was improvement in a large subset of the traits tested with 12 models surpassing 

the 80% accuracy range with the AUC metric. Including age and sex to the previous model 

improved performance for all but one trait, with a median AUC improvement of 8.4%. The 

addition of risk factors (if there were any) added a modest extra 1.3% on average to the final 

performance. Specifically, 16 out of 21 conditions with defined risk factors improved their 

accuracy mark (P = 0.03, sign test). Overall, incorporating additional factors relevant to disease 

risk prediction consistently yielded notable enhancements.  

When we look at the contributions of individual features to the full risk models, PRS proved to 

be the predominant factor, contributing roughly one-third of the predictive weight on average 

(Fig. 4C). Although the addition of ancestry information to the models did not substantially 

enhance performance over PRS alone, up to 22% of the model's weight was attributable to 

ancestry data, suggesting that our PRS model may have partially captured some ancestry 

effects. Age was second only to genetics, accounting for an average of 25% of the model's 

weight. Gender and other risk factors were less influential, contributing 8.8% and 10.6% 

respectively. 
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Fig. 4. Predictive performance of risk models incorporating ancestry, age, sex and risk factors 
information. A) Prediction accuracy was measured using AUC in the testing set of UKB. Bars indicate 
95% confidence intervals of 10,000 non-parametric bootstrap replicates. Models shown include 
performance with: ensemble PRS alone; genotyping PCs for ancestry information; Orchestra for local 
ancestry deconvolution; and additional factors such as sex, age, and relevant risk factors. B) Prediction 
results summarized per risk model where each dot represents a clinical condition. If a trait lacked relevant 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.04.17.24305723doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305723
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

risk factors, the accuracy of the final comprehensive model equaled that of the preceding model, which 
included only prs, ancestry, age and sex C) Averaged weights per feature in the final logistic regression 
model across 30 studied traits. 

 
Significant variability was evident across traits (Fig. S6). For instance, conditions such as 

Alzheimer's disease (74% of total weight), age-related macular degeneration (71%), Parkinson's 

disease (64%), and prostate cancer (51%), which predominantly manifest later in life, showed a 

higher weighting for age. Conditions where there is a known gender bias had a higher weighting 

for gender, e.g. systemic lupus erythematosus (37% of total weight), osteoporosis (32%), total 

cholesterol (29%), rheumatoid arthritis (28%), and coronary artery disease (20%). Notably 

women are more commonly affected by lupus, osteoporosis, and rheumatoid arthritis, while men 

tend to have higher cholesterol levels and more frequently suffer from coronary artery disease. 

Cardiovascular-related conditions such as hypertension and coronary artery disease, along with 

other conditions like venous thromboembolism, atrial fibrillation, and ischemic stroke, displayed 

a high dependency on risk factors such as body mass index, pre-existing hypertension and prior 

cardiovascular events. Type 2 diabetes was impacted by body mass index. 

Several clinical conditions demonstrated a substantial reliance on ancestry. Examples include 

Crohn's disease (93% total weight), celiac disease (60%), and type 1 diabetes (47%), which are 

know to be more prevalent in European populations; ischemic stroke (37%) and schizophrenia 

(31%), which exhibit higher rates in African-American populations; or type 2 diabetes (30%), 

which has a higher prevalence in non-Europeans. Melanoma, bipolar disorder, and breast 

cancer were the diseases most affected by genetics (PRS) in our models. Particularly, the 

melanoma risk model was almost entirely based on PRS, achieving an accuracy of nearly 80% 

with PRS alone.  

Towards the Clinical Implementation of PRS-Based Disease Risk Models 

Measuring PRSs early on in one's life offers a window into future health risks and identifies 

individuals who might face medical challenges as they age. Evidence from cumulative incidence 

curves, including the UK Biobank (Fig. S7) and additional cohorts like eMERGE and PAGE 

MEC (Fig. S8), supports the notion that higher PRSs correlates with a lifelong increased 

probability of developing health conditions. However, current health systems prioritize rare 

mutations that confer significant risks for disease development, while neglecting PRSs that can 

aggregate comparable risks through the accumulation of hundreds to thousands of common 

variants with minor effects. Indeed, for numerous prevalent diseases, certain genes have been 
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discovered where rare mutations significantly increase the risk, often several-fold, for carriers 

who are heterozygous [85]. In line with Thompson et al. (2024) [8], we analyzed and contrasted 

the risk profiles of rare mutations and PRSs, using cardiovascular disease, breast cancer and 

bowel cancer as illustrative case studies. 

In our analysis of UKB participants, we identified carriers of high-risk mutations in key functional 

genes via whole exome sequencing and aimed to match their risk profiles by selecting 

individuals within the top percentiles of higher risk based on their PRS profiles. For example, the 

prevalence of coronary artery disease among carriers of pathogenic mutations in genes 

associated with familial hypercholesterolemia (APOB, APOE, LDLR and PCSK9) was 

approximately 12% by age 70 in our testing cohort. A similar lifetime risk was noted among 

participants in the top 20% of the PRS distribution outlined by Thompson et al. (2024) [8] for this 

trait, consistent with what they reported. Our PRS ensemble model identified even more 

individuals – up to 22% of those in the top distribution – as having an equivalently high risk (Fig. 

5A). Remarkably, the high PRS group identified 55 to 80 times more true coronary artery 

disease events than those detected among carriers of high-risk variants, depending on the age 

group analyzed (Fig. 5B). This incidence surpassed the one reported by Thompson et al., which 

identified between 50 and 73 times the cases found in carriers. Rare pathogenic mutations 

contribute more significantly to early-onset disease, evidenced by a lower ratio of high PRS 

individuals to rare mutation carriers among those diagnosed before age 50. We also explored 

the interplay between monogenic risk variants and PRS profiles, categorizing individuals into 

low, intermediate, or high PRS risk groups. The risk among mutation carriers, compared to non-

carriers with an intermediate PRS, varied from a 1.22-fold odds ratio in the lowest PRS risk 

group to 7.05 in the highest PRS risk group (Fig. 5C). This underscores the critical need to 

consider all genetic components and illustrates how PRS can modulate the effects of high-risk 

variants typically evaluated in clinical settings. Parallel insights emerge when examining breast 

cancer in relation to mutations in BRCA1, BRCA2, ATM, PALB2, and CHECK2, and bowel 

cancer associated with rare variants in MSH2, MSH6, MLH1, and PMS2 (Fig. S9). 
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Fig. 5. Towards the clinical implementation of PRS-based models. Comparison between our PRS 
risk profiles and functional variant carriers in UKB Europeans. A) Cumulative incidence of coronary 
artery disease among carriers with pathogenic or likely-pathogenic mutations in familial 
hypercholesterolemia genes vs. individuals in the top 22% of our PRS distribution from the ensemble 
method, where a percentile was chosen to match the risk up to age 70 with that of mutation carriers. 
Additionally, the median 25%-75% of the PRS distribution serves as the population reference. B) 
Percentage of coronary artery disease (CAD) cases diagnosed in individuals aged under 50, under 65, 
and across all age groups, occurring either in mutation carriers or in those at the top of the PRS 
distribution. The plots display the ratio of high PRS cases to mutation carrier cases in each age category. 
C) The forest plot displayed odds ratios for the observed risk in coronary artery disease, with horizontal 
lines representing the 95% confidence intervals. Individuals were categorized into three groups based on 
their polygenic scores – low, intermediate, and high, corresponding to the lowest 25%, middle 25-75%, 
and highest 25% of the distribution, respectively. The intermediate polygenic score group served as the 
reference category for calculating odds ratios. Diagnostic test effectiveness across medical traits. D) 
Odds ratios are reported per ancestry group, defined as the ratio of the odds that an individual with a 
clinical condition will score above a specified risk threshold, to the odds of scoring below this threshold 
without the condition. Error bars represent 95% confidence intervals. E)  'High risk threshold' illustrates 
the percentile cutoff for a specific condition, above which results are considered high-risk. Odds ratios 
were optimized using thresholds at the top 2%, 3%, 5%, 10%, and 20% percentiles. 

 
Many of the risk models we have developed in the previous section demonstrated sufficient 

overall accuracy to potentially merit being used in a clinical setting. To further elucidate the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2024. ; https://doi.org/10.1101/2024.04.17.24305723doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305723
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

effectiveness of these models as diagnostic tests, we next calculated the diagnostic odds ratio 

(DOR) [86] for each model. To achieve sufficient sample sizes for certain traits, we aggregated 

East Asians and South Asians from the UK Biobank into a broader 'Asian' category. If non-

European populations did not meet this threshold, we combine all non-European groups 

(African and Asian) into a 'Non-European' category for the analysis. We adjust the odds ratios to 

exceed a diagnostic odds ratio of 10, while simultaneously maximizing the number of individuals 

in the population who are at least at this risk level, by focusing on the top 1%, 2%, 3%, 5%, 

10%, or 20% of the population at higher risk. As can be seen in Fig. 5D and E, diagnostic odds 

ratios ranged from a low of 3.04 for obesity in Africans to a high of 411.67 for type 1 diabetes in 

non-Europeans. However, when we restrict our observations to condition-ancestry pairs that 

have over 100 cases, the highest DOR of 66.2 was observed for Alzheimer's disease in 

Europeans. The DOR across all ancestry groups exceeded 5 for 25 out of 30 traits and 10 for 

19 out of 30 traits, suggesting that the majority of the tests were highly predictive. 

Discussion 

Polygenic risk scores (PRS) represent a new frontier in the field of personalized medicine, with 

the potential to predict an individual's susceptibility to various diseases by aggregating the 

effects of numerous genetic variants across the genome. The promise of PRS lies in their ability 

to harness the wealth of data generated by genome-wide association studies (GWAS), thereby 

enabling risk stratification at a population level and the possibility of targeted interventions for 

those at high risk [1-3,6,7,9]. This could lead to more precise preventive measures, refined 

screening protocols, and tailored therapeutic strategies, ultimately improving clinical outcomes. 

However, the utility of PRS is currently hampered by several limitations. Chief among these is 

the reduced predictive power in diverse populations due to the majority of GWAS being 

conducted in individuals of European ancestry, leading to biased risk predictions when applied 

to other ethnic groups [1,8]. Additionally, the integration of PRS into clinical practice faces 

challenges, including the need for validated models that have the same level of accuracy and 

utility of traditional diagnostic tests used in a clinical setting [9,10]. 

We generated novel genome-wide summary statistics for 30 medically-related traits, leveraging 

trans-ancestry genome-wide association study (GWAS) meta-analyses of diverse cohort data, 

including datasets such as the UKB, the FinnGen project, BioBank Japan, and the Global Lipids 

Genetics Consortium. Using meta-analyses often yielded notable improvements in PRS 

accuracy over UKB only. We believe there are two main reasons for that: (1) the meta-analyses 
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had a higher number of cases compared to UKB, on average 6.4 times greater for binary traits 

and 7 times greater for quantitative traits; and in addition (2) the meta-analyses increased the 

representation of non-European ancestries where such data was available.Trait-association 

resolution is often enhanced by the inclusion of diverse ancestries, an effect attributed to 

heterogeneity in allele frequencies and linkage disequilibrium, which may have aided the 

mapping of causal variants and improved PRS accuracy across populations [87]. However, 

challenges like data harmonization remain, emphasizing the need for better integration practices 

as more datasets become available. 

Among the six tested PRS models, SBayesRC had the overall best performance. Leveraging 

functional genomic annotations in SBayesRC may play a critical role in distinguishing causal 

from non-causal variants, further enhancing performance alongside increasing GWAS sample 

size and diversity [77]. One key advantage of this model may be that it is the only one to 

exclusively utilize summary statistics from GWAS without depending on a training cohort with 

individual-level data for tuning hyper-parameters. In contrast, many PRS methods still require 

tuning parameters via grid searches on external datasets, which can compromise statistical 

power by requiring split testing samples. It is important to note, however, that SBayesRC and 

PRS-CS use UKB as an LD reference panel. It is possible that this may inadvertently inflate the 

results in UKB, and may be partially responsible for the drop in accuracy when applied to 

eMERGE and PAGE MEC datasets. However, a meta-analysis incorporating multiethnic 

datasets would likely alter the LD configuration compared to UKB alone. Furthermore, despite 

PRS-CS also using UKB LD as a reference, it still did not achieve the same accuracy levels as 

SBayesRC. 

To maximize the accuracy of our PRSs, we trained an ensemble PRS model using logistic 

regression combining the outcomes from five PRS algorithms. Our ensemble model performed 

better than the SBayesRC algorithm for 23 out of 30 traits in our UKB testing cohort. Moreover, 

our results proved superior in AUC and OR per SD to those reported by Thompson et al. [8] for 

26 out of 30 traits, demonstrating significant improvements in AUC for 22 of these traits, where 

our median AUC was 5.07% higher. On eMERGE, our ensemble models significantly 

outperformed those by Lennon et al. [16] for six out of eight traits when using AUC as a metric, 

for seven out of eight traits when it comes to OR per SD, and for all eight traits when we 

measured OR at the top 20%. These improvements can likely be partially attributed to larger 

sample sizes incorporated into our meta-analysis and more diverse datasets included in the 

meta-analyses, with further gains achieved by using our ensemble PRS model. When it comes 
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to sample size, specifically, our study achieved a 1.25-fold increase in controls and a 1.22-fold 

increase in cases compared to Thompson et al. Twenty-one out of 27 binary diseases for 

controls and 22 out of the 30 clinical conditions for cases showed superior numbers, 

notwithstanding some overlap in the cohorts meta-analyzed. Only three traits, epithelial ovarian 

cancer, Alzheimer's disease and breast cancer, had fewer cases and controls simultaneously 

compared to those reported by Thompson et al. In the case of epithelial ovarian cancer, the 

results were particularly poor within our UKB validation cohort. For Alzheimer's disease and 

breast cancer, although our initial outcomes were weaker, the application of our ensemble 

method yielded improvements that rivaled Thompson et al.'s results. Indeed, our ensemble 

approach proved efficient by training PRS algorithms on a computationally manageable cohort 

and then combining them within a larger training dataset, optimizing the computational workflow 

while achieving greater accuracy, an approach made feasible by the simplicity and scalability of 

logistic regression. Altogether, by surpassing the models of Thompson et al. and Lennon et al., 

which had already been optimized and outperformed numerous published PRS models, our 

findings demonstrate that our PRS models are moving remarkably toward clinical application. 

It is important to note that methodological differences between our study and those cited, such 

as variations in phenotype definitions and the cohorts used for evaluation, may contribute to 

discrepancies in published accuracy metrics. For instance, the results by Lennon et al. [16] were 

derived from a smaller eMERGE cohort consisting of 2,500 individuals, whereas our evaluation 

utilized a substantially larger sample from the same project. In this regard, AUC metric tends to 

be more robust with larger sample sizes, an essential factor particularly in contexts of conditions 

with low prevalence. Although this likely contributed to the minor discrepancies in accuracy 

metrics reported across the studies, the significance of our findings remains robust. 

When applying our ensemble PRS models, developed on UKB data, to eMERGE or PAGE MEC 

cohorts, the drop in performance did not exceed a 4% median reduction. This suggests that our 

ensemble PRS model was well calibrated. As previously noted [88], we observed a decline in 

PRS accuracy for non-European ancestries. Africans experienced the largest reductions in 

accuracy compared to their European counterparts, while East Asians showed the smallest 

decrease, likely due to the representation of BioBank Japan samples in our meta-analysis. This 

again underscores the importance of including diverse ethnic groups in PRS training to enhance 

its global applicability.  
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Next we incorporated ancestry information and other easily obtained clinical characteristics: sex, 

age and known risk factors, to make a final logistic regression model that would serve as a 

prospective diagnostic test. This resulted in an improvement in a large subset of the traits 

tested, with 12 models surpassing the 80% accuracy range with the AUC metric. Age and sex 

improved performance for all but one trait, with a median AUC improvement of 8.4%. Addition of 

risk factors (where available) added an extra 1.3% on average to the final performance, while 

ancestry information improved accuracy by a modest 0.4% on average. Although the addition of 

ancestry information to the models did not substantially enhance performance over PRS alone, 

when we look at the contributions of individual features to the full risk model, up to 22% of the 

model's weight was attributable to ancestry data. This suggests that our PRS ensemble model 

might have implicitly captured the effects of ancestry, potentially through the integration of 

various PRS models tailored to different ancestries. Notably, local ancestry inference had a 

more pronounced contribution than traditional PCs, suggesting that detailed ancestry insights 

might lead to greater predictive accuracy.  

It is important to highlight the variability in the contributions of individual features to the model 

that was evident across traits. We observed higher contribution of genetics (PRS) to models 

such as melanoma, age to models such as Azhaimer's disease, gender to models such as 

systemic lupus erythematosus, ancestry to models such as Crohn's disease and known risk 

factors to models such as coronary artery disease. We can conclude that depending on the 

condition, incorporating easily measured clinical factors alongside genetic data into predictive 

models, can be an easy way to increase model accuracies, even without considering variables 

such as smoking status or lifestyle. 

Finally, we compared the predictive accuracy of our PRS models to that obtained by looking at 

rare pathogenic variants, for three well studied conditions, coronary artery disease, breast 

cancer and bowel cancer. For coronary artery disease, our PRS model was able to identify 

between 55 and 80 times more true coronary artery disease events than models using rare 

pathogenic variants. Rare pathogenic mutations seemed to contribute more to early-onset 

disease, while more common genetic variants with modest effects (found in our PRS) seemed 

to capture relatively more late-onset cases, in line with Thopson et al. [8]. When we look at the 

interplay between rare pathogenic risk variants and PRS profiles, the risk among rare 

pathogenic mutation carriers varied from a 1.22-fold odds ratio in the lowest PRS risk group to 

7.05 in the highest PRS risk group. Similar patterns were observed for breast and bowel cancer. 

This underscores the critical need to consider all genetic components and further suggests that 
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the polygenic component can modulate the effects of high-risk variants typically evaluated in 

clinical settings. The diagnostic odds ratios across all ancestry groups exceed 5 for 25 out of 30 

traits and 10 for 19 out of 30 traits, suggesting that the majority of the tests were highly 

predictive. 

In this paper, we have optimized PRS models both by increasing GWAS power through meta-

analysis and by using ensemble models that leverage the best features of individual PRS 

models. Further, we showed the importance of integrating a variety of data types to 

systematically improve diagnostic accuracy. We demonstrate that many of our models have 

sufficient accuracy to warrant consideration of being used in a clinical setting. A next step would 

be to fully validate the entire process from instrumental genotype measurements to final 

classification in individuals that do not belong to cohorts used for training and validation in this 

paper. With ever increasing GWAS sample sizes, refinements, and improvements in PRS 

algorithms, we expect that the models will further improve with time. As our current 

benchmarking demonstrates, we are one step closer to using PRS in a clinical setting across 

various ancestral populations. 

Data and code availability 
This study used the openly available GWAS catalog, FinnGen and deCODE genetics datasets 

and the UK Biobank, dbGaP and The Million Veterans Program datasets that are available to 

researchers upon application. UK Biobank research was conducted under application number 

#84038. dbGaP access was obtained for phs001868.v1.p1 (Landi et al., 2020), 

phs001584.v2.p2 (eMERGE cohort), phs000220.v2.p2 (PAGE MEC cohort) and 

phs001672.v11.p1 (The Million Veterans Program). All data produced in the present study are 

available upon request to the corresponding author.  
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